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Starting point

• The experimental setup [affymetrics slide]

• Variation in the measurements comes from

– “nuisance” variation in repeated experiments

– “interesting” variation across different experiments

• Statistical methods are required to characterize either type of

variation



Topics from statistics

• Elementary concepts, methods

– population, observation, random variable, random sample

– statistics, variance, covariance, correlation

– model, likelihood, likelihood principle, max likelihood

– exponential family of distributions, examples

– central limit theorem, implications

– data transformations

• Measures of confidence

– confidence intervals

• Significance testing

– statistical tests, test statistics

– p-values, power of a test



Elementary concepts

• Population

– the set of items we are interested in studying

– (a large number of) repetitions of the same experiment

– collection of different experiments (nutrient content/type, tem-

perature, cell-cycle)

Elements in the population in these cases correspond to individual

experiments



Elementary concepts

• Observations

– interpreted, coded

For example, we almost never directly observe the quantities of

interest



Elementary concepts

• Random sample

– a set of random draws from the population (with replacement)

For example, cell cycle measurements at three time points

Are these ever random draws?



Elementary concepts

• Random variable

– a mapping from (experimental) outcomes to numerical values

Example: X1 is a random variable corresponding to the expression

level of gene 1

x
(2)
1 is a realization of X1 in experiment 2

Experiment 1 Experiment 2 ...
Gene 1 181 1 137
Gene 2 499 229 218
Gene 3 167 147 120
... 296 110 380

Note: P (X1 = 181) is a statement about the population, not

about the observed data



Elementary concepts

• Statistics

– any function computed from the observed data (random sam-

ple)

For example, mean expression level of gene 1

x̄1 =
1

n

n∑
t=1

x
(t)
1 (1)

where x
(t)
1 is the observed value of the random variable X1 in

experiment t.



Elementary concepts

• Correlation

– measures linear relations between variables

Sample correlation between two genes (1 and 2) across n exper-

iments

Ĉ12 =

Sample covariance Σ̂12︷ ︸︸ ︷
1

n

n∑
t=1

(x(t)
1 − x̄1)(x

(t)
2 − x̄2)√

σ̂2
1

√
σ̂2
2

(2)

where σ̂2
i , i = 1,2 are sample variances

σ̂2
i =

1

n

n∑
t=1

(x(t)
1 − x̄1)

2 (3)



Elementary concepts

• Scatter plots of (hypothetical) genes

positive correlation negative correlation

zero correlation zero correlation



Statistical models

• Statistical models attempt to characterize the population of in-
terest

• A generative model aims to be able to recreate the observed data
(or population of interest)

• A multivariate Gaussian model

Zi ∼ N(0,1) (4)

X = AZ + µ (5)

Σ = E[(X − µ)(X − µ)T ] (6)

= E[(AZ)(AZ)T ] (7)

= E[AZZTAT ] (8)

= AE[ZZT ]AT (9)

= AAT (10)

• A multivariate Gaussian model

p(x|θ) =
1

(2π)p/2|Σ|1/2
exp{ −

1

2
(x − µ)TΣ−1(x − µ) } (11)

X ∼ N(µ,Σ) (12)

where µ is the mean vector and Σ is the covariance matrix



Statistical models

• Statistical models attempt to characterize the population of in-

terest

• A generative model aims to be able to recreate the observed data

(or population of interest)

• A multivariate Gaussian model

p(x|θ) =
1

(2π)p/2|Σ|1/2
exp{ −

1

2
(x − µ)TΣ−1(x − µ) } (15)

X ∼ N(µ,Σ) (16)

where µ is the mean vector and Σ is the covariance matrix



Likelihood functions

• Assume we have a probability model p(x|θ) with parameter θ (θ

can be a vector of parameters)

• Given observed data D =

{x(1), . . . , x(n)} we wish to

find an appropriate setting of

the parameters θ so that the

model “best” accounts for

the observed data

• A likelihood function is the likelihood of the observed data as a

function of θ (the parameters)

L(x(1), . . . , x(n)|θ) =
n∏

t=1

p(x(t)|θ) (17)

and is sufficient for adjusting the parameters θ.



Maximum likelihood principle: Binomial

• Maximum likelihood principle: we find the parameter θ̂ that max-

imize the likelihood of the observed data

θ̂ = argmax
θ

L(x(1), . . . , x(n)|θ) (18)

The Maximum likelihood estimate (MLE) for the Binomial PMF

is

P (kN |θ) =
(N

k

)
θk(1− θ)(N−k) (19)

logP (kN |θ) = log
(N

k

)
+ klogθ + (N − k)log(1− θ) (20)

dP (kN |θ)
dθ

=
k

θ
−

N − k

1− θ
(21)

0 =
k

θ
−

N − k

1− θ
(22)

θ̂ = k/N (23)



Maximum likelihood principle: Gaussian

• All the information is in the likelihood function

L(x(1), . . . , x(n)|θ) =
n∏

t=1

p(x(t)|θ) (8)

• Maximum likelihood principle: we find the parameters θ̂ (mean

and covariance) that maximize the likelihood of the observed data

θ̂ = argmax
θ

L(x(1), . . . , x(n)|θ) (9)

bad setting of parameters good setting
(low likelihood) (high likelihood)



Maximum likelihood estimation

• A multivariate Gaussian model

p(x|θ) =
1

(2π)p/2|Σ|1/2
exp{ −

1

2
(x− µ)TΣ−1(x− µ) } (10)

• Given observed data D = {x(1), . . . , x(n)}, the maximum likelihood

estimates of the parameters are:

1. Sample mean

µ̂ =
1

n

n∑
t=1

x(t) (11)

2. Sample covariance

Σ̂ij =
1

n

n∑
t=1

(x(t)
i − µ̂i)(x

(t)
j − µ̂j) (12)



Exponential family of distributions

• Binomial, multinomial

• Poisson

• Gaussian

• Exponential

• Gamma

. . .

– For exponential distributions, sample statistics (mean, vari-

ance, covariance) are the maximum likelihood estiates for the

model parameters

– Thus, for all sufficient statistics, simply calculate the statistic

from the sample to fit the distribution



Exponential family of distributions

Binomial Poisson

Gaussian (normal) Exponential



Central limit theorem

Let X(1), . . . , X(n) be independent (vector valued) random vari-

ables corresponding to any distribution with mean µ and covari-

ance Σ, then for large n,

√
n(X̄ − µ) ∼ N(0,Σ) (13)

where X̄ is the mean

X̄ =
1

n

n∑
t=1

X(t) (14)



Statistical tests

• Possible things that we might want to test:

1. whether a gene is cell cycle related

2. if a gene has a differential response to a pathogen

etc.

• For the purposes of illustration, we try to test whether the ob-

served correlation between two genes is significant



Statistical tests

• Testing involves several steps:

1. Select the hypotheses such as
H0 two genes are uncorrelated
H1 they have a non-zero correlation

2. Choose a test statistic T (X)

– need to define how we will measure differences between the

hypothesis

3. Observe a random sample D = {x(1), . . . , x(n)}
4. Compute the observed value for the test statistic

Tobs = T (x(1), . . . , x(n)) (18)

5. Compute the significance level (P-value) for rejecting the null

hypothesis H0

p = Prob(T (X(1), . . . , X(n)) ≥ Tobs |H0 ) (19)

6. The P-value is the probability we reject H0 when H0 is true



Statistical tests: example

• Defining the hypothesis:

Let X1 and X2 are the random variables corresponding to the

expression levels of the two genes

The null hypothesis H0: X1 and X2 are uncorrelated:[
X1
X2

]
∼ N

([
µ1
µ2

]
,

[
σ2
1 0

0 σ2
2

])
(21)

The alternative hypothesis H1: X1 and X2 can be correlated:

[
X1
X2

]
∼ N

([
µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

])
(22)

where Σij is the covariance between Xi and Xj (σ2
i = Σii)



Statistical tests: example

• The alternative hypothesis H1 is more expressive in terms of ex-

plaining the observed data

null hypothesis alternative hypothesis

• We need to find a way of testing whether this difference is sig-

nificant



Test statistic

• Likelihood ratio statistic

T (X(1), . . . , X(n)) = 2 log
P (X(1), . . . , X(n)|Ĥ1)

P (X(1), . . . , X(n)|Ĥ0)
(23)

Larger values of T imply that the model corresponding to the

null hypothesis H0 is much less able to account for the observed

data

• To evaluate the P-value, we also need to know the sampling

distribution for the test statistic

In other words, we need to know how the test statistic T (X(1), . . . , X(n))

varies if the null hypothesis H0 is correct



Test statistic cont’d

• For the likelihood ratio statistic, the sampling distribution is χ2

with degrees of freedom equal to the difference in the number of

free parameters in the two hypotheses

• Once we know the sampling distribution, we can compute the

P-value

p = Prob(T (X(1), . . . , X(n)) ≥ Tobs |H0 ) (24)



Degrees of freedom

• How many degrees of freedom do we have in the two models?

H0 :

[
X1
X2

]
∼ N

([
µ1
µ2

]
,

[
σ2
1 0

0 σ2
2

])

H1 :

[
X1
X2

]
∼ N

([
µ1
µ2

]
,

[
Σ11 Σ12
Σ21 Σ22

])

H0 H1

• The observed data overwhelmingly supports H1



Maximum a Posterior Estimators (MAP)

• Assume that we know something about a coin before we observe

N trials

• Prior knowledge can take on many forms

– Assumptions (mRNA levels are never negative)

– Data (other experiments suggests that protein A regulates

gene B)

– Estimates (our best estimate of the parameters so far)

• How do we express this knowledge so that it can be used in a

principled way?

• Represent this knowledge as a distribution over model parameters

– In the case of a coin, as a distribution over θ



Bayes’ Rule

• Key to Bayesian analysis is Bayes’ Rule

P (A, B) = P (A|B)P (B) = P (B|A)P (A) (31)

P (A|B) =
P (B|A)P (A)

P (B)
(32)



Bayesian Inference

• If we believe that Gene A can be in low, medium, or high state

of expression, and it influences Gene B as follows, and the prior

on A is as given:

– P (B|AL) = 0.2 and P (AL) = 0.4

– P (B|AM) = 0.4 and P (AM) = 0.4

– P (B|AH) = 0.8 and P (AH) = 0.2

• Given that gene B is turned on, what is the probability that gene

A is in the high state?

P (AH |B) =
P (B|AH)P (AH)

P (B)
(33)

P (AH |B) =
P (B|AH)P (AH)

P (B|AL)P (AL) + P (B|AM)P (AM) + P (B|AH)P (AH)
(34)

P (AH |B) =
0.8× 0.2

0.2× 0.4 + 0.4× 0.4 + 0.8× 0.2
(35)

P (AH |B) = 0.4 (36)



Maximum a Posterior Estimators (MAP)

• Bayesians use prior knowledge when analyzing data

– This can lead to different conclusions from the same data,

depending on your prior

• Frequentists believe that conclusions from data should always be

the same

• Using Bayes’ Rule in our Binomial example:

P (θ|kN) =
P (kN |θ)P (θ)

P (kN)
(37)

• Let’s represent P (θ) as:

P (θ) = C(α)θα1−1(1− θ)α2−1 (38)

α1 = pS + 1 (39)

α2 = (1− p)S + 1 (40)



Dirichlet Distributions

• P (θ) is a Dirichlet distribution, and is a conjugate distribution to

the Binomial distribution:

P (θ) = C(α)θα1−1(1− θ)α2−1 (41)

α1 = pS + 1 (42)

α2 = (1− p)S + 1 (43)

• This binomial form of the Dirichlet distribution is called the Beta

distribution.

• Now:

P (θ|kN) =

(
N
k

)
C(α)θk+pS(1− θ)(N−k)+(1−p)S

P (kN)
(44)

dP (θ|kN)

dθ
=

k + pS

θ
−

(N − k) + (1− p)S

1− θ
(45)

ˆθMAP =
k + pS

N + S
(46)


