Statistics for functional bioinformatics - 1

Giorgio Valentini
(Adapted from a lecture by DavidGifford)

valenti@disi.unige.it

Starting point

- The experimental setup [affymetrics slide]

- Variation in the measurements comes from
- "nuisance" variation in repeated experiments
- "interesting" variation across different experiments
- Statistical methods are required to characterize either type of variation

Topics from statistics

- Elementary concepts, methods
- population, observation, random variable, random sample
- statistics, variance, covariance, correlation
- model, likelihood, likelihood principle, max likelihood
- exponential family of distributions, examples
- central limit theorem, implications
- data transformations
- Measures of confidence
- confidence intervals
- Significance testing
- statistical tests, test statistics
- p-values, power of a test

Elementary concepts

- Population
- the set of items we are interested in studying

- (a large number of) repetitions of the same experiment
- collection of different experiments (nutrient content/type, temperature, cell-cycle)

Elements in the population in these cases correspond to individual experiments

Elementary concepts

- Observations
- interpreted, coded

For example, we almost never directly observe the quantities of interest

Elementary concepts

- Random sample
- a set of random draws from the population (with replacement)

For example, cell cycle measurements at three time points

Are these ever random draws?

Elementary concepts

- Random variable
- a mapping from (experimental) outcomes to numerical values Example: X_{1} is a random variable corresponding to the expression level of gene 1
$x_{1}^{(2)}$ is a realization of X_{1} in experiment 2

	Experiment 1	Experiment 2	\ldots
Gene 1	181	1	137
Gene 2	499	229	218
Gene 3	167	147	120
\ldots	296	110	380

Note: $P\left(X_{1}=181\right)$ is a statement about the population, not about the observed data

Elementary concepts

- Statistics
- any function computed from the observed data (random sample)

For example, mean expression level of gene 1

$$
\begin{equation*}
\bar{x}_{1}=\frac{1}{n} \sum_{t=1}^{n} x_{1}^{(t)} \tag{1}
\end{equation*}
$$

where $x_{1}^{(t)}$ is the observed value of the random variable X_{1} in experiment t.

Elementary concepts

- Correlation
- measures linear relations between variables

Sample correlation between two genes (1 and 2) across n experiments

$$
\begin{equation*}
\hat{C}_{12}=\frac{\overbrace{\frac{1}{n} \sum_{t=1}^{n}\left(x_{1}^{(t)}-\bar{x}_{1}\right)\left(x_{2}^{(t)}-\bar{x}_{2}\right)}^{\text {Sample covariance } \hat{\Sigma}_{12}}}{\sqrt{\hat{\sigma}_{1}^{2}} \sqrt{\hat{\sigma}_{2}^{2}}} \tag{2}
\end{equation*}
$$

where $\hat{\sigma}_{i}^{2}, i=1,2$ are sample variances

$$
\begin{equation*}
\widehat{\sigma}_{i}^{2}=\frac{1}{n} \sum_{t=1}^{n}\left(x_{1}^{(t)}-\bar{x}_{1}\right)^{2} \tag{3}
\end{equation*}
$$

Elementary concepts

- Scatter plots of (hypothetical) genes

positive correlation
negative correlation

zero correlation

Statistical models

- Statistical models attempt to characterize the population of interest
- A generative model aims to be able to recreate the observed data (or population of interest)
- A multivariate Gaussian model

$$
\begin{align*}
Z_{i} & \sim N(0,1) \tag{4}\\
X & =A Z+\mu \tag{5}\\
\Sigma & =E\left[(X-\mu)(X-\mu)^{T}\right] \tag{6}\\
& =E\left[(A Z)(A Z)^{T}\right] \tag{7}\\
& =E\left[A Z Z^{T} A^{T}\right] \tag{8}\\
& =A E\left[Z Z^{T}\right] A^{T} \tag{9}\\
& =A A^{T} \tag{10}
\end{align*}
$$

- A multivariate Gaussian model

$$
\begin{align*}
p(x \mid \theta) & =\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\} \tag{11}\\
X & \sim N(\mu, \Sigma) \tag{12}
\end{align*}
$$

where μ is the mean vector and Σ is the covariance matrix

Statistical models

- Statistical models attempt to characterize the population of interest
- A generative model aims to be able to recreate the observed data (or population of interest)
- A multivariate Gaussian model

$$
\begin{align*}
p(x \mid \theta) & =\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\} \tag{15}\\
X & \sim N(\mu, \Sigma) \tag{16}
\end{align*}
$$

where μ is the mean vector and Σ is the covariance matrix

Likelihood functions

- Assume we have a probability model $p(x \mid \theta)$ with parameter $\theta(\theta$ can be a vector of parameters)
- Given observed data $D=$ $\left\{x^{(1)}, \ldots, x^{(n)}\right\}$ we wish to find an appropriate setting of the parameters θ so that the model "best" accounts for the observed data

- A likelihood function is the likelihood of the observed data as a function of θ (the parameters)

$$
\begin{equation*}
L\left(x^{(1)}, \ldots, x^{(n)} \mid \theta\right)=\prod_{t=1}^{n} p\left(x^{(t)} \mid \theta\right) \tag{17}
\end{equation*}
$$

and is sufficient for adjusting the parameters θ.

Maximum likelihood principle: Binomial

- Maximum likelihood principle: we find the parameter $\hat{\theta}$ that maximize the likelihood of the observed data

$$
\begin{equation*}
\hat{\theta}=\arg \max _{\theta} L\left(x^{(1)}, \ldots, x^{(n)} \mid \theta\right) \tag{18}
\end{equation*}
$$

The Maximum likelihood estimate (MLE) for the Binomial PMF is

$$
\begin{align*}
P\left(k_{N} \mid \theta\right) & =\binom{N}{k} \theta^{k}(1-\theta)^{(N-k)} \tag{19}\\
\log P\left(k_{N} \mid \theta\right) & =\log \binom{N}{k}+k \log \theta+(N-k) \log (1-\theta) \tag{20}\\
\frac{\mathrm{d} P\left(k_{N} \mid \theta\right)}{\mathrm{d} \theta} & =\frac{k}{\theta}-\frac{N-k}{1-\theta} \tag{21}\\
0 & =\frac{k}{\theta}-\frac{N-k}{1-\theta} \tag{22}\\
\hat{\theta} & =k / N \tag{23}
\end{align*}
$$

Maximum likelihood principle: Gaussian

- All the information is in the likelihood function

$$
\begin{equation*}
L\left(x^{(1)}, \ldots, x^{(n)} \mid \theta\right)=\prod_{t=1}^{n} p\left(x^{(t)} \mid \theta\right) \tag{8}
\end{equation*}
$$

- Maximum likelihood principle: we find the parameters $\hat{\theta}$ (mean and covariance) that maximize the likelihood of the observed data

$$
\begin{equation*}
\widehat{\theta}=\arg \max _{\theta} L\left(x^{(1)}, \ldots, x^{(n)} \mid \theta\right) \tag{9}
\end{equation*}
$$

bad setting of parameters (low likelihood)

good setting
(high likelihood)

Maximum likelihood estimation

- A multivariate Gaussian model

$$
\begin{equation*}
p(x \mid \theta)=\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\} \tag{10}
\end{equation*}
$$

- Given observed data $D=\left\{x^{(1)}, \ldots, x^{(n)}\right\}$, the maximum likelihood estimates of the parameters are:

1. Sample mean

$$
\begin{equation*}
\widehat{\mu}=\frac{1}{n} \sum_{t=1}^{n} x^{(t)} \tag{11}
\end{equation*}
$$

2. Sample covariance

$$
\begin{equation*}
\hat{\Sigma}_{i j}=\frac{1}{n} \sum_{t=1}^{n}\left(x_{i}^{(t)}-\widehat{\mu}_{i}\right)\left(x_{j}^{(t)}-\widehat{\mu}_{j}\right) \tag{12}
\end{equation*}
$$

Exponential family of distributions

- Binomial, multinomial
- Poisson
- Gaussian
- Exponential
- Gamma
- For exponential distributions, sample statistics (mean, variance, covariance) are the maximum likelihood estiates for the model parameters
- Thus, for all sufficient statistics, simply calculate the statistic from the sample to fit the distribution

Exponential family of distributions

Binomial

Gaussian (normal)

Poisson

Exponential

Central limit theorem

Let $X^{(1)}, \ldots, X^{(n)}$ be independent (vector valued) random variables corresponding to any distribution with mean μ and covariance Σ, then for large n,

$$
\begin{equation*}
\sqrt{n}(\bar{X}-\mu) \sim N(0, \Sigma) \tag{13}
\end{equation*}
$$

where \bar{X} is the mean

$$
\begin{equation*}
\bar{X}=\frac{1}{n} \sum_{t=1}^{n} X^{(t)} \tag{14}
\end{equation*}
$$

Statistical tests

- Possible things that we might want to test:

1. whether a gene is cell cycle related
2. if a gene has a differential response to a pathogen etc.

- For the purposes of illustration, we try to test whether the observed correlation between two genes is significant

Statistical tests

- Testing involves several steps:

1. Select the hypotheses such as
H_{0} two genes are uncorrelated
H_{1} they have a non-zero correlation
2. Choose a test statistic $T(X)$

- need to define how we will measure differences between the hypothesis

3. Observe a random sample $D=\left\{x^{(1)}, \ldots, x^{(n)}\right\}$
4. Compute the observed value for the test statistic

$$
\begin{equation*}
T_{o b s}=T\left(x^{(1)}, \ldots, x^{(n)}\right) \tag{18}
\end{equation*}
$$

5. Compute the significance level (P -value) for rejecting the null hypothesis H_{0}

$$
\begin{equation*}
p=\operatorname{Prob}\left(T\left(X^{(1)}, \ldots, X^{(n)}\right) \geq T_{o b s} \mid H_{0}\right) \tag{19}
\end{equation*}
$$

6. The P-value is the probability we reject H_{0} when H_{0} is true

Statistical tests: example

- Defining the hypothesis:

Let X_{1} and X_{2} are the random variables corresponding to the expression levels of the two genes
The null hypothesis $H_{0}: X_{1}$ and X_{2} are uncorrelated:

$$
\left[\begin{array}{l}
X_{1} \tag{21}\\
X_{2}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right]\right)
$$

The alternative hypothesis $H_{1}: X_{1}$ and X_{2} can be correlated:

$$
\left[\begin{array}{l}
X_{1} \tag{22}\\
X_{2}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right],\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]\right)
$$

where $\Sigma_{i j}$ is the covariance between X_{i} and $X_{j}\left(\sigma_{i}^{2}=\Sigma_{i i}\right)$

Statistical tests: example

- The alternative hypothesis H_{1} is more expressive in terms of explaining the observed data

null hypothesis

alternative hypothesis
- We need to find a way of testing whether this difference is significant

Test statistic

- Likelihood ratio statistic

$$
\begin{equation*}
T\left(X^{(1)}, \ldots, X^{(n)}\right)=2 \log \frac{P\left(X^{(1)}, \ldots, X^{(n)} \mid \hat{H}_{1}\right)}{P\left(X^{(1)}, \ldots, X^{(n)} \mid \hat{H}_{0}\right)} \tag{23}
\end{equation*}
$$

Larger values of T imply that the model corresponding to the null hypothesis H_{0} is much less able to account for the observed data

- To evaluate the P-value, we also need to know the sampling distribution for the test statistic

In other words, we need to know how the test statistic $T\left(X^{(1)}, \ldots, X^{(n)}\right)$ varies if the null hypothesis H_{0} is correct

Test statistic cont'd

- For the likelihood ratio statistic, the sampling distribution is χ^{2} with degrees of freedom equal to the difference in the number of free parameters in the two hypotheses

- Once we know the sampling distribution, we can compute the P-value

$$
\begin{equation*}
p=\operatorname{Prob}\left(T\left(X^{(1)}, \ldots, X^{(n)}\right) \geq T_{o b s} \mid H_{0}\right) \tag{24}
\end{equation*}
$$

Degrees of freedom

- How many degrees of freedom do we have in the two models?

$$
\begin{array}{ll}
H_{0}: & {\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right],\left[\begin{array}{ll}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right]\right)} \\
H_{1}: & {\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right],\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]\right)}
\end{array}
$$

H_{0}

H_{1}

- The observed data overwhelmingly supports H_{1}

Maximum a Posterior Estimators (MAP)

- Assume that we know something about a coin before we observe N trials
- Prior knowledge can take on many forms
- Assumptions (mRNA levels are never negative)
- Data (other experiments suggests that protein A regulates gene B)
- Estimates (our best estimate of the parameters so far)
- How do we express this knowledge so that it can be used in a principled way?
- Represent this knowledge as a distribution over model parameters
- In the case of a coin, as a distribution over θ

Bayes' Rule

- Key to Bayesian analysis is Bayes' Rule

$$
\begin{align*}
P(A, B) & =P(A \mid B) P(B)=P(B \mid A) P(A) \tag{31}\\
P(A \mid B) & =\frac{P(B \mid A) P(A)}{P(B)} \tag{32}
\end{align*}
$$

Bayesian Inference

- If we believe that Gene A can be in low, medium, or high state of expression, and it influences Gene B as follows, and the prior on A is as given:
$-P\left(B \mid A_{L}\right)=0.2$ and $P\left(A_{L}\right)=0.4$
$-P\left(B \mid A_{M}\right)=0.4$ and $P\left(A_{M}\right)=0.4$
$-P\left(B \mid A_{H}\right)=0.8$ and $P\left(A_{H}\right)=0.2$
- Given that gene B is turned on, what is the probability that gene A is in the high state?

$$
\begin{align*}
P\left(A_{H} \mid B\right) & =\frac{P\left(B \mid A_{H}\right) P\left(A_{H}\right)}{P(B)} \tag{33}\\
P\left(A_{H} \mid B\right) & =\frac{P\left(B \mid A_{H}\right) P\left(A_{H}\right)}{P\left(B \mid A_{L}\right) P\left(A_{L}\right)+P\left(B \mid A_{M}\right) P\left(A_{M}\right)+P\left(B \mid A_{H}\right) P\left(A_{H}\right)} \\
P\left(A_{H} \mid B\right) & =\frac{0.8 \times 0.2}{0.2 \times 0.4+0.4 \times 0.4+0.8 \times 0.2} \tag{35}\\
P\left(A_{H} \mid B\right) & =0.4 \tag{36}
\end{align*}
$$

Maximum a Posterior Estimators (MAP)

- Bayesians use prior knowledge when analyzing data
- This can lead to different conclusions from the same data, depending on your prior
- Frequentists believe that conclusions from data should always be the same
- Using Bayes' Rule in our Binomial example:

$$
\begin{equation*}
P\left(\theta \mid k_{N}\right)=\frac{P\left(k_{N} \mid \theta\right) P(\theta)}{P\left(k_{N}\right)} \tag{37}
\end{equation*}
$$

- Let's represent $P(\theta)$ as:

$$
\begin{align*}
P(\theta) & =C(\alpha) \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{2}-1} \tag{38}\\
\alpha_{1} & =p S+1 \tag{39}\\
\alpha_{2} & =(1-p) S+1 \tag{40}
\end{align*}
$$

Dirichlet Distributions

- $P(\theta)$ is a Dirichlet distribution, and is a conjugate distribution to the Binomial distribution:

$$
\begin{align*}
P(\theta) & =C(\alpha) \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{2}-1} \tag{41}\\
\alpha_{1} & =p S+1 \tag{42}\\
\alpha_{2} & =(1-p) S+1 \tag{43}
\end{align*}
$$

- This binomial form of the Dirichlet distribution is called the Beta distribution.
- Now:

$$
\begin{align*}
P\left(\theta \mid k_{N}\right) & =\frac{\binom{N}{k} C(\alpha) \theta^{k+p S}(1-\theta)^{(N-k)+(1-p) S}}{P\left(k_{N}\right)} \tag{44}\\
\frac{\mathrm{d} P\left(\theta \mid k_{N}\right)}{\mathrm{d} \theta} & =\frac{k+p S}{\theta}-\frac{(N-k)+(1-p) S}{1-\theta} \tag{45}\\
\theta_{\hat{M A P}} & =\frac{k+p S}{N+S} \tag{46}
\end{align*}
$$

