
4 FUZZY CLUSTERING

Clustering techniques are mostly unsupervised methods that can be used to organize
data into groups based on similarities among the individual data items. Most clustering
algorithms do not rely on assumptions common to conventional statistical methods,
such as the underlying statistical distribution of data, and therefore they are useful in
situations where little prior knowledge exists. The potential of clustering algorithms
to reveal the underlying structures in data can be exploited in a wide variety of appli-
cations, including classification, image processing, pattern recognition, modeling and
identification.

This chapter presents an overview of fuzzy clustering algorithms based on the c-
means functional. Readers interested in a deeper and more detailed treatment of fuzzy
clustering may refer to the classical monographs by Duda and Hart (1973), Bezdek
(1981) and Jain and Dubes (1988). A more recent overview of different clustering
algorithms can be found in (Bezdek and Pal, 1992).

4.1 Basic Notions

The basic notions of data, clusters and cluster prototypes are established and a broad
overview of different clustering approaches is given.

4.1.1 The Data Set

Clustering techniques can be applied to data that are quantitative (numerical), quali-
tative (categorical), or a mixture of both. In this chapter, the clustering of quantita-
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56 FUZZY AND NEURAL CONTROL

tive data is considered. The data are typically observations of some physical process.
Each observation consists of n measured variables, grouped into an n-dimensional
column vector zk = [z1k, . . . , znk]T , zk ∈ R

n. A set ofN observations is denoted by
Z = {zk | k = 1, 2, . . . , N}, and is represented as an n×N matrix:

Z =



z11 z12 · · · z1N
z21 z22 · · · z2N

...
...

...
...

zn1 zn2 · · · znN


 . (4.1)

In the pattern-recognition terminology, the columns of this matrix are called patterns
or objects, the rows are called the features or attributes, and Z is called the pattern or
data matrix. The meaning of the columns and rows of Z depends on the context. In
medical diagnosis, for instance, the columns ofZmay represent patients, and the rows
are then symptoms, or laboratory measurements for these patients. When clustering
is applied to the modeling and identification of dynamic systems, the columns of Z
may contain samples of time signals, and the rows are, for instance, physical variables
observed in the system (position, pressure, temperature, etc.). In order to represent the
system’s dynamics, past values of these variables are typically included in Z as well.

4.1.2 Clusters and Prototypes

Various definitions of a cluster can be formulated, depending on the objective of clus-
tering. Generally, one may accept the view that a cluster is a group of objects that are
more similar to one another than to members of other clusters (Bezdek, 1981; Jain and
Dubes, 1988). The term “similarity” should be understood as mathematical similarity,
measured in some well-defined sense. In metric spaces, similarity is often defined by
means of a distance norm. Distance can be measured among the data vectors them-
selves, or as a distance from a data vector to some prototypical object (prototype) of
the cluster. The prototypes are usually not known beforehand, and are sought by the
clustering algorithms simultaneously with the partitioning of the data. The prototypes
may be vectors of the same dimension as the data objects, but they can also be de-
fined as “higher-level” geometrical objects, such as linear or nonlinear subspaces or
functions.

Data can reveal clusters of different geometrical shapes, sizes and densities as
demonstrated in Figure 4.1. While clusters (a) are spherical, clusters (b) to (d) can be
characterized as linear and nonlinear subspaces of the data space. The performance of
most clustering algorithms is influenced not only by the geometrical shapes and den-
sities of the individual clusters, but also by the spatial relations and distances among
the clusters. Clusters can be well-separated, continuously connected to each other, or
overlapping each other.

4.1.3 Overview of Clustering Methods

Many clustering algorithms have been introduced in the literature. Since clusters can
formally be seen as subsets of the data set, one possible classification of clustering
methods can be according to whether the subsets are fuzzy or crisp (hard).
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Figure 4.1. Clusters of different shapes and dimensions in R
2. After (Jain and Dubes,

1988).

Hard clustering methods are based on classical set theory, and require that an object
either does or does not belong to a cluster. Hard clustering means partitioning the data
into a specified number of mutually exclusive subsets.

Fuzzy clustering methods, however, allow the objects to belong to several clusters
simultaneously, with different degrees of membership. In many situations, fuzzy clus-
tering is more natural than hard clustering. Objects on the boundaries between several
classes are not forced to fully belong to one of the classes, but rather are assigned
membership degrees between 0 and 1 indicating their partial membership. The dis-
crete nature of the hard partitioning also causes difficulties with algorithms based on
analytic functionals, since these functionals are not differentiable.

Another classification can be related to the algorithmic approach of the different
techniques (Bezdek, 1981).

Agglomerative hierarchical methods and splitting hierarchical methods form new
clusters by reallocating memberships of one point at a time, based on some suitable
measure of similarity.

With graph-theoretic methods, Z is regarded as a set of nodes. Edge weights be-
tween pairs of nodes are based on a measure of similarity between these nodes.

Clustering algorithms may use an objective function to measure the desirability of
partitions. Nonlinear optimization algorithms are used to search for local optima of
the objective function.

The remainder of this chapter focuses on fuzzy clustering with objective function.
These methods are relatively well understood, and mathematical results are available
concerning the convergence properties and cluster validity assessment.

4.2 Hard and Fuzzy Partitions

The concept of fuzzy partition is essential for cluster analysis, and consequently also
for the identification techniques that are based on fuzzy clustering. Fuzzy and possi-
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bilistic partitions can be seen as a generalization of hard partition which is formulated
in terms of classical subsets.

4.2.1 Hard Partition

The objective of clustering is to partition the data setZ into c clusters (groups, classes).
For the time being, assume that c is known, based on prior knowledge, for instance.
Using classical sets, a hard partition of Z can be defined as a family of subsets
{Ai | 1 ≤ i ≤ c} ⊂ P(Z)1 with the following properties (Bezdek, 1981):

c⋃
i=1

Ai = Z, (4.2a)

Ai ∩Aj = ∅, 1 ≤ i �= j ≤ c, (4.2b)

∅ ⊂ Ai ⊂ Z, 1 ≤ i ≤ c . (4.2c)

Equation (4.2a) means that the union subsets A i contains all the data. The subsets
must be disjoint, as stated by (4.2b), and none of them is empty nor contains all the
data in Z (4.2c). In terms of membership (characteristic) functions, a partition can be
conveniently represented by the partition matrix U = [µ ik]c×N . The ith row of this
matrix contains values of the membership function µ i of the ith subset Ai of Z. It
follows from (4.2) that the elements ofU must satisfy the following conditions:

µik ∈ {0, 1}, 1 ≤ i ≤ c, 1 ≤ k ≤ N, (4.3a)
c∑

i=1

µik = 1, 1 ≤ k ≤ N, (4.3b)

0 <
N∑
k=1

µik < N, 1 ≤ i ≤ c . (4.3c)

The space of all possible hard partition matrices for Z, called the hard partitioning
space (Bezdek, 1981), is thus defined by

Mhc =

{
U ∈ R

c×N
∣∣∣µik ∈ {0, 1}, ∀i, k;

c∑
i=1

µik = 1, ∀k; 0 <
N∑
k=1

µik < N, ∀i
}
.

Example 4.1 Hard partition.Let us illustrate the concept of hard partition by a sim-
ple example. Consider a data set Z = {z1, z2, . . . , z10}, shown in Figure 4.2.

A visual inspection of this data may suggest two well-separated clusters (data points
z1 to z4 and z7 to z10 respectively), one point in between the two clusters (z5), and an
“outlier” z6. One particular partitionU ∈Mhc of the data into two subsets (out of the

1P(Z) is the power set of Z .
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Figure 4.2. A data set in R
2.

210 possible hard partitions) is

U =
[
1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1

]
.

The first row ofU defines point-wise the characteristic function for the first subset of
Z,A1, and the second row defines the characteristic function of the second subset ofZ,
A2. Each sample must be assigned exclusively to one subset (cluster) of the partition.
In this case, both the boundary point z5 and the outlier z6 have been assigned to A1.
It is clear that a hard partitioning may not give a realistic picture of the underlying
data. Boundary data points may represent patterns with a mixture of properties of data
in A1 and A2, and therefore cannot be fully assigned to either of these classes, or do
they constitute a separate class. This shortcoming can be alleviated by using fuzzy and
possibilistic partitions as shown in the following sections.

✷

4.2.2 Fuzzy Partition

Generalization of the hard partition to the fuzzy case follows directly by allowing µ ik

to attain real values in [0, 1]. Conditions for a fuzzy partition matrix, analogous to
(4.3) are given by (Ruspini, 1970):

µik ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N, (4.4a)
c∑

i=1

µik = 1, 1 ≤ k ≤ N, (4.4b)

0 <
N∑
k=1

µik < N, 1 ≤ i ≤ c . (4.4c)

The ith row of the fuzzy partition matrix U contains values of the ith membership
function of the fuzzy subset Ai of Z. Equation (4.4b) constrains the sum of each
column to 1, and thus the total membership of each zk in Z equals one. The fuzzy
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partitioning space for Z is the set

Mfc =

{
U ∈ R

c×N
∣∣∣µik ∈ [0, 1], ∀i, k;

c∑
i=1

µik = 1, ∀k; 0 <
N∑
k=1

µik < N, ∀i
}
.

Example 4.2 Fuzzy partition.Consider the data set from Example 4.1. One of the
infinitely many fuzzy partitions in Z is:

U =
[
1.0 1.0 1.0 0.8 0.5 0.5 0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.5 0.5 0.8 1.0 1.0 1.0

]
.

The boundary point z5 has now a membership degree of 0.5 in both classes, which
correctly reflects its position in the middle between the two clusters. Note, however,
that the outlier z6 has the same pair of membership degrees, even though it is further
from the two clusters, and thus can be considered less typical of both A 1 and A2 than
z5. This is because condition (4.4b) requires that the sum of memberships of each
point equals one. It can be, of course, argued that three clusters are more appropriate
in this example than two. In general, however, it is difficult to detect outliers and
assign them to extra clusters. The use of possibilistic partition, presented in the next
section, overcomes this drawback of fuzzy partitions.

✷

4.2.3 Possibilistic Partition

A more general form of fuzzy partition, the possibilistic partition, 2 can be obtained
by relaxing the constraint (4.4b). This constraint, however, cannot be completely re-
moved, in order to ensure that each point is assigned to at least one of the fuzzy
subsets with a membership greater than zero. Equation (4.4b) can be replaced by a
less restrictive constraint ∀k, ∃i, µik > 0. The conditions for a possibilistic fuzzy
partition matrix are:

µik ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N, (4.5a)

∃i, µik > 0, ∀k, (4.5b)

0 <
N∑
k=1

µik < N, 1 ≤ i ≤ c . (4.5c)

Analogously to the previous cases, the possibilistic partitioning space for Z is the set

Mpc =

{
U ∈ R

c×N
∣∣∣µik ∈ [0, 1], ∀i, k; ∀k, ∃i, µik > 0; 0 <

N∑
k=1

µik < N, ∀i
}
.

2The term “possibilistic” (partition, clustering, etc.) has been introduced in (Krishnapuram and Keller,
1993). In the literature, the terms “constrained fuzzy partition” and “unconstrained fuzzy partition” are also
used to denote partitions (4.4) and (4.5), respectively.
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Example 4.3 Possibilistic partition. An example of a possibilistic partition matrix
for our data set is:

U =
[
1.0 1.0 1.0 1.0 0.5 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.2 1.0 1.0 1.0 1.0

]
.

As the sum of elements in each column of U ∈ Mfc is no longer constrained, the
outlier has a membership of 0.2 in both clusters, which is lower than the membership
of the boundary point z5, reflecting the fact that this point is less typical for the two
clusters than z5.

✷

4.3 Fuzzy c-Means Clustering

Most analytical fuzzy clustering algorithms (and also all the algorithms presented in
this chapter) are based on optimization of the basic c-means objective function, or
some modification of it. Hence we start our discussion with presenting the fuzzy c-
means functional.

4.3.1 The Fuzzy c-Means Functional

A large family of fuzzy clustering algorithms is based on minimization of the fuzzy
c-means functional formulated as (Dunn, 1974; Bezdek, 1981):

J(Z;U,V) =
c∑

i=1

N∑
k=1

(µik)m‖zk − vi‖2A (4.6a)

where

U = [µik] ∈Mfc (4.6b)

is a fuzzy partition matrix of Z,

V = [v1,v2, . . . ,vc], vi ∈ R
n (4.6c)

is a vector of cluster prototypes (centers), which have to be determined,

D2ikA = ‖zk − vi‖2A = (zk − vi)TA(zk − vi) (4.6d)

is a squared inner-product distance norm, and

m ∈ [1,∞) (4.6e)

is a parameter which determines the fuzziness of the resulting clusters. The value of
the cost function (4.6a) can be seen as a measure of the total variance of z k from vi.
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4.3.2 The Fuzzy c-Means Algorithm

The minimization of the c-means functional (4.6a) represents a nonlinear optimiza-
tion problem that can be solved by using a variety of methods, including iterative
minimization, simulated annealing or genetic algorithms. The most popular method
is a simple Picard iteration through the first-order conditions for stationary points of
(4.6a), known as the fuzzy c-means (FCM) algorithm.

The stationary points of the objective function (4.6a) can be found by adjoining the
constraint (4.4b) to J by means of Lagrange multipliers:

J̄(Z;U,V,λ) =
c∑

i=1

N∑
k=1

(µik)mD2ikA +
N∑
k=1

λk

[
c∑

i=1

µik − 1

]
, (4.7)

and by setting the gradients of J̄ with respect toU,V and λ to zero. It can be shown
that ifD2ikA > 0, ∀i, k andm > 1, then (U,V) ∈Mfc ×R

n×c may minimize (4.6a)
only if

µik =
1

c∑
j=1

(DikA/DjkA)2/(m−1)
, 1 ≤ i ≤ c, 1 ≤ k ≤ N, (4.8a)

and

vi =

N∑
k=1

(µik)mzk

N∑
k=1

(µik)m
; 1 ≤ i ≤ c . (4.8b)

This solution also satisfies the remaining constraints (4.4a) and (4.4c). Equations (4.8)
are first-order necessary conditions for stationary points of the functional (4.6a). The
FCM (Algorithm 4.1) iterates through (4.8a) and (4.8b). Sufficiency of (4.8) and the
convergence of the FCM algorithm is proven in (Bezdek, 1980). Note that (4.8b) gives
vi as the weighted mean of the data items that belong to a cluster, where the weights
are the membership degrees. That is why the algorithm is called “c-means”.

Some remarks should be made:

1. The purpose of the “if . . . otherwise” branch at Step 3 is to take care of a singularity
that occurs in FCM whenDisA = 0 for some zk and one or more cluster prototypes
vs, s ∈ S ⊂ {1, 2, . . . , c}. In this case, the membership degree in (4.8a) cannot be
computed. When this happens, 0 is assigned to each µ ik, i ∈ S̄ and the membership
is distributed arbitrarily among µsj subject to the constraint

∑
s∈S µsj = 1, ∀k.

2. The FCM algorithm converges to a local minimum of the c-means functional (4.6a).
Hence, different initializations may lead to different results.

3. While steps 1 and 2 are straightforward, step 3 is a bit more complicated, as a
singularity in FCM occurs when DikA = 0 for some zk and one or more vi.
When this happens (rare in practice), zero membership is assigned to the clusters
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Algorithm 4.1 Fuzzy c-means (FCM).

Given the data set Z, choose the number of clusters 1 < c < N , the weighting ex-
ponent m > 1, the termination tolerance ε > 0 and the norm-inducing matrix A.
Initialize the partition matrix randomly, such thatU (0) ∈Mfc.

Repeat for l = 1, 2, . . .

Step 1: Compute the cluster prototypes (means):

v(l)i =

N∑
k=1

(
µ
(l−1)
ik

)m
zk

N∑
k=1

(
µ
(l−1)
ik

)m , 1 ≤ i ≤ c .

Step 2: Compute the distances:

D2ikA = (zk − v(l)i )TA(zk − v(l)i ), 1 ≤ i ≤ c, 1 ≤ k ≤ N .

Step 3: Update the partition matrix:
for 1 ≤ k ≤ N

ifDikA > 0 for all i = 1, 2, . . . , c

µ
(l)
ik =

1
c∑

j=1

(DikA/DjkA)2/(m−1)
,

otherwise

µ
(l)
ik = 0 if DikA > 0, and µ(l)ik ∈ [0, 1] with

c∑
i=1

µ
(l)
ik = 1 .

until ‖U(l) −U(l−1)‖ < ε.

for which DikA > 0 and the memberships are distributed arbitrarily among the
clusters for whichDikA = 0, such that the constraint in (4.4b) is satisfied.

4. The alternating optimization scheme used by FCM loops through the estimates
U(l−1) → V(l) → U(l) and terminates as soon as ‖U(l) − U(l−1)‖ < ε. Al-
ternatively, the algorithm can be initialized with V (0), loop through V(l−1) →
U(l) → V(l), and terminate on ‖V(l) −V(l−1)‖ < ε. The error norm in the ter-
mination criterion is usually chosen as maxik(|µ(l)ik − µ(l−1)ik |). Different results
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may be obtained with the same values of ε, since the termination criterion used in
Algorithm 4.1 requires that more parameters become close to one another.

4.3.3 Parameters of the FCM Algorithm

Before using the FCM algorithm, the following parameters must be specified: the
number of clusters, c, the ‘fuzziness’ exponent, m, the termination tolerance, ε, and
the norm-inducing matrix, A. Moreover, the fuzzy partition matrix, U, must be ini-
tialized. The choices for these parameters are now described one by one.

Number of Clusters. The number of clusters c is the most important parameter,
in the sense that the remaining parameters have less influence on the resulting partition.
When clustering real data without any a priori information about the structures in the
data, one usually has to make assumptions about the number of underlying clusters.
The chosen clustering algorithm then searches for c clusters, regardless of whether
they are really present in the data or not. Two main approaches to determining the
appropriate number of clusters in data can be distinguished:

1. Validity measures. Validity measures are scalar indices that assess the goodness
of the obtained partition. Clustering algorithms generally aim at locating well-
separated and compact clusters. When the number of clusters is chosen equal to
the number of groups that actually exist in the data, it can be expected that the clus-
tering algorithm will identify them correctly. When this is not the case, misclassi-
fications appear, and the clusters are not likely to be well separated and compact.
Hence, most cluster validity measures are designed to quantify the separation and
the compactness of the clusters. However, as Bezdek (1981) points out, the concept
of cluster validity is open to interpretation and can be formulated in different ways.
Consequently, many validity measures have been introduced in the literature, see
(Bezdek, 1981; Gath and Geva, 1989; Pal and Bezdek, 1995) among others. For
the FCM algorithm, the Xie-Beni index (Xie and Beni, 1991)

χ(Z;U,V) =

c∑
i=1

N∑
k=1

µmik ‖ zk − vi ‖2

c ·min
i�=j

(
‖ vi − vj ‖2

) (4.9)

has been found to perform well in practice. This index can be interpreted as the
ratio of the total within-group variance and the separation of the cluster centers.
The best partition minimizes the value of χ(Z;U,V).

2. Iterative merging or insertion of clusters. The basic idea of cluster merging is
to start with a sufficiently large number of clusters, and successively reduce this
number by merging clusters that are similar (compatible) with respect to some well-
defined criteria (Krishnapuram and Freg, 1992; Kaymak and Babuška, 1995). One
can also adopt an opposite approach, i.e., start with a small number of clusters and
iteratively insert clusters in the regions where the data points have low degree of
membership in the existing clusters (Gath and Geva, 1989).
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Fuzziness Parameter. The weighting exponentm is a rather important param-
eter as well, because it significantly influences the fuzziness of the resulting partition.
As m approaches one from above, the partition becomes hard (µ ik ∈ {0, 1}) and vi
are ordinary means of the clusters. As m → ∞, the partition becomes completely
fuzzy (µik = 1/c) and the cluster means are all equal to the mean of Z. These limit
properties of (4.6) are independent of the optimization method used (Pal and Bezdek,
1995). Usually,m = 2 is initially chosen.

Termination Criterion. The FCM algorithm stops iterating when the norm of
the difference between U in two successive iterations is smaller than the termination
parameter ε. For the maximum norm max ik(|µ(l)ik − µ(l−1)ik |), the usual choice is ε =
0.001, even though ε = 0.01 works well in most cases, while drastically reducing the
computing times.

Norm-Inducing Matrix. The shape of the clusters is determined by the choice
of the matrix A in the distance measure (4.6d). A common choice is A = I, which
gives the standard Euclidean norm:

D2ik = (zk − vi)T (zk − vi). (4.10)

Another choice forA is a diagonal matrix that accounts for different variances in the
directions of the coordinate axes of Z:

A =




(1/σ1)2 0 · · · 0
0 (1/σ2)2 · · · 0
...

...
. . .

...
0 0 · · · (1/σn)2


 . (4.11)

This matrix induces a diagonal norm on R
n. Finally, A can be defined as the inverse

of the covariance matrix of Z: A = R−1, with

R =
1
N

N∑
k=1

(zk − z̄)(zk − z̄)T . (4.12)

Here z̄ denotes the mean of the data. In this case, A induces the Mahalanobis norm
on R

n.
The norm influences the clustering criterion by changing the measure of dissimilar-

ity. The Euclidean norm induces hyperspherical clusters (surfaces of constant mem-
bership are hyperspheres). Both the diagonal and the Mahalanobis norm generate
hyperellipsoidal clusters. With the diagonal norm, the axes of the hyperellipsoids are
parallel to the coordinate axes, while with the Mahalanobis norm the orientation of the
hyperellipsoid is arbitrary, as shown in Figure 4.3.

A common limitation of clustering algorithms based on a fixed distance norm is
that such a norm forces the objective function to prefer clusters of a certain shape even
if they are not present in the data. This is demonstrated by the following example.
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+

Diagonal normEuclidean norm

+ +

Mahalonobis norm

Figure 4.3. Different distance norms used in fuzzy clustering.

Example 4.4 Fuzzy c-means clustering. Consider a synthetic data set in R
2, which

contains two well-separated clusters of different shapes, as depicted in Figure 4.4. The
samples in both clusters are drawn from the normal distribution. The standard devia-
tion for the upper cluster is 0.2 for both axes, whereas in the lower cluster it is 0.2 for
the horizontal axis and 0.05 for the vertical axis. The FCM algorithm was applied to
this data set. The norm-inducing matrix was set toA = I for both clusters, the weight-
ing exponent to m = 2, and the termination criterion to ε = 0.01. The algorithm was
initialized with a random partition matrix and converged after 4 iterations. From the
membership level curves in Figure 4.4, one can see that the FCM algorithm imposes a
circular shape on both clusters, even though the lower cluster is rather elongated.

−1 −0.5 0 0.5 1

   1

 0.5

   0

−0.5

  −1

Figure 4.4. The fuzzy c-means algorithm imposes a spherical shape on the clusters, re-

gardless of the actual data distribution. The dots represent the data points, ‘+’ are the

cluster means. Also shown are level curves of the clusters. Dark shading corresponds to

membership degrees around 0.5.

Note that it is of no help to use another A, since the two clusters have different
shapes. Generally, different matrices Ai are required, but there is no guideline as
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to how to choose them a priori. In Section 4.4, we will see that these matrices can
be adapted by using estimates of the data covariance. A partition obtained with the
Gustafson–Kessel algorithm, which uses such an adaptive distance norm, is presented
in Example 4.5.

✷

Initial Partition Matrix. The partition matrix is usually initialized at random,
such that U ∈ Mfc. A simple approach to obtain such U is to initialize the cluster
centers vi at random and compute the corresponding U by (4.8a) (i.e., by using the
third step of the FCM algorithm).

4.3.4 Extensions of the Fuzzy c-Means Algorithm

There are several well-known extensions of the basic c-means algorithm:

Algorithms using an adaptive distance measure, such as the Gustafson–Kessel algo-
rithm (Gustafson and Kessel, 1979) and the fuzzy maximum likelihood estimation
algorithm (Gath and Geva, 1989).

Algorithms based on hyperplanar or functional prototypes, or prototypes defined by
functions. They include the fuzzy c-varieties (Bezdek, 1981), fuzzy c-elliptotypes
(Bezdek, et al., 1981), and fuzzy regression models (Hathaway and Bezdek, 1993).

Algorithms that search for possibilistic partitions in the data, i.e., partitions where
the constraint (4.4b) is relaxed.

In the following sections we will focus on the Gustafson–Kessel algorithm.

4.4 Gustafson–Kessel Algorithm

Gustafson and Kessel (Gustafson and Kessel, 1979) extended the standard fuzzy c-
means algorithm by employing an adaptive distance norm, in order to detect clusters
of different geometrical shapes in one data set. Each cluster has its own norm-inducing
matrixAi, which yields the following inner-product norm:

D2ikAi
= (zk − vi)TAi(zk − vi) . (4.13)

The matrices Ai are used as optimization variables in the c-means functional, thus
allowing each cluster to adapt the distance norm to the local topological structure of
the data. The objective functional of the GK algorithm is defined by:

J(Z;U,V, {Ai}) =
c∑

i=1

N∑
k=1

(µik)mD2ikAi
(4.14)

This objective function cannot be directly minimized with respect to A i, since it is
linear in Ai. To obtain a feasible solution,Ai must be constrained in some way. The
usual way of accomplishing this is to constrain the determinant ofA i:

|Ai| = ρi, ρi > 0, ∀i . (4.15)
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Allowing the matrix Ai to vary with its determinant fixed corresponds to optimiz-
ing the cluster’s shape while its volume remains constant. By using the Lagrange-
multiplier method, the following expression forA i is obtained (Gustafson and Kessel,
1979):

Ai = [ρi det(Fi)]1/nF−1
i , (4.16)

where Fi is the fuzzy covariance matrix of the ith cluster given by

Fi =

N∑
k=1

(µik)m(zk − vi)(zk − vi)T

N∑
k=1

(µik)m
. (4.17)

Note that the substitution of equations (4.16) and (4.17) into (4.13) gives a generalized
squared Mahalanobis distance norm, where the covariance is weighted by the mem-
bership degrees in U. The GK algorithm is given in Algorithm 4.2 and its MATLAB

implementation can be found in the Appendix. The GK algorithm is computationally
more involved than FCM, since the inverse and the determinant of the cluster covari-
ance matrix must be calculated in each iteration.
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Algorithm 4.2 Gustafson–Kessel (GK) algorithm.

Given the data set Z, choose the number of clusters 1 < c < N , the weighting expo-
nentm > 1 and the termination tolerance ε > 0 and the cluster volumes ρ i. Initialize
the partition matrix randomly, such thatU(0) ∈Mfc.

Repeat for l = 1, 2, . . .

Step 1: Compute cluster prototypes (means):

v(l)i =

∑N
k=1

(
µ
(l−1)
ik

)m
zk∑N

k=1

(
µ
(l−1)
ik

)m , 1 ≤ i ≤ c .

Step 2: Compute the cluster covariance matrices:

Fi =

∑N
k=1

(
µ
(l−1)
ik

)m
(zk − v(l)i )(zk − v(l)i )T∑N

k=1

(
µ
(l−1)
ik

)m , 1 ≤ i ≤ c .

Step 3: Compute the distances:

D2ikAi
= (zk − v(l)i )T

[
ρi det(Fi)1/nF−1

i

]
(zk − v(l)i ),

1 ≤ i ≤ c, 1 ≤ k ≤ N .

Step 4: Update the partition matrix:
for 1 ≤ k ≤ N

if DikAi > 0 for all i = 1, 2, . . . , c

µ
(l)
ik =

1∑c
j=1(DikAi/DjkAi )2/(m−1) ,

otherwise

µ
(l)
ik = 0 if DikAi > 0, and µ(l)ik ∈ [0, 1] with

c∑
i=1

µ
(l)
ik = 1 .

until ‖U(l) −U(l−1)‖ < ε.

4.4.1 Parameters of the Gustafson–Kessel Algorithm

The same parameters must be specified as for the FCM algorithm (except for the norm-
inducing matrix A, which is adapted automatically): the number of clusters c, the
‘fuzziness’ exponent m, the termination tolerance ε. Additional parameters are the
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cluster volumes ρi. Without any prior knowledge, ρi is simply fixed at 1 for each
cluster. A drawback of the this setting is that due to the constraint (4.15), the GK
algorithm only can find clusters of approximately equal volumes.

4.4.2 Interpretation of the Cluster Covariance Matrices

The eigenstructure of the cluster covariance matrix F i provides information about the
shape and orientation of the cluster. The ratio of the lengths of the cluster’s hyper-
ellipsoid axes is given by the ratio of the square roots of the eigenvalues of F i. The
directions of the axes are given by the eigenvectors of F i, as shown in Figure 4.5.
The GK algorithm can be used to detect clusters along linear subspaces of the data
space. These clusters are represented by flat hyperellipsoids, which can be regarded
as hyperplanes. The eigenvector corresponding to the smallest eigenvalue determines
the normal to the hyperplane, and can be used to compute optimal local linear models
from the covariance matrix.

v

√λ1

√λ2

φ2

φ1

Figure 4.5. Equation (z− v)TF−1(x− v) = 1 defines a hyperellipsoid. The length of

the jth axis of this hyperellipsoid is given by
√
λj and its direction is spanned by φj , where

λj and φj are the jth eigenvalue and the corresponding eigenvector of F, respectively.

Example 4.5 Gustafson–Kessel algorithm. The GK algorithm was applied to the
data set from Example 4.4, using the same initial settings as the FCM algorithm. Fig-
ure 4.4 shows that the GK algorithm can adapt the distance norm to the underlying
distribution of the data. One nearly circular cluster and one elongated ellipsoidal clus-
ter are obtained. The shape of the clusters can be determined from the eigenstructure
of the resulting covariance matrices Fi. The eigenvalues of the clusters are given in
Table 4.1.

One can see that the ratios given in the last column reflect quite accurately the ratio
of the standard deviations in each data group (1 and 4 respectively). For the lower
cluster, the unitary eigenvector corresponding to λ 2, φ2 = [0.0134, 0.9999]T , can be
seen as a normal to a line representing the second cluster’s direction, and it is, indeed,
nearly parallel to the vertical axis.

✷
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Table 4.1. Eigenvalues of the cluster covariance matrices for clusters in Figure 4.6.

cluster λ1 λ2

√
λ1/

√
λ2

upper 0.0352 0.0310 1.0666
lower 0.0482 0.0028 4.1490

−1 −0.5 0 0.5 1

   1

 0.5

   0

−0.5

  −1

Figure 4.6. The Gustafson–Kessel algorithm can detect clusters of different shape and

orientation. The points represent the data, ‘+’ are the cluster means. Also shown are level

curves of the clusters. Dark shading corresponds to membership degrees around 0.5.

4.5 Summary and Concluding Remarks

Fuzzy clustering is a powerful unsupervised method for the analysis of data and con-
struction of models. In this chapter, an overview of the most frequently used fuzzy
clustering algorithms has been given. It has been shown that the basic c-means iter-
ative scheme can be used in combination with adaptive distance measures to reveal
clusters of various shapes. The choice of the important user-defined parameters, such
as the number of clusters and the fuzziness parameter, has been discussed.

4.6 Problems

1. State the definitions and discuss the differences of fuzzy and non-fuzzy (hard) par-
titions. Give an example of a fuzzy and non-fuzzy partition matrix. What are the
advantages of fuzzy clustering over hard clustering?



72 FUZZY AND NEURAL CONTROL

2. State mathematically at least two different distance norms used in fuzzy clustering.
Explain the differences between them.

3. Name two fuzzy clustering algorithms and explain how they differ from each other.

4. State the fuzzy c-mean functional and explain all symbols.

5. Outline the steps required in the initialization and execution of the fuzzy c-means
algorithm. What is the role and the effect of the user-defined parameters in this
algorithm?


