Statistical methods for single gene analysis of differential expression

Giorgio Valentini DSI – Dipartimento di Scienze dell' Informazione Università degli Studi di Milano valentini@dsi.unimi.it

• We	assume t	hat the ex	pression	levels have	e been suitably	, prepi	rocessed
X_{ik} is	the expre	ssion leve	l of gen	e <i>j</i> in array	k		
We h	ave N ge	nes and K	$K = K_{1} + K_{1}$	K_2 arrays			
$_{1} = \left\{ X_{jk} \right\}$	$ 1 \le k \le$	$K_1, 1 \le j$	$\leq N \Big\}$	$C_2 = \left\{ X_{jk} \right.$	$\mid K_1 + 1 \leq k \leq$	$K_1 + 1$	$K_2, 1 \le j \le$
	Array1	Array2		Array <i>K</i> ₁	Array $K_1 + 1$		ArrayK
Gono 1	X ₁₁	X ₁₂		X _{1K1}	<i>X</i> _{1K1+1}		X _{IK}
	11	12					
Gene 2	X ₂₁	X ₂₂		X _{2K1}	<i>X</i> _{2K1+1}		X _{2K}
Gene 2				X _{2K1}	X _{2KI+1}		X _{2K}

Esercizi

- 1. Si può affermare che un gene sia differenzialmente espresso a livello di significatività α =0.01, se nello stato funzionale 1 ha valore medio m₁=0.9 e varianza campionaria s₁=0.9 (6 campioni) mentre nello stato funzionale 2 ha valore medio m₂=0.3 e varianza campionaria s₂=0.3 (5 campioni) ?
- 2. I livelli di espressione di un gene sono misurati in 28 campioni di tessuti (16 malati e 12 sani). Il valore medio per i tessuti malati è $m_m=1.3$, per e in quelli sani $m_s=0.8$ con varianza campionaria rispettivamete $s_m=0.3$ ed $s_s=0.4$. Il gene è differenzialmente espresso? Se sì a quale livello di significatività?

Variants of the t-test

- SAM, Significance Analysis in Microarrays (Tusher, Tibshirani & Chu, 2001)
- Regularized t-test (Baldi & Long, 2001)
- B-statistic (Lonnsted and Speed, 2002)

Other approaches ...

- Normal mixture modeling (Pan, 2002)
- Regression modeling (Thomas et al., 2001)

A non parametric permutation test (Golub, 1999) (1) 0. *N* genes and $K = K_1 + K_2$ arrays genes in two functional conditions: $C_1 = \{X_{jk} | 1 \le k \le K_1, 1 \le j \le N\}$ $C_2 = \{X_{jk} | K_1 + 1 \le k \le K_1 + K_2, 1 \le j \le N\}$ 1. For each gene g_j compute the following statistic: $a_j = \frac{\overline{X}_{j(1)} - \overline{X}_{j(2)}}{s_{j(1)} + s_{j(2)}}$ 2. Compute the Neighboroods $N_i(r)$ and $N_2(r)$ of radius r $N_1(r) = \{g_j | a_j > r\}$ $N_2(r) = \{g_j | a_j < -r\}$ $-R \le r \le R$, $R = \max | a_j |$

13

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

A filter approach to gene selection: Gene-specific neighborhood analysis

It is a method for gene selection applied before and independently of the induction algorithm (filter method).

It is an equivalent variant of the classic neighborhood analysis proposed by Golub et al. (1999)

- 1. For each gene the S2N ratio c_i is calculated: $c_i = \frac{(m_i^+ m_i^-)}{(\sigma_i^+ + \sigma_i^-)}$
- 2. A gene-specific random permutation test is performed:
 - i. Generate n random permutations of the class labels computing each time the S2N ratio for each gene.
 - ii. Select a p significance level (e.g. 0)
 - iii. If the randomized $S2N c_rand_i$ is larger than the actual S2N c_i in less than p * n random permutations, select the i^{ih} gene as significant for tumor discrimination at p significance level.

Type I and type II error

- *Type I error* or false positive: state that a gene is differentially expressed when it is not: i.e. reject a true null hypothesis.
- *Type II error* or false negative: fail to identify a truly differentiate expressed gene, i.e. do not reject a false null hypothesis.

