Genetic code, transcription and translation

Adapted from the lesson "Introduction to genome biology" *S. Dudoit and R. Gentleman* University of Berkeley

Chromosomes and DNA

- A deoxyribonucleic acid or DNA molecule is a double-stranded polymer composed of four basic molecular units called nucleotides.
- Each nucleotide comprises
 - a phosphate group;
 - a deoxyribose sugar;
 - one of four nitrogen bases:
 - purines: adenine (A) and guanine (G),
 - pyrimidines: cytosine (C) and thymine (T).

- Base-pairing occurs according to the following rule:
 - C pairs with G,
 - A pairs with T.
- The two chains are held together by hydrogen bonds between nitrogen bases.

Four nucleotide bases:

- purines: A, G
- pyrimidine: T, C

A pairs with T, 2 H bonds C pairs with G, 3 H bonds

Nucleotide base pairing

- Polynucleotide chains are directional molecules, with slightly different structures marking the two ends of the chains, the socalled 3' end and 5' end.
- The 3' and 5' notation refers to the numbering of carbon atoms in the sugar ring.
- The 3' end carries a sugar group and the 5' end carries a phosphate group.
- The two complementary strands of DNA are antiparallel (i.e, 5' end to 3' end directions for each strand are opposite)

The human genome in numbers

- 23 pairs of chromosomes;
- 2 meters of DNA;
- 3,000,000,000 bp;
- 35 M (males 27M, females 44M);
- 30,000-40,000 genes.

Proteins

Proteins

- **Proteins:** large molecules composed of one or more chains of amino acids, **polypeptides**.
- Amino acids: class of 20 different organic compounds containing a basic amino group (-NH₂) and an acidic carboxyl group (-COOH).
- The order of the amino acids is determined by the base sequence of nucleotides in the gene coding for the protein.
- E.g. hormones, enzymes, antibodies.

Amino acids

Amino acids with hydrophobic side groups

Amino acids

Amino acids with hydrophilic side groups

(asp)

Amino acids that are in between

Proteins

Proteins

Differential expression

- Each cell contains a complete copy of the organism's genome.
- Cells are of many different types and states E.g. blood, nerve, and skin cells, dividing cells, cancerous cells, etc.
- What makes the cells different?
- Differential gene expression, i.e., when, where, and how much each gene is expressed.
- On average, 40% of our genes are expressed at any given time.

Central dogma

The **expression** of the genetic information stored in the DNA molecule occurs in two stages:

- (i) transcription, during which DNA is transcribed into mRNA;
- (ii) translation, during which mRNA is translated to produce a protein.

DNA → mRNA → protein

Other important aspects of regulation: methylation, alternative splicing, etc.

Central dogma

The Central Dogma of Molecular Biology

The genetic code

- **DNA:** sequence of **four** different nucleotides.
- **Proteins:** sequence of **twenty** different amino acids.
- The correspondence between DNA's fourletter alphabet and a protein's twenty-letter alphabet is specified by the genetic code, which relates nucleotide triplets or codons to amino acids.

The genetic code

The Genetic Code

Start codon: initiation of translation (AUG, Met). Stop codons: termination of translation.

Mapping between codons and amino acids is **many-to-one**: 64 codons but only 20 a.a..

Third base in codon is often redundant, e.g., stop codons.

Protein synthesis

- Analogous to DNA replication: several steps and many enzymes.
- **RNA polymerase** synthesizes an RNA strand complementary to one of the two DNA strands.
- The RNA polymerase recruits **rNTPs** (ribonucleotide triphosphate) in the same way that DNA polymerase recruits dNTPs (deoxunucleotide triphospate).
- However, synthesis is single stranded and only proceeds in the 5' to 3' direction of mRNA (no Okazaki fragments).

- The strand being transcribed is called the template or antisense strand; it contains anticodons.
- The other strand is called the sense or coding strand; it contains codons.
- The RNA strand newly synthesized from and complementary to the template contains the same information as the coding strand.

- Promoter. Unidirectional sequence upstream of the coding region (i.e., at 5' end on sense strand) that tells the RNA polymerase both where to start and on which strand to continue synthesis. E.g. TATA box.
- Terminator. Regulatory DNA region signaling end of transcription, at 3' end .
- Transcription factor. A protein needed to initiate the transcription of a gene, binds either to specific DNA sequences (e.g. promoters) or to other transcription factors.

Figure 9.2 Overview: a transcription unit is a sequence of DNA transcribed into a single RNA, starting at the promoter and ending at the terminator.

Exons and introns

- Genes comprise only about 2% of the human genome.
- The rest consists of **non-coding** regions
 - chromosomal structural integrity,
 - cell division (e.g. centromere)
 - regulatory regions: regulating when, where, and in what quantity proteins are made.
- The terms **exon** and **intron** refer to coding (translated into a protein) and non-coding DNA, respectively.

Exons and introns

Splicing

Translation

• Ribosome:

- cellular factory responsible for protein synthesis;
- a large subunit and a small subunit;
- structural RNA and about 80 different proteins.
- transfer RNA (tRNA):
 - adaptor molecule, between mRNA and protein;
 - specific anticodon and acceptor site;
 - specific charger protein, can only bind to that particular tRNA and attach the correct amino acid to the acceptor site.

Translation

- Initiation
 - Start codon AUG, which codes for methionine, Met.
 - Not every protein necessarily starts with methionine. Often this first amino acid will be removed in post-translational processing of the protein.
- Termination:
 - stop codon (UAA, UAG, UGA),
 - ribosome breaks into its large and small subunits, releasing the new protein and the mRNA.

tRNA

- The tRNA has an anticodon on its mRNA-binding end that is complementary to the codon on the mRNA.
- Each tRNA only binds the appropriate amino acid for its anticodon.

Alternative splicing

- There are more than 1,000,000 different human antibodies. How is this possible with only ~30,000 genes?
- Alternative splicing refers to the different ways of combining a gene's exons. This can produce different forms of a protein for the same gene.
- Alternative pre-mRNA splicing is an important mechanism for regulating gene expression in higher eukaryotes.
- E.g. in humans, it is estimated that approximately 30% of the genes are subject to alternative splicing.

Alternative splicing

Immunoglobulin

- B cells produce antibody molecules called immunoglobulins (Ig) which fall in five broad classes.
- Diversity of Ig molecules
 - DNA sequence: recombination, mutation.
 - mRNA sequence: alternative splicing.
 - Protein structure: post-translational proteolysis, glycosylation.

lgG1

Post-translational processing

- Folding.
- Cleavage by a proteolytic (protein-cutting) enzyme.
- Alteration of amino acid residues
 - phosphorylation, e.g. of a tyrosine residue.
 - glycosylation, carbohydrates covalently attached to asparagine residue.
 - methylation, e.g. of arginine.
- Lipid conjugation.

Functional genomics

 The various genome projects have yielded the complete DNA sequences of many organisms.

> E.g. human, mouse, yeast, fruitfly, etc. Human: 3 billion base-pairs, 30-40 thousand genes.

• Challenge: **go from sequence to function**, i.e., define the role of each gene and understand how the genome functions as a whole.

WWW resources

Access Excellence

http://www.accessexcellence.com/AB/GG/

- Genes VII
 <u>http://www.oup.co.uk/best.textbooks/biochemistry/genesvii/</u>
- Human Genome Project Education Resources
 http://www.ornl.gov/hgmis/education/education.html
- Kimball's Biology Pages <u>http://www.ultranet.com/~jkimball/BiologyPages/</u>
- MIT Biology Hypertextbook
 http://esg-www.mit.edu:8001/