
1

An introduction to Support Vector Machines

Giorgio Valentini

DSI - Dipartimento di Scienze dell’ Informazione
Università degli Studi di Milano

e-mail: valenti@dsi.unimi.it

2

Outline

• Linear classifiers and maximal margin classifiers

• SVM as maximal margin classifiers

• The primal and dual optimization problem associated to SVM
algorithm

• Support vectors and sparsity of the solutions

• Relationships between VC dimension and margin

• Soft margin SVMs

• Non-linear SVMs and kernels

• Comparison SVM - MLP

• Implementation of SVMs

• On line sw, tutorial and books on SVMs.

3

Goal of learning

Considering, for instance a 2-class classification problem:

Given Z = {(xi, yi)}n
i=1, xi ∈ RN , yi ∈ Y = {−1, 1}

we want to estimate a function f : RN → Y in order to minimize the
expected risk:

R[f] =
∫

L(f(x), y)dP (x, y)

But usually P (x, y) is unknown, and we try to minimize a function
close to the expected risk, using the available data, the empirical risk:

Remp[f] =
1
n

n∑

i

L(f(xi), yi)

4

Avoid overfitting

Giving some conditions on the learning machine we have that if n →∞
then empirical risk → expected risk.

For small n instead overfitting might occur. To avoid this we could
restrict the the complexity of the function class computable by the
learning machine:

• regularization to limit the complexity of the functions

• choosing simple class of functions

Example: choosing linear functions:

but underfitting might occur ...

5

Which linear classifier?

6

Solution: the largest margin classifier

max
im

al
marg

in

7

Functional and geometric margin - 1

px
xm

w

γ

8

Functional and geometric margin - 2

The linear classifier computes: f(x) = w · x + b

For a point xp on the separating hyperplane f(xp) = w · xp + b = 0

A point xm on the margin whose width is γ can be expressed as

xm = xp +
w
||w||γ

Then f(xm) = w · xm + b = w · xp + w·w
||w||γ + b = γ||w||.

γ||w|| is the functional margin.

The geometric margin is γ = f(xm)
||w||

9

Functional and geometric margin - 3

To obtain the canonical separating hyperplane we need to normalize
w.r.t the functional margin:

fc(x) = f(x)
γ||w||

The canonical functional margin is fc(xm) = f(xm)
γ||w|| = 1

The canonical margin is γc = 1
||w||

From this point we consider only the canonical iperplane (that is the
hyperplane with canonical margin 1/||w||.

10

Maximizing the margin

1. Maximize the margin γ = 1
||w|| ⇐⇒ Minimize ||w|| or equiv-

alently w ·w
2. We need also to correctly separate the examples:
∀i, yi(w · xi + b) ≥ 1

We need to solve a constrained quadratic optimization problem

11

The primal optimization problem

Minimize w ·w
subject to yi(w · xi + b) ≥ 1

1 ≤ i ≤ n

The hyperplane w · x + b = 0 that solves this quadratic oprim-
ization problem is the maximal margin iperplane with margin
γ = 1

||w||

12

Lagrangian associated with the primal optimization problem

L(w, b, α) =
1

2
w ·w −

nX
i=1

αi(yi(w · xi + b)− 1)

∂L(w, b, α)

∂w
= w −

nX
i=1

yiαixi = 0

∂L(w, b, α)

∂b
=

nX
i=1

yiαi = 0

w =

nX
i=1

yiαixi

0 =

nX
i=1

yiαi

13

Building the dual

Putting the relations obtained into the primal we have:

L(w, b, α) =
1

2
w ·w −

nX
i=1

αi(yi(w · xi + b)− 1)

=
1

2

nX
i=1

nX
j=1

yiyjαiαj(xi · xj)−
nX

i=1

nX
j=1

yiyjαiαj(xi · xj) +

nX
i=1

αi

=

nX
i=1

αi − 1

2

nX
i=1

nX
j=1

yiyjαiαj(xi · xj)

Obtaining the associated dual optimization problem

14

The dual optimization problem

Maximize Φ(α) =
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 yiyjαiαj(xi · xj)

subject to
∑n

i=1 yiαi = 0

αi ≥ 0, 1 ≤ i ≤ n

The hyperplane whose weight vector w∗ =
∑n

i=1 yiαixi solves
this quadratic oprimization problem is the maximal margin iper-
plane with geometric margin γ = 1

||w|| .

Note the input vectors x appear only as dot products.

15

Discriminant function computed by the SVM

The linear SVMs compute the family of linear functions:

F(x,w, b) = {x ·w + b,w ∈ Rn, b ∈ R}

If α∗ is the solution of the dual optimization problem then

• w∗ =
∑n

i=1 yiα
∗
i xi is the weight vector of the maximal margin

hyperplane

• f(x) = w∗ · x + b∗ =
∑n

i=1 yiα
∗
i xi · x + b∗ is the corresponding

discriminant function.

• The decision function g : Rn → {−1,+1} is

g(x) = sign(
∑n

i=1 yiα
∗
i xi · x + b∗)

16

Support Vectors

Support vectors: the most difficult patterns to be learnt (patterns that lie

on the margin):

SV = {xi|yi(

nX
j=1

yjαjxj · xi + b) = 1, 1 ≤ i ≤ n}

Using the support vectors we can compute b:

If xi is a support vector then

yi(

nX
j=1

yjαjxj · xi + b) = 1 ⇒ b = 1/yi −
nX

j=1

yjαjxj · xi

Considering all the support vectors we can get a more stable solution:

b =
1

|SV|
X

i∈SV
(yi −

nX
j=1

yjαjxj · xi)

17

The Karush-Kuhn-Tucker conditions - 1

KKT conditions are satisfied at the solution of any constrained opti-
mization problem:

Minimize f(w), w ∈ Rn

subject to gi(w) ≥ 0, 1 ≤ i ≤ k

hi(w) = 0, 1 ≤ i ≤ m

If the problem is convex (convex objective function with constraints
which give a convex feasible region), KKT conditions are necessary
and sufficient for w, α, b to be a solution (see next).

18

The Karush-Kuhn-Tucker conditions - 2

If f is convex and gi, hi linear, necessary and sufficient conditions for w to

be an optimal solution are the existence of α, b such that:

∂L(w, b, α)

∂w
= 0

∂L(w, b, α)

∂b
= 0

αigi(w) = 0 1 ≤ i ≤ k

gi(w) ≥ 0 1 ≤ i ≤ k

αi ≥ 0 1 ≤ i ≤ k

19

KKT conditions for SVM optimization imply sparsity of the
solutions

From KKT conditions the optimal solutions w∗, α∗, b∗ must satisfy:

α∗i gi(w
∗) = 0 ⇒ α∗i (yi(w

∗ · xi + b∗)− 1) = 0

If the ith constraint is active, that is gi(w
∗) = 0 ⇒ α∗i ≥ 0

If the ith constraint is inactive, that is gi(w
∗) > 0 ⇒ α∗i = 0

Hence only if gi(w
∗) = 0 ⇒ α∗i yi(w

∗ · xi + b∗) = 1 we can have non zero α∗i
Only for inputs xi whose functional margin is 1 (support vectors) the corresponding

α∗i can be non zero

Sparsity of the solutions

Indeed

f(x, α∗, b) =
nX

i=1

yiα
∗
i xi · x + b∗ =

X

i∈SV
yiα

∗
i xi · x + b∗

20

Complexity and bounds on the expected risk

The concept of complexity of a function class can be captured by the VC

(Vapnik-Chervonenkis) dimension.

The VC dimension measures how many points can be shattered (that is

separated) for all possibile labelings

Theorem (Vapnik)

Let h denote the VC dimension of the function class F and Remp the em-

pirical risk for the 0/1 loss function. Then ∀f ∈ F and ∀δ > 0 the following

bound on the expected risk R[f] holds with P ≥ 1− δ for n > h:

R[f] ≤ Remp +

s
h(ln 2n

h
+ 1)− ln(δ/4)

n

21

VC dimension and margin of the separating hyperplane

Theorem (Vapnik).

Consider hyperplanes f(x,w, b) = x · w + b = 0 in canonical form, that is

such that:

min
1≤i≤n

|f(xi,w, b)| = 1

Then the set of decision functions g(x) = sign(f(x,w, b) that satisfy the

constraint ||w|| < Λ has a VC dimension h satisfying:

h ≤ R2Λ2

where R is the smallest radius of the sphere around the origin containing all

the training points.

22

Maximizing the margin is equivalent to minimize the VC
dimension of linear classifiers

From the two previous Vapnik’s theorems we have:

1. Maximizing the margin, that is equivalently minimizing ||w|| (recall

γ = 1/||w||) we minimize the VC dimension of the SVM.

2. The minimization of the expected risk depends on both minimizing the

empirical risk and the confidence interval

3. The confidence interval depends mainly on the ratio h/n

4. SVM algorithm minimizes both the empirical risk and the confidence

interval

SVM directly implements the structural risk mimimization induction

principle

23

SVM as maximal margin classifier

SVM maximizes margin and minimize empirical risk:

1. Low VC dimension (SVM implements the structural risk

mimimization)

2. From KKT conditions → Sparsity of the solutions

But we considered only linearly separable data ...

24

What about non linearly separable data ?

• Most of real data are not linearly separable

• Forcing separation of the data → overfitting

• Noisy data and outliers.

We need two more steps:

1. Soft margin SVM

2. Kernels

25

Soft margin SVM: introducing slack variables

sla
ck

sla
ck

sla
ck

w*x + b = 0

26

The 1-Norm soft-margin SVM optimization
problem

Minimize w ·w + C
∑n

i=1 ξi

subject to yi(w · xi + b) ≥ 1− ξi

ξi ≥ 0

1 ≤ i ≤ n

C controls the tradeoff between the accuracy w.r.t. to the training
data and the maximization of the margin. It can be interpreted also
as a regularization term.

27

The dual 1-Norm soft-margin optimization problem

Maximize Φ(α) =
∑n

i=1 αi − 1
2

∑
i,j yiyjαiαj(xi · xj)

subject to
∑n

i=1 yiαi = 0

0 ≤ αi ≤ C, 1 ≤ i ≤ n

The hyperplane whose weight vector w∗ =
∑n

i=1 yiαixi solves
this quadratic oprimization problem is the soft margin hyper-
plane with slack variable ξi defined w.r.t the geometric margin
γ = 1

||w|| .

28

Box constraints

The 1-Norm soft-margin optimization problem is equivalent to that of
the maximal margin hypeplane with the additional constraint αi ≤ C

(Box constraints).

This approach limits the effect of outliers (for which αi tends to be
very large).

In this case, from KKT conditions we have:

αi = 0 ⇒ yif(xi) ≥ 1 and ξi = 0

0 < αi < C ⇒ yif(xi) = 1 and ξi = 0

αi = C ⇒ yif(xi) ≤ 1 and ξi ≥ 0

29

Kernels

The basic idea:

Applying a simple linear algorithm in a projected high di-

mensional space:

• It is more likely to achieve a linear separation a high

dimensional space (Cover’s theorem).

• SLT tells us that we can defeat the curse of dimension-

ality problem if we use simple class of decision rules.

30

Non-linear mapping in Kernel Feature Spaces

Φ : Rd → F ⊂ Rm

where it can be that the dimensionality d << m.

For a given learning problem (e.g. classification) one con-

siders the same algorithm in F instead of Rn, working with

examples {(Φ(x1), y1), . . . , (Φ(xn), yn)} ∈ F × Y .

Then in F the maximal margin hyperplane or the soft-

margin algorithm is applied.

31

Patterns non-linearly separable in Input Space can be
separable in Feature Space

Φ

32

Kernel examples

See kernel-ex.pdf

33

Characterization of kernels

If K(x,x′) is a symmetric function satisfing Mercer’s conditions, that
is: ∫ ∫

K(x,x′)f(x)f(x′)dxdx′ ≥ 0

for all f ,
∫

f2(x)dx < ∞
then we can expand K(x,x′) in a some inner product feature space:

K(x,x′) =
∞∑

j=1

λjφ(x)φ(x′)

34

Non-linear SVMs - 1

Note that in the dual representation of SVMs the inputs appears only in a

dot-product form:

Maximize Φ(α) =
Pn

i=1 αi − 1
2

Pn
i=1

Pn
j=1 yiyjαiαj(xi · xj)

subject to
Pn

i=1 yiαi = 0

0 ≤ αi ≤ C, 1 ≤ i ≤ n

The discriminant function obtained from the solution is

f(x, α∗, b) =

nX
i=1

yiα
∗
i xi · x + b∗

We can substitute the dot-products int the input space with a kernel

function.

35

Non-linear SVMs - 2

Maximize Φ(α) =
Pn

i=1 αi − 1
2

Pn
i=1

Pn
j=1 yiyjαiαjK(xixj)

subject to
Pn

i=1 yiαi = 0

0 ≤ αi ≤ C, 1 ≤ i ≤ n

The discriminant function obtained from the solution is

f(x, α∗, b) =

nX
i=1

yiα
∗
i K(xi,x) + b∗

The SVM receives as inputs pattern x in the input space, but works in a

high dimensional (possibly infinite) feature space:

1. No computational burden due to high dimensional vector

2. Not dimensionality, but complexity of the function class matters

36

Architecture of SVMs

See SVM-arch.pdf

37

Comparison SVM-MLP

1. In MLPs complexity is controlled by keeping number of hidden nodes

small, while in SVMs complexity is controlled independently of dimen-

sionality.

2. In non-linear SVMs the decision surface is constructed in a very high

(often infinite) dimensional space. However, the curse of dimensionality

is avoided by using the notion of an inner product kernel and optimising

the weights in the input space. In MLPs the ”dimensionality of the fea-

ture space” is limited to the number of hidden units in the hidden layer.

Weight decay and regularization can be viewed as a sort of complexity

control.

3. SVMs can use the theory of VC dimension and structural risk minimi-

sation and can get bounds on the generalization error.

4. Finding the weights is a quadratic programming with global minimum.

38

Thus the algorithm is efficient and SVMs generate near optimal classi-

fication and are insensitive to overtraining.

5. Obtain good generalisation performance due to high dimension of fea-

ture space

6. SVM automatically computes network parameters for that kernel. E.g.

RBF SVM: automatically selects the number and position of hidden

nodes (and weights and bias).

7. Slow training (compared to RBFNs/MLPs) due to computationally in-

tensive solution to QP problem especially for large amounts of training

data ⇒ need special algorithms.

8. Generates more complex solutions w.r.t. MLPs, especially for large

amounts of training data.

39

Implementation of SVMs

To solve the SVM problem one has to solve a convex quadratic programming

(QP) problem.

Unfortunately the dimension of the Kernel matrix is equal to the number of

input patterns.

For large problems (e.g. n = 105) we need to store in memory 1010 elements,

and so standard QP solver cannnot be used.

Exploiting the sparsity of the solutions and using some heuristics several

approaches have been proposed to overcome this problem:

1. Chunking (Vapnik, 1982)

2. Decompostion methods (Osuna et al., 1996)

3. Sequential Minimal Optimization (Platt, 1999)

4. Others ...

40

Software for SVM classification and regression

A large collection is available from http://www.kernel-machines.org.

In particular:

1. SVM-light (Joachims, Cornell, USA):

http://svmlight.joachims.org

2. SVMFu (Rifkin, MIT, USA):

http://five-percent-nation.mit.edu/SvmFu/index.html

3. LIBSVM (Chung and Lin):

http://www.csie.ntu.edu.tw/ cjlin/libsvm

4. SVM-Torch (Collobert, IDIAP, CH):

http://www.idiap.ch/learning/SVMTorch.html

41

Tutorials on SVMs

C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery2, p.121-167, 1998.

A. Smola and B. Scholkopf. A tutorial on support vector regression. Neu-

roColt2 TR 1998-03, 1998.

C. Campbell. An Introduction to Kernel Methods. In Radial Basis Func-

tion Networks: Design and Applications . R.J.Howlett and L.C.Jain (eds).

Springer Verlag, Berlin, 2000.

K. Muller, S. Mika, G. Ratsch, K. Tsuda and B. Scholkopk. An Introduction

to Kernel-Based Learning Methods IEEE Transactions on Neural Networks,

12(2), 2001

42

Books on SVMs

Introductory books :

N.Cristianini and J. Shawe Taylor. An Introduction to Support Vector Machines

and other Kernel Based Learning Methods . Cambridge University Press, 2000

Ralf Herbrich. Learning Kernel Classifiers. MIT Press, Cambridge, MA, 2002

Bernhard Schoelkopf and Alex Smola. Learning with Kernels. MIT Press, Cam-

bridge, MA, 2002

Chapters on SVMs in classical machine learning books :

V.Vapnik. The nature of Statistical Learning . Springer, 1995 (Chap.5)

S.Haykin. Neural Networks . Prentice Hall, 1999 (Chap.6 p. 318-350)

V.Cherkassky, F.Mulier. Learning from data . Wiley & Sons, 1998 (Chap.9 p.

353-387).

A classical paper on SVM :

C.Cortes and V.Vapnik. Support Vector Networks. Machine Learning 20, p.273-

297, 1995

You can find more at http://www.kernel-machines.org.

