
CHAPTER 4

THE WONDERS OF TEXT
INDEXING STRUCTURES

“That’s the secret to life:
replace one worry with another.”
CHARLIE BROWN

Forget for a moment the problem of finding approximate patterns outlined
in the previous chapter, and reconsider the simpler problem of finding ex-
act occurrences of a pattern in a string. There are scores of algorithms for
this problem. The “classical” ones, like Knuth–Morris–Pratt and Boyer–
Moore algorithms [54, 18, 8], usually align the left end of the pattern with
the left end of the string, and compare the characters of the pattern with
the corresponding ones of the string until either all the characters of the
pattern are exhausted (the pattern has been found), or a mismatch is en-
countered. In either case, the pattern is then shifted to the right by one or
more positions, and the process is repeated until the right end of the string
is reached. The trick is to shift the pattern by as many positions as possible,
so as to reduce the number of character comparisons between the pattern
and the string. These algorithms are quite efficient, having a theoretical
time complexity of

���������
	
, where

�
is the length of the string and

�

is the length of the pattern. Term
�

in the sum comes from the character
comparisons, while

�
comes from a pre–processing of the pattern needed

to compute the longest possible shifts at each position.
However, suppose that you have a large number of candidate patterns,

say, a few thousands, and the text is very long, perhaps a whole genome of
many megabytes, or even a whole database of genomic sequences. Having
to scan the whole string for each pattern, although efficiently, perhaps is

74 THE WONDERS OF TEXT INDEXING STRUCTURES

not the best solution.
While working on this manuscript, I often had to consult a LaTeX man-

ual [29] for explanations about some command. But I did not scan each
time the whole book looking for the command I was interested in: I just
searched for it in the alphabetically ordered analytical index, that told me
in which pages that command could be found. Now, can we do something
similar for strings, and, in our case, for our genomic and protein sequences?
In other words, given a string or a set of strings, can we build an index of
all the patterns, or the substrings, that appear in them, in order to simplify
the task of finding a pattern? And, more important, can we do it efficiently?

The best pattern matching algorithms take
� ��� � �
	

time, and it would
be great to match this result. So, at our disposal we have

����� 	
time for

building the index, and
�����
	

time for finding a pattern (or vice versa, but
it sounds a bit unfeasible). On the other hand, there are

� ��� � 	
substrings

in a string of length
�

, a quite discouraging fact. And, furthermore, we’d
expect our indexing structure not to take too much space.

But, as we will see in a few moments, such structures actually do exist,
and have been around the block for quite a while: they take linear time to
be constructed and need linear space [25].

4.1 SUFFIX TREES

Let
�

be a nonempty finite alphabet, and
���

the set of strings over
�

. If���	��
���������
is a string in

� �
, we will denote by � � � its length, and

��� ����� ���
its

substring (factor)
�������������

. If
� �"!$#%

, with
!'&(#)&*%,+ �-�

, then
!

is a prefix of�
, and

%
is a suffix of

�
. With .0/21 �3� 	 we will denote the set of all suffixes of�

.
The most widely used and known text indexing structure is perhaps the

suffix tree, first introduced in [103] in 1973. At the beginning, it did not have
a great success in the computer science community, and received far less
attention than deserved. This was probably because the first papers that in-
troduced it were regarded as kind of obscure, and difficult to understand1.
The revenge of the suffix tree came with the advent of bioinformatics, and
the string problems that the new discipline brought along. For some prob-
lems, like the longest common substring problem introduced in Chapter
3, the most efficient solutions can be obtained only with the preliminary
construction of the suffix tree or analogous structures.

Here it is:
1Well, for this matter many computer scientists admit they’ve never been able to fully

understand where the 465�798;:=< time bound for classical pattern matching algorithms comes
from.

4.1 SUFFIX TREES 75

$

3

5
2

1

b

x

a

$

4

a

b

x

a

$

$

x a b x a $

Figure 4.1: Suffix tree for string ��� � ��� . Character $ is used as a marker.

Definition 1 A suffix tree � for a string
� � ��
 �����2� �

of length
�

is a rooted
directed tree such that:

1. It has
�

leaves numbered from 1 to
�

.

2. Each internal node other than the root has at least two children nodes.

3. Each edge is labeled with a non–empty substring of
�

.

4. The labels of two edges leaving the same node cannot begin with the same
character.

5. For any leaf
�
, the concatenation of the edge labels on the path from the root

to leaf
�

exactly spells out the suffix of
�

starting at position
�
, that is, it

spells out
��� ����� � �

.

This definition of suffix trees, however, does not guarantee that a suf-
fix tree can be built for any string

�
. The reason is that if one suffix of

�
matches a prefix of another suffix of

�
, then no suffix tree respecting the

conditions given in the above definition can exist, since the path for the
first suffix would not end up at a leaf. For example, in string ����� � ��� , suffix
��� is the prefix of suffix ��� � ��� , and the path spelling it cannot end up at a
leaf. The existence of a suffix tree for a given string

�
is however guaran-

teed when the last character of
�

does not appear elsewhere in the string.
Thus, this limitation can be overcome with a simple trick. It suffices to
append to

�
a character (that we will call marker character) that does not be-

long to the string alphabet
�

(see Fig. 4.1). Since, given any position
�

of the
string, there exists a path in the tree spelling out

��� � ��� � �
, we have that every

substring starting at
�

is found on the path from the root to leaf
�
.

Now, let us first consider the space complexity of suffix trees. How is it
possible to compact

����� � 	
substrings in a structure that takes linear space?

76 THE WONDERS OF TEXT INDEXING STRUCTURES

a a b x a $ a a b x a $

b

1 1

2

x
a

$

Figure 4.2: The first two steps in the naı̈ve construction of the suffix tree for
string ��� � ����� . First suffix ��� � ����� is put in the tree (left). Then the characters
of suffix � � ����� are matched along the edge. A mismatch is encountered
after the first � . A new internal node is created at that point, the edge is
broken accordingly, and a new edge leading to leaf 2 is created, with label
corresponding to the unmatched part of the suffix (right).

4.1.1 SPACE COMPLEXITY OF SUFFIX TREES

A suffix tree for a
�

character string
�

has exactly
�

leaves. Since each
internal node must have at least two children, there are at most

�����
ancestor

nodes for the leaves, and so on. Thus, the overall number of nodes is at
most

� �
, that is,

����� 	
. Another issue are the edge labels. All in all, they

might require a quadratic number of characters to be represented. Consider
string

� ���
	������� /������������*1��������� "!�#%$
&('�)+* . Each suffix begins with a different
character, thus there are 26 edges leaving the root, and each one is labeled
with a different suffix, requiring in all

�,�(-/.0�21 	���� � ����� � 	
characters. This

problem, however, can be overcome with another trick: the edge labels are
substrings of the input string. Thus, we can keep the input string in main
memory, and label each edge with a pair of integers, denoting the initial
and final position in the input string of the substring labeling it. Since there
are

� ��� 	
edges in the tree (each edge enters a node, and there are

����� 	

nodes), the result is that we need linear space to label the edges. There is a
last thing that must be taken into account. Although many textbooks report
suffix trees as needing

����� 	
space, each node of the tree can have at most

� � � children. If we implement the tree by storing � � � pointers in each node,
one for each possible child, the actual space complexity is

��� � � � � 	 , that is,
depends also on the size of the input alphabet. We will return to this point
in Section 4.1.5.

4.1.2 LINEAR TIME CONSTRUCTION OF SUFFIX TREES

The naı̈vest method for constructing a suffix tree takes quadratic time. First,
a single edge for suffix

���43���� � � � (the whole string plus the marker) is put

4.1 SUFFIX TREES 77

into the tree (that at this point consists of the root connected to leaf 1 with
an edge labeled

�-�43���� � � �), then all the other suffixes
��� � ��� � � � are added, with�

increasing from 2 to
�

. To insert suffix
��� � ��� � � � , the characters of the suffix

are matched to characters on the tree edges, starting from the root, until no
further matches are possible. The matching path is unique, because two
edges leaving the same node cannot have labels beginning with the same
character. Once a mismatch has been encountered, we have two cases: we
have reached an internal node � , or we are along an edge. In the former
case, we create leaf

�
, and connect � with it with an edge labeled with the

remaining part of
��� � ��� � � � (all the characters that have not yet successfully

been matched in the tree). If we ended along an edge, we create a new node
� breaking the edge in two just after the last character of the edge that was
successfully matched to a character of

��� ����� � � � . Also in this case, we create
a new leaf

�
, as well as an edge from � to it labeled with the remaining

part of
��� � ��� � � � (see Fig. 4.2). In theory, the maximum number of character

comparisons that has to be done is �
����
 � ������� � 	 .

But, quite amazingly, the suffix tree for a string can be constructed in
time linear on the length of the string, as first introduced in [103], and later
on, for example, in [68]. However, in this work we focus our attention in
the linear time on line algorithm introduced by Esko Ukkonen [98]. On line
here means that the algorithm processes the characters of the string one at a
time, from left to right, with no need to know the whole string beforehand.
This feature can be useful in some cases. Here, I present it following the
lines of [36], an explanation that gave me a deeper understanding of the
power of suffix trees and the methods for their construction. To present the
algorithm we first have to provide a few definitions.

Definition 2 Given a node � of a suffix tree, we call path label of � the concate-
nation of the edge labels of the path from the root to � in the tree.

Definition 3 An implicit suffix tree for string
�

is a tree obtained from the suffix
tree for

�
by removing every occurrence of the marker character from the edge

labels, then removing every edge with no label, then removing every node with just
one outgoing edge.

In other words, the implicit suffix tree for string
�

is the one we would
obtain without appending the marker character at the end of the string.
Recall that every suffix of

�
is spelled out by a path in the implicit tree, but

the path does not necessarily end at a leaf.
Given an alphabet

�
, an input string

� � ��
 �����2� � + ���
, and a marker

���+ � , Ukkonen’s algorithm builds the suffix tree for
� � in

�
phases, con-

structing at phase
�

the implicit suffix tree � � for prefix
���43���� �3�

of
�

, starting

78 THE WONDERS OF TEXT INDEXING STRUCTURES

from the implicit suffix tree � ���
 for
���43���� � � 3��

built at the previous phase.
Each phase

� � 3
is in turn divided into

� � 3
extensions, one for each of

the
� � 3

suffixes of
���43���� � � 3��

. In extension
�

of phase
� � 3

the algorithm
first finds the end of the path in the tree that starting from the root spells
out substring

��� ����� � �
. Then, it extends it by adding character

��� �
 , unless it
already appears there (after the end of the path). So, in phase

� � 3
, string���43���� � � 3��

is first put on the tree, followed by strings
�-�"����� � � 3��

,
��������� � � 3��

,
and so on. Extension

� � 3
of phase

� � 3
extends the empty suffix of

�-�43���� � �
,

that is, adds the single character
��� �
 to the tree. The implicit tree �
 is just

a single edge labeled
�9

connecting the root with leaf 1. The steps of the
algorithm can be summarized as follows:

1. Construct tree �
 ;
2. For

�
from

3
to
� � 3

do

3. For
�

from
3

to
� � 3

do

4. Find the end of the path from the root labeled
��� � ��� � �

in the current
tree

5. Add character
��� �
 if needed

6. End for

7. End for

When, at extension
�

of phase
� � 3

, the end of the path corresponding
to substring

��� ����� � �
has been located in the tree, the algorithm has to extend

it to
��� �
 . There are three possibilities, and for each one the tree is updated

according to a different rule:

Rule 1 In the current tree, path
�-� � ��� � �

ends at a leaf. To update the tree,
character

��� �
 is appended to the label of the edge entering the leaf.

Rule 2 No path from the end of
�-� � ��� � �

starts with character
� � �
 , but at least

one other path continues from it (starting with a different character).
A new leaf edge is created from the end of

��� ����� � �
and labeled with��� �
 . The leaf is labeled with number

�
. If the path ends within an

edge, a new node has to be created at the end of the path, and the edge
is broken accordingly, as in the naı̈ve approach (see again Fig. 4.2).

Rule 3 Some path at the end of
��� � ��� � �

starts with character
� � �
 . In this

case, nothing has to be done, since suffix
��� ����� � � 3��

of
���43���� � � 3��

is
already in the (implicit) tree.

4.1 SUFFIX TREES 79

Since adding character
� � �
 takes in any case constant time, the time

complexity of the algorithm depends on the time needed to locate, at each
phase

� � 3
, the

� � 3
substrings

��� ����� � �
in the tree under construction. Naı̈vely,

we could just start from the root of the tree each time, matching the char-
acters of

��� ����� � �
along the edges of the tree, taking

� � � � 3 � � 	 time at each
extension. Thus, the implicit tree � � �
 would be built from � � in ��� � � 	 time,
and the construction of the implicit tree � � for the whole string would re-
quire, all in all,

������� 	
time. Even worse than the naı̈ve

����� � 	
approach.

But, the cubic time can be reduced to linear with some clever observations
and a few smart tricks. And, with the introduction of an additional feature
to the tree: the suffix link.

Definition 4 Let � ! , with � + � and
! + � �

, be an arbitrary string spelled out
by a path ending at an internal node � of the tree. If there exists another node �
with path label

!
, then node � is the suffix link of node � .

That is, the suffix link � of node � has the same path label except for the
first symbol. From now on, we will denote with � � � 	 the suffix link of node
� . In case

!"���
(the empty string), then the suffix link is the root of the

tree. Although the definition says nothing about it, every internal node of
an implicit suffix tree has actually a suffix link from it.

Lemma 1 If a new internal node � with path label � ! is created in extension
�

of
phase

� � 3
, then either:

� a path labeled
!

already ends at an internal node of the suffix tree;

� a new node with path label
!

will be created at the next extension.

Proof: A new internal node � is created in extension
�

of phase
� � 3

only
when extension Rule 2 is applied. That is, path labeled � ! ended within an
edge, and continued with some character of

�
, say � , different from

� � �
 .
Thus, in extension

� � 3
, we will meet a path labeled

!
in the tree, and it

certainly will continue with � (since all the suffixes of
��� ����� � �

are contained
in the tree). We will have two cases: the path labeled

!
continues only with

character � , or continues also with some other characters. In the former
case, a new node � will have to be created, and � � � 	 � � . Or, in the latter,
the path labeled

!
already ends up at an internal node, exactly � � � 	 . �

Thus, each time a new internal node is created by the algorithm, we
will be able to define its suffix link at the next extension. Therefore, in any
implicit suffix tree � � obtained at the end of phase

�
for any internal node �

with path label � ! there is a node � � � 	 with path label
!

.

80 THE WONDERS OF TEXT INDEXING STRUCTURES

4.1.3 USING SUFFIX LINKS

Suffix links can be used as shortcuts when we move in the tree searching
for substrings of

�
. Suppose that we have to perform extension

�
of phase� � 3

, that is, we first have to locate the path corresponding to substring��� ����� � �
in the tree. In the previous extension (

� � 3
) we had located substring��� � � 3���� � �

. Starting from the end of the path corresponding to it, we walk
backwards at most one node on the path, until we reach either the root
or an internal node � . If node � is not the root, then it has a suffix link,
according to Lemma 1. Thus, we do not have to traverse more than one
edge. Let

%
be the edge label of the backwards walk. We move on to node

� � � 	 following the suffix link, then from � � � 	 we follow the path labeled%
, reaching the end of

��� � ��� �3�
. Note than such path always exists, because

substring
��� � � 3���� � �

is already in the tree, as well as its suffixes. Finally, we
add character

� � �
 according to one of the extension rules. If in extension� � 3
a new node had been created, we also define its suffix link as shown

in Lemma 1. The end of
��� � � 3���� � �

could also have been an internal node �
with a suffix link already defined: in this case, we follow immediately the
link to node � � � 	 and just add

� � �
 . The first extension of any phase
�

must
end at a leaf of � � , since

���43���� � �
is the longest string represented in the tree.

Thus, it suffices to keep a pointer to the leaf corresponding to the longest
string contained in the tree (the same during all the phases), and handle the
insertion of

���43���� � � 3��
by applying Rule 1 to the edge entering that leaf.

The introduction of suffix links saves a lot of character matching to the
algorithm, since in most of the cases at extension

�
of phase

� � 3
it does

not have to search in the tree for the whole substring
��� � ��� � �

but just for a
part of it. However, by itself, it does not improve the time bound of

����� � 	
.

But, we still have a couple of aces up our sleeve. Let’s see if they help to
improve the situation.

Remark 1 When we have to locate substring
%

after following a suffix link
� � � 	 , we know that there already exists a path labeled

%
starting from � � � 	 ,

since if a substring
�-� � ��� ���

is already on the tree, all its suffixes are in it
as well. Thus, we just have to follow the edge leaving � � � 	 whose label
starts with the first character of

%
. If the length of the edge label (say, �) is

shorter than the length of
%

, then we do not have to match any character.
We directly move to the node at the end of the edge, and repeat the process
starting from character � � 3

of
%

, until we reach an edge whose label is
longer than the remaining part of

%
. Let ��� be the length of it. The algorithm

has just to skip � � characters down the edge to find the endpoint of
��� � ��� �3�

.
Thus, locating the endpoint of

%
does not take any matching, and the time

needed is no longer proportional to its length, but to the number of edges

4.1 SUFFIX TREES 81

that have to be traversed.

This observation leads to a first significant improvement of the time
bound. Given a node � we call node depth of � the number of nodes on the
path from the root to � . We can prove the following:

Lemma 2 Let ��� � � � 	 be a suffix link traversed during any extension step of
the algorithm. The node depth of � is at most one greater than the node depth of
� � � 	 .
Proof: When suffix link ��� � � � 	 is traversed, any internal ancestor of �
with given path label � # has a suffix link to a node whose path label is

#
.

But, � # is a prefix of the path to � , and
#

is a prefix of the path to � � � 	 : thus,
all the suffix links of the ancestors of � go to ancestors of � � � 	 . And, if

#
is nonempty, then the node whose path from the root is labeled

#
is an in-

ternal node. Moreover, since two internal nodes must have different path
labels, each ancestor of � has a suffix link to a different ancestor of � � � 	 .
Thus, the node depth of � � � 	 is at least one (for the root) plus the number
of internal ancestors of � that have path labels longer than one character.
Node � can have only one ancestor node without any corresponding an-
cestor of � � � 	 , that is, the node whose path label is one character long, and
whose suffix link goes to the root. Therefore, � can have node depth at most
one greater than � � � 	 . �

So, at this point we are ready to play our first ace:

Theorem 1 Using the method described in Remark 1, any phase of the al-
gorithm takes

� ��� 	
time.

Proof: Phase
�

is made of
� � 3�� �

extensions. In a single extension, the
algorithm walks up at by one edge to find an internal node with a suffix
link, traverses one suffix link, and walks down some number of nodes. All
the operations take constant time, so everything depends on how many
edges must be traversed during the downwalk.

The up–walk decreases the current node depth by at most one, and for
Lemma 2 traversing the suffix link decreases the node depth by at most
another one. Each edge traversed in the down walk increases the node
depth by one. The node depth is thus decremented at most

� � � � 3 	�� � �
times during all the extensions of phase

� � 3
, and since no node can have

node depth greater than
�

, the total possible increment to the node depth
is bounded by

� �
in the entire phase. It follows that during the down walk

at most
� �

edges are traversed. Using the method described in Remark 1,

82 THE WONDERS OF TEXT INDEXING STRUCTURES

the time for each edge traversal is constant, so the total time in a phase is����� 	
. �

Since the algorithm is made of
�

phases, the introduction of suffix links
and Remark 1 have reduced the overall time to

����� � 	
. The goal is very

close: we just need a few more observations.

Remark 2 In any phase, when extension Rule 3 is applied for the first time
in extension

�
, it will be applied also in all the remaining extensions of

that phase. The reason is that Rule 3 is applied when path labeled
��� � ��� �3�

already continues with character
��� �
 , and the same holds for paths labeled��� � � 3���� � �

,
��� � � ����� � �

, and so on. Thus, we can be sure that all the suffixes��� ����� � � 3��
,
�-� � � 3���� � � 3��

, until
��� � � 3��

are already in the tree. So, once in a
given extension of a phase we use Rule 3 for the first time, we can directly
skip to the next phase, performing the remaining extensions implicitly.

Remark 3 When during the execution of the algorithm a new leaf is created
with label

�
, then the leaf will remain a leaf in all the successive trees created

by the algorithm. Only the label of the edge entering it will be modified by
Rule 1. Leaf 1 is created in phase 1. Successive phases will start with a series
of applications of Rules 1 and 2, stopped by the first application of Rule 3.
New leaves will be created by Rule 2. Now, let

� �
be the last extension

performed by Rules 1 or 2 in phase
�
. We have that

� � � � � �
 . Now, recall
that the edge labels are encoded with a pair of integers denoting the initial
and final position of the corresponding substrings in string

�
. In phase

� �03
,

when a leaf edge is created, instead of labeling it with
� � &(� � 3 	

, we label it
with

� � & �
	
, where � is a global variable denoting the current phase number.

Moreover, all extensions from 1 to
���

will be performed by extension Rule 1.
Instead of updating the labels of the edges entering the leaves, we can just
increment the � variable by one, thus doing a constant amount of work.

Therefore, when the previous remarks are implemented by the algo-
rithm, in phase

� � 3
all the extensions that have to be performed explicitly

are those from
� � � 3

until the first extension where Rule 3 is applied. Phase� � 3
can be thus summarized as follows:

1. Increment � to
� � 3

(Remark 3);

2. Perform explicitly extensions (using suffix links and Remark 1) from� � � 3
to the first extension

� �
where Rule 3 is applied (Remark 2);

3. Let
� � �
 � � � � 3

;

4. Move on to phase
� � �

.

4.1 SUFFIX TREES 83

Phase
� � �

will begin from extension
� �

, where
� �

was the last explicit
extension of phase

� � 3
. Therefore, two consecutive phases share at most

one index where an explicit extension is performed. Moreover, phase
� � �

knows where suffix
��� � � ��� � � 3��

ends, so it does not need upwalks, suffix
links, or edge traversals to find it in the tree. Now, we can finally prove the
following:

Theorem 2 Using suffix links and Remarks 1, 2, 3, Ukkonen’s algorithm builds
the implicit suffix trees �
 through � � in

����� 	
total time.

Proof: The time for all the implicit extensions is constant, thus
� ��� 	

in the
entire algorithm. Now, assume that the algorithm is performing the first
explicit extension of a phase. Let

���
be the extension number. The value

of
� �

never decreases between two successive phases, but it can remain the
same. Since there are only

�
phases, and

���
is bounded by

�
, the algorithm

executes in all only
� �

explicit extensions. By following an argument simi-
lar to Lemma 2 and Theorem 1, we have the number of edges traversed is
bounded by

- � � ����� 	
. �

At the end of phase
�

, we have built the implicit suffix tree for string�
. To convert it to the explicit one, first we append the marker character

$ to
�

, and perform an additional phase with this character. No suffix is
now prefix of another suffix, and the result is an implicit suffix tree where
each suffix ends at a different leaf. The last thing left to do is replace the �

variable on the edges entering the leaves with
�

. This can be done with a
linear–time traversal of the tree. The result is a true suffix tree for string

�
.

Theorem 3 Given a string
�

on an alphabet
�

and a marker character � �+ � ,
Ukkonen’s algorithm builds the suffix tree for

� � in time linear in the length of the
string.

4.1.4 SUFFIX TREES FOR A SET OF STRINGS

In our problem, we are interested in working on sets of strings, rather than
a single one. Extending the basic structure to this case is quite easy. The
resulting structure is called generalized suffix tree.

The easiest way to build a generalized suffix tree for a set of strings�"��� �
 &�������&������
is to append a different marker to each string, concate-

nate all the strings into a single one, and build the suffix tree for the con-
catenated string. The resulting structure will have one leaf for each suffix
of the concatenated string, and can be built in time linear in the sum of all
the lengths of the strings of the set. The leaf numbers and edge labels can

84 THE WONDERS OF TEXT INDEXING STRUCTURES

��

������ ������

������

	�	
�
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

$ $

C

A

A
A

C

C

#
G
A

A

C

G
#

#

G

A

#

G

$
$

#

G

A

Figure 4.3: Generalized suffix tree for strings ACCA$ and CCAAG#. Charac-
ters $ and # are used as markers.

be easily adapted by using two numbers, one identifying a string
� �

and
the other a position inside

� �
.

The main drawback of this method is that the tree will represent sub-
string of the concatenated string that do not occur in the original strings
(all those containing one or more markers in positions other than the last
one). But, since each end of string marker is distinct and is not in any orig-
inal string, the label of any path from the root to an internal node must be
a substring of one of the original strings. Hence, by reducing the second
index of the label on edges entering the leaves all the unwanted suffixes
are removed, with no need to change any other part of the tree.

However, this method can be simulated without concatenating the
string beforehand. First, we build the suffix tree for

�

. Then, starting from

the root of the tree, we match
� �

against a path on the tree until a mismatch
occurs. If the first

�
characters of

� �
match, the tree already encodes all the

suffixes of string
� � �43���� � �

. Thus, the first
�

phases of Ukkonen’s algorithm
for
� �

have been implicitly executed, and, on the current tree, we can start
from phase

� � 3
for string

� �
. When

� �
has been fully processed, the tree

will encode all the suffixes of
�

and
� �

, and we can move on to
� �

, and so
on. The time needed is linear in the overall length of the strings of the set
(see Fig. 4.3).

4.1.5 MORE ON THE SPACE THEME

As we mentioned earlier, one way to implement the internal nodes of a
suffix tree for a string of length

�
is to incorporate into them an array of

� � � pointers to children nodes, one for each symbol of the string alphabet.
Node � has the

�
–th pointer set to the child node whose edge label starts

4.1 SUFFIX TREES 85

with the
�
–th character of the alphabet. This array allows constant time

random access (thus no additional time overhead when we move along the
edges of the tree during its construction), and although the space complex-
ity is actually

� � � � � � 	 , it works well in practice on biological sequences,
where the alphabet size is usually four or twenty.

The pointer array starts to get impractical when the size of the alphabet
grows. In theory, the alphabet size might be even larger than the string
length, leading to a quadratic space complexity. In this case, one possible
choice would be to use a linked list of pointers for each node, instead of
an array, keeping only those pointers that are defined. If we keep the list
ordered, accessing the needed pointer now costs additional

� ������� � � � 	 time,
and the construction time is now the minimum between

����������� � � � 	 and����������� � 	
. Since there are in all

����� 	
edges in the tree, we will need

����� 	

pointers in the nodes, with a reduction on the space complexity to
� ��� 	

(hence alphabet independent).

4.1.6 PATTERN MATCHING WITH SUFFIX TREES

We now return to the exact pattern matching problem we mentioned at the
beginning of this chapter. We want to know whether a given pattern � of
length

�
appears in string

�
of length

�
. First, we build our “index”, the

suffix tree for
�

, in
����� 	

time. Pattern � occurs in
�

starting at position, say,�
, if and only if � occurs as a prefix of suffix

�-� � ��� � �
of string

�
. Therefore,

we can match the characters of � along the unique path in the tree, until �
is exhausted or no more matches are possible. In the latter case, the pattern
appears nowhere in

�
, while in the former every leaf in the subtree below

the point of the last match is numbered with a starting location of � in
�

,
and every starting location of � in

�
numbers such a leaf (see Fig. 4.4).

The matching path is unique because no two edges leaving the same
node can have labels starting with the same character. If we implement the
tree with an array of pointers, the work at each node takes constant time.
Thus, checking whether � appears or not in

�
takes

�����
	
time, with an

overall complexity of
� ���
� �
	

. But, if at this point we want to look for
another pattern, say � � , we can take advantage of the tree that has already
been built, and we need just the additional

� � � � � � 	 time for matching the
characters of the pattern.

The advantage of first building an index structure for the string is thus
self–evident in case we have to search for a large number of patterns. In-
stead of needing

����� � � � � 	 time for each pattern � , we need
����� 	

time
only once, and just

� � � � � 	 for each pattern. There is something we have not
done yet: traditional methods, in fact, also report where the pattern occurs
in
����� � �
	

time. We can do the same thing with suffix trees, that contain

86 THE WONDERS OF TEXT INDEXING STRUCTURES

C G

A

CG
A

C
T

41 2 5 3 6

T

C

A

G

T

T

T

T

C

A

A C G

1 2 3 4 5 6

A C T

Figure 4.4: Finding pattern ACT in string ACGACT with a suffix tree. First
character A is matched, then C, and finally T. The number of the leaf located
below the end of the path tells us that the pattern occurs at position 4 in the
string.

this information, but at the price of additional time. What we have to do
is a traversal of the subtree below the last point where the characters of �
were matched, and report the label of the leaves we encounter. Suppose
� occurs � times. Since each node has at least two children, the number
of leaves encountered is proportional to the number of edges traversed, so
the time for the traversal is

��� � 	 .
If, instead, we are interested just in how many times � appears in

�
, we

can reduce the time complexity again to
� ���
	

with a linear time prepro-
cessing of the tree. The idea is to annotate each internal node � of the tree
with the number of leaves of the subtree rooted at � . This can be done with
a linear time traversal of the suffix tree at the end of its construction. Thus,
to find out how many times � appears in

�
we just have to read the num-

ber associated with the node entered by the edge containing the endpoint
in the tree of the path corresponding to � .

The same arguments can be extended to finding the occurrences of a
pattern in a set of � strings. In this case, we can annotate each internal node
� with a � –bit strings telling us in which strings the substring spelled from
the root to � appears in. If the

�
–th bit of the string is set, the pattern occurs

in the
�
–th string. The bit string of an internal node � is obtained with the

logical OR of the bit strings of the children of � . For � � � children, this takes��� � � � � 	 time. Since the tree contains
� ����	

edges, annotating it with the bit
strings takes additional

��� � � 	
time, where

�
is the overall length of the

4.1 SUFFIX TREES 87

input strings.
However, suffix trees and other text indexing structures offer much

more significant advantages than simply providing faster access to the pat-
terns contained in a string. They can be used to find repetitions in a single
string, and for a number of problems related to string comparison. An
overview is given in [36]. We will return to the virtues of suffix trees and
similar structures in the next chapter. For the moment, we instead focus
on another topic. How much space do suffix trees require in practice? Are
there more space–efficient indexing structures?

4.1.7 EVERYONE’S LINEAR, BUT SOME ARE MORE LINEAR THAN
THE OTHERS

As we have shown, suffix trees can be implemented in space linear in the
length of the input string(s). However, in practice, one has to consider the
additional overhead needed for the implementation of the structure, that
is, its nodes, its edges, and its annotation, if needed. It has been estimated
in [17] that a suffix tree for a

�
character random string requires on the

average
3�� -(� .��

nodes, and each node takes
����� ���

and
��� � ���

bytes when
implemented with the pointer array and the linked list of pointers, respec-
tively, if implemented as in [68]. On the average, suffix trees require � ��� -��
and

�(��� 1��
bytes per string character, without counting the additional space

needed for their annotation with integers or bitstrings.
Research has thus focused on possible ways to reduce the space used

by suffix trees. Clearly, one has to trade space for information or time:
an example are suffix arrays [62], that are very space efficient but require
additional time for retrieving the substrings. Basically, given an

�
character

string
�

, the suffix array � of
�

is an array of
�

elements specifying the
lexicographic order of the

�
suffixes of

�
(see Fig. 4.5). That is, the suffix

at position � �43�� is the lexically smallest suffix, and for any
�
, the suffix at

position � � � � is lexically smaller than � � � � 3�� . The suffix array of string
�

can
be implemented just as an array of integers, denoting the starting position
in
�

of the different suffixes. Thus, for a string of length
�

it requires just�
memory words, provided that the words size is at least

����� �
bits, and

takes linear time to be built. The downside now is that searching for a
pattern in

�
takes additional time. By using a binary search technique, a

pattern of length
�

can be found in
�

in
����� ����� � 	

time. With further
� ��� 	

preprocessing of the array [36] the search time can be reduced to
� ��� �

����� � 	
. A cross between suffix trees and arrays is introduced in [51], and

named suffix cactus. Suffix cacti time and space requirements lie in between
those of suffix trees and suffix arrays.

An alternative approach could be earning space by reducing informa-

88 THE WONDERS OF TEXT INDEXING STRUCTURES

2: abxac
5: ac
3: bxac
6: c
1: xabxac
4: xac

Figure 4.5: Suffix array for string ��� � ��� � .

b x a c

a

c

b

x
a
c

x

3 6

5

4

1

2

c

c

a

b

x a

c

p

q

Figure 4.6: Suffix tree for string ��� � ��� � . The subtrees rooted at internal
nodes � and � are isomorphic.

tion. For example, more than half of the nodes in a suffix tree are leaves,
used to store the initial position of each suffix in the string. If we merge the
leaves into a single final node (or sink) we obtain a directed acyclic graph
with exactly

� � 3
nodes less than the suffix tree, that still indexes all the

substrings occurring in the strings. But this approach can be pushed even
further. Consider the suffix tree for string ��� � ��� � shown in Fig. 4.6.

The subtree rooted at node � (circled in the figure) is isomorphic to the
one rooted at node � , and the edge labels are the same. The only difference
is in the leaf numbers. If we are just interested in determining whether or
not a pattern � occurs in string

�
, we could merge all the leaves into a single

final node, and merge the subtrees rooted at � and � as well. In other words,
all the edges out of � are removed, the edges entering � are redirected to �
keeping their original edge labels, and any part of the graph unreachable
from the root is removed. The key point is that all the substrings spelled
out by paths ending at � and � occur as prefix of the same suffixes. Thus,
we can merge � and � into a single node, without fear of deleting from the

4.1 SUFFIX TREES 89

a x a c

a
c

x b

b

c

Figure 4.7: Directed Acyclic Word Graph for string ��� � ��� � .

T

a

xa bxac

c

c

q

bxac

Figure 4.8: Compact Directed Acyclic Word Graph for string ��� � ��� � .

structure any suffix of the string.
On the other hand, the idea of representing the substrings and suffixes

of a string with a graph was first introduced in [15, 16, 24]. The structure,
called Directed Acyclic Word Graph (DAWG), was presented as the smallest
finite state automaton recognizing the suffixes of a string whose transitions
(edges) were labeled with single characters of the input string. The DAWG
for a string

�
has at most

� � � � � 3
nodes (states) and

� � � � � � edges (transi-
tions). Figure 4.7 shows an example of a DAWG for string ��� � ��� � .

A compact version of DAWG where all the states (nodes) with outde-
gree one are removed (thus edges are labeled with substrings instead of
single characters of the input string) was introduced in [16, 17]. This struc-
ture, called Compact Directed Acyclic Word Graph (CDAWG) is exactly what
we obtain by merging leaves and isomorphic subtrees of a suffix tree (see
Fig. 4.8). In [16] also a CDAWG for a set of strings was presented, but
both this structure and the one for a single string were built by compaction
of a DAWG. Thus, in the case of the structure for multiple strings, if one
string had to be added to the set after the CDAWG had been constructed
the structure had to be built anew, starting from another DAWG.

The first algorithm for the construction of a CDAWG for a string, with-

90 THE WONDERS OF TEXT INDEXING STRUCTURES

out first having to build a suffix tree or a DAWG was presented in [26].
The algorithm processes all the suffixes of the input string from the longest
to the shortest, in a fashion similar to McCreight’s algorithm for the con-
struction of suffix trees [68]. In this work, we instead present a novel on
line algorithm for the direct construction of a CDAWG for a string, inspired
by Ukkonen’s algorithm for suffix trees. Moreover, we show how the al-
gorithm can be extended in order to build the CDAWG for a set of strings,
thus avoiding the preliminary construction of a DAWG as in [16]. We pre-
sented this algorithm in [45]2. For a more “code–oriented” version of the
algorithm, see also [46] and [47].

4.2 COMPACT DIRECTED ACYCLIC WORD GRAPHS

We first give a more formal definition of the Compact Directed Acyclic
Word Graph for a string. Given a string

�
, let . /�1 �3� 	 be the set of suffixes

of
�

. We define the syntactic congruence on
���

associated with . /�1 �3� 	 and
denoted by ���������
	�� , for any &�� + � � , as:

�� ��������	�� �����
�

. /�1 �3�)��� �

.0/21 �3� 	

That is, and
�

are congruent if and only if they occur as prefixes of the
same suffixes of

�
. In other words, the occurrences of and

�
must end at

the same positions in the string. Hence, if and
�

occur in the string, one
must be a suffix of the other. As in [16, 26], we will call classes of factors the
congruence classes of the relation � ��������	�� . According to the definition, all
the strings in

�-�
not occurring as a substring of

�
belong to the same class.

The class composed by all the strings that are not substrings of
�

is called
the degenerate class. The longest string in a non–degenerate class of factors
is called the representative of the class.

Given a non–degenerate class of factors � of � ��������	�� , and its represen-
tative , if there are at least two characters � & � + � such that �� and � are
substrings of

�
, then � is a strict class of factors of ����������	�� .

From now on, we will say that two strings are strictly congruent if they
belong to the same strict class of factors. An example was shown in Fig 4.8
for string ��� � ��� � . Strings ��� and � are strictly congruent, since there exist
two different characters (

�
and �) that continue the representative of the

2The work was submitted to the CPM 2001 conference. In due time, we received the
referees’ answers, telling us that the paper was original and interesting, and deserved to
be presented at the conference. However, they pointed out, there was a group of japanese
researchers that had submitted exactly the same algorithm to the same conference, at the
same time. The papers were thus merged into a joint contribution.

4.2 COMPACT DIRECTED ACYCLIC WORD GRAPHS 91

class ��� . Strings ��� � � and � � � are congruent, but not strictly, since they are
continued only by character � .

We are now ready to give a formal definition of a CDAWG.

Definition 5 The Compact Directed Acyclic Word Graph (CDAWG) of a
string

�
is a directed acyclic graph, where:

1. two distinct nodes are marked as initial and final;

2. edges are labeled with non empty substrings of
�

;

3. labels of two edges leaving the same node cannot begin with the same char-
acter;

4. every suffix of
�

corresponds to a path on the graph starting from the initial
node and ending at a node, such that the concatenation of the edge labels on
the path exactly spells the suffix. From now on, we will call a node corre-
sponding to a suffix of

�
terminal node;

5. substrings spelled by paths ending at the same non–terminal node of the
graph belong to the same strict class of factors.

The CDAWG of a string
�

has at most � � � ��3
nodes and

� � � � � �
edges [16, 26].

We will denote with
� � &�!'& � 	 the edge � � � of the graph labeled with

substring
!

. According to the definition of strict class of factors, all the
nodes of the graph have outdegree greater than one, except for the ini-
tial node (that may have outdegree one, as for string � ��� � �), the final node
(that does not have outgoing edges), and the terminal nodes, that may have
outdegree one. On the other hand, in the DAWG of a string

�
, where non–

terminal nodes may have outdegree one, nodes correspond to the non de-
generate classes of factors of

�
, but not necessarily strict (see Fig. 4.7).

As we did with suffix trees, we can define an implicit CDAWG:

Definition 6 The implicit CDAWG of a string
�

is a CDAWG where nodes
with outdegree one (except the initial node) are removed, and edges are merged
accordingly.

In the implicit CDAWG of a string
�

, the suffixes of
�

are spelled out by
paths in the graph starting at the initial node, but not necessarily ending at
a node. An example is shown in Fig. 4.9. For every node � , let �) � � � 	 � � 	
be the length of the longest substring spelled by a path from the initial
node to � . Edges belonging to the spanning tree of the longest paths from
the initial node are called solid edges. In other words, an edge

� � &�!)& � 	 is

92 THE WONDERS OF TEXT INDEXING STRUCTURES

a
b
c
a
b c

a
b

b

a
b b

c

b

c

b
a

c

b
a

a

Figure 4.9: Implicit CDAWG and CDAWG for string � � � � � .

solid iff �) � � � 	 � � 	-� �) � � � 	 � � 	 � � ! � . Finally, we assume that the label of
each edge is implemented with a pair of integers denoting the starting and
ending point in the string of the substring corresponding to the label, and
every node is annotated with the length of the longest path from the initial
node.

4.2.1 ON LINE CONSTRUCTION OF CDAWGS

Given an alphabet
�

, let
�"� �9
���������

be a string on
�

. As in Ukkonen’s
algorithm for suffix trees, our algorithm is divided in

�
phases, building at

each phase
�

the implicit CDAWG � � for each prefix
���43���� � �

of
�

. More in
detail, the implicit CDAWG � � �
 for

���43���� � � 3��
is constructed starting from

graph � � for
�-�43���� � �

. Again, each phase
� � 3

is divided in
� � 3

extensions,
one for each of the

� � 3
suffixes of

�-�43���� � � 3��
. In extension

�
of phase

� � 3
,

the algorithm finds the end of the path from the initial node labeled with
substring

��� � ��� �3�
, and extends it by adding character

� � �
 to the path, unless
it is already there. Therefore, in phase

� � 3
, substring

�-�43���� � � 3��
is first put

on the graph, followed by
���"����� � � 3��

,
��������� � � 3��

, and so on. Extension
� � 3

of phase
� � 3

adds the single character
� � �
 after the initial node. The initial

graph �
 has one initial node � and one final node � , connected by an edge
labeled by character

�9

. The algorithm can be sketched as follows:

1. Construct graph �
 ;
2. For

�
from

3
to
� � 3

do

3. For
�

from
3

to
� � 3

do

4. Find the end of the path from � labeled
��� � ��� � �

in the current graph

5. Add character
��� �
 if needed

6. End for

4.2 COMPACT DIRECTED ACYCLIC WORD GRAPHS 93

7. End for

At extension
�

of phase
� � 3

, once the path labeled
��� ����� � �

has been lo-
cated, the CDAWG can be updated according to three different rules, simi-
lar to the ones of Ukkonen’s algorithm for suffix trees:

Rule 1 In the current graph, the path labeled with
��� ����� � �

ends in � . To
update the graph, character

� � �
 is appended to the label of the edge
entering � .

Rule 2 The path spelling
��� � ��� � �

does not continue with
� � �
 , but continues

with at least one character � . If the path ends at a node � , we create a
new edge

� � &�� � �
 & � 	 . Otherwise, we create a new node � at the end
of the path, splitting the edge in two at the point where the path ends.
Then, we create a new edge

� � &�� � �
�& � 	 .

Rule 3 Some path at the end of
�-� � ��� � �

continues with
� � �
 . In this case,

substring
��� ����� � � 3��

is already in the current graph: we do nothing
(hence the implicit graph).

These rules, however, do not guarantee that at the end of the phase
we correctly constructed a CDAWG. In fact, the algorithm must also check
whether a substring strictly congruent to another one has been encoun-
tered, or, conversely, whether a substring has to be removed from a strict
class of factors, so that at the end of phase

� � 3
paths ending at the same

node will correspond to strict classes of factors of
���43���� � � 3��

, and vice versa.
Here we sketch how the algorithm has to be modified.

DETECTING STRICTLY CONGRUENT FACTORS

Two substrings
!

and
#

belong to the same class � iff they are prefixes of
the same suffixes, and there are at least two characters � & � + � such that! � ,
! �

,
� , and

�
occur in

�
. Moreover,

!
must be a suffix of

#
, or vice

versa. We suppose w.l.o.g. that
! � � # , with � + � . We also assume that

!
and
#

have occurred just once, and that substrings
! � and

� had been put
in the graph in some previous phase (in two consecutive extensions), and
in the current extension we have to insert

! �
.

The path spelling
!

ends along an edge, and the next character on the
edge is � . A new node � is created at the end of the path, and a new edge� � & � & � 	 is created from � . At the following extension, we have to locate

#
in the graph. If

#
has occurred only once (together with

!
), it now belongs

to the same strict class of factors, and we end in the middle of a non–solid
edge that continues with � . In this case, we redirect the edge to � , labeling it
with the part of the label that was contained in the path of

#
(see Fig. 4.10).

94 THE WONDERS OF TEXT INDEXING STRUCTURES

a
b

c
a

b

b

c

b

a

c

b

a

a

a

a
a

a
b

c
a

b

b

a

a

c

b

a

a

Figure 4.10: Implicit CDAWG for string � � � � � � before (left) and after redi-
rection of an edge, at phase

-
, extension

�
. Node

3
, labeled � � , was created

at the previous extension, after the insertion of � at the end of the path
labeled � � . Now, path corresponding to

�
is found ending in the middle

of non–solid edge
� � & � � � � � & � 	 , that is redirected to node

3
and becomes� � & 3�& � 	 .

Since there can be more than two consecutive substrings to be assigned to
the same class, it is possible that we again end along non–solid edges in
the following extensions. In this case, we redirect the non–solid edges to
� as well, until we reach an extension where we end at a node or along a
solid edge. Otherwise, if

#
had previously occurred also by itself, either the

path corresponding to
#

ends at a node (
#

has been followed by characters
different from �), or the edge we end on is solid (

#
had been followed only

by �). In the former case, if there is not an edge labeled
�

leaving the node
we create a new edge labeled

�
to the final node. In the latter case, we create

a new node and connect it to the final node. Then, there may be again non–
solid edges that have to be redirected into the newly created node.

SPLITTING A STRICT CLASS OF FACTORS

Conversely, a substring that has been assigned to a strict class of factors
has to be removed from the class if it does not occur as a suffix of the rep-
resentative of the class when a new character

� � �
 is added to the string.
Let
!

and
#

,
! � � # , be the two substrings assigned to the same class in

the previous example. Now, suppose that in phase
� � 3

we have to insert#
in the graph. In this case,

� � �
 is the last character of
#

, and we find it
at the end of the edge entering node � , that is non–solid, since

#
is not the

representative of the class. Now we have two cases:
��� �
 was found at the

end of an edge that entered node � also at the previous extension, or we
ended up somewhere else. In the former case, we had also inserted

!
at

the previous extension of the same phase, therefore
#

still belongs to the

4.2 COMPACT DIRECTED ACYCLIC WORD GRAPHS 95

a
b

c
a
b

c

b
a

d

d

d

b

b
b

b

c
a
b

b

c

b
a

d
b

c
a
b
d

d

b
b

d
b

a
b

d
b

d
b

d
b

Figure 4.11: CDAWG for string � � � � ����� at phase
1
, extension

1
. Character

�

is found at the end of the non–solid edge
� � & � & 3 	 . At extension

-
, the path

spelling
���

ended at the final node. Thus,
�

has to be removed from the class
associated with node

3
, that is cloned into node

�
. Edge

� � & � & 3 	 becomes� � & � &�� 	 .

same class. In the latter, we have detected an occurrence of
#

not preceded
by
!

, that is, not as a suffix of
!

, and we have to remove it from the class.
To reflect this in the graph, we clone the node � into a new node � (that has
the same outgoing edges), and redirect the non–solid edge to � keeping the
same label. The redirected edge becomes solid. An example is shown in
Fig. 4.11. If also some suffixes of

#
had been previously assigned to the

same class as
#

, in the following extensions we will again find
��� �
 at the

end of a non–solid edge entering � . These edges are redirected to � . It can
be proved that it suffices to check only the last edge on each path to ensure
that a class has to be split. No cloning takes place if a character is found at
the end of an edge entering the final node.

The two observations outlined above can be implemented in the algo-
rithm by modifying Rules 2 and 3 accordingly. It is worth mentioning that
both redirection of edges to a newly created class and node cloning can take
place during the same phase. An example is shown in Fig. 4.12.

4.2.2 THE RETURN OF SUFFIX LINKS

Naı̈vely, locating the end of
��� ����� � �

in extension
�

of phase
� � 3

would take��� � � � 	 time by walking from the initial node and matching the characters
of
�-� � ��� � �

along the edges of the graph. This would lead to an overall
����� � 	

time complexity for the construction of the whole graph. We will now re-
duce it to

� ��� 	
, as we did with suffix trees, by re–introducing suffix links

and with some remarks.

Definition 7 Let � be a node of the graph, different from the initial or final node.
Let
#

be the representative of the class associated with � . The suffix link of � ,

96 THE WONDERS OF TEXT INDEXING STRUCTURES

b

b

a
b

c
a
b

c

b

a

b

b

b

b

c
a
b
b

b

a
b

c
a
b

b

c

b

a

b

a
b

c
a
b

b

c

b
a

c

b

a

b

b

b
b

Figure 4.12: From left to right, CDAWG for string � � � � � � at phase
-
, exten-

sions
�
,
-
, and

1
. Character

�
is put in the graph after string � � , and the path

spelling
�

is found in the middle on non–solid edge
� � & � � � � � & � 	 (left) that

is redirected to node labeled � � (center). Then, at extension
1

(that adds
�

after the empty string)
�

is found at the end of a non–solid edge. The node
entered by the edge is cloned (right).

denoted by � � � 	 , is the node � whose representative
%

is the longest suffix of
#

whose path does not end at � .

The suffix link of a node � can be implemented with a pointer from �
to � � � 	 . If

%
is empty, then � � � 	 is the initial node. Suffix links are not

defined for the initial and the final node. Although the definition does not
guarantee that every node in the graph has a suffix link, we can prove the
following:

Lemma 3 Any node created during phase
� � 3

will have a suffix link from it by
the end of the phase.

Proof: In extension
�

of phase
� � 3

a new node � can be created at the end of
a path spelling a substring

!
by application of Rule 4.2.1 or by cloning. In

the former case, � � � 	 will be the first node to be created or encountered at
the end of the path corresponding to a suffix of

��� ����� � �
(possibly after edge

redirections). Such a node always exists, since the last extension locates the
empty suffix at the initial node. In the latter case, when a node � is cloned
into node � with path spelling

!
, substring

!
is the longest suffix of the

representative of � that does not belong to its class. Thus, � � � 	 is set to � .
Suffix link � � � 	 is left undefined until one of the suffixes of

!
ends at a node

other than � (that again could be �). �
During any phase, the only node of the graph other than the initial and

the final without a suffix link from it is the last created one. Let us suppose
that the algorithm has completed extension

�
of phase

� � 3
. Suffix links are

used to speed up the search for the remaining suffixes of
�-� � ��� � �

. Starting

4.2 COMPACT DIRECTED ACYCLIC WORD GRAPHS 97

I

p

q

s(p)

β

γ

γ

αβ

Figure 4.13: A suffix link. Node � corresponds to class
!$#

, node � corre-
sponds to

#
. Paths labeled with suffixes of

!$#
longer than

#
end at � . If at

some extension
�

character
� � �
 is added after

!$#%
, then extensions from� � 3

to
� � � ! � are implicitly performed as well.

from the end of
��� � ��� � �

in the graph, we walk backwards along the corre-
sponding path to either the initial node or a node � that has a suffix link.
This requires traversing at most one edge. Let

%
be the concatenation of the

edge labels of the path from � to
��� � ��� �3�

. If � is not the initial node, we move
to node � � � 	 and follow from it the path spelling

%
. Otherwise, we search

for
��� � � 3���� � �

starting from � . Finally we add
� � �
 according to one of the ex-

tension rules, redirecting an edge or cloning a node if needed. Notice that,
if node � is the end of � different paths, the position reached after searching
from

%
from � � � 	 will be the end of path

��� � � � ��� �3� , that is, extensions from� � 3
to
� � � � 3

have been implicitly performed at extension
�
.

A path spelling
%

starting from � � � 	 always exists, since all the suffixes
of
��� � ��� � �

are already in the graph. Thus, to find the path spelling
%

the
algorithm just matches the first characters on the edges encountered. To
obtain a linear time algorithm, we need just two more “tricks”.

Remark 4 When during any extension Rule 3 is applied, that is, a given
substring

��� � ��� � � 3��
is already on the graph, then the same rule will apply

to all further extensions, since all the suffixes of
�-� � ��� � � 3��

are already in
the graph as well. Therefore, once Rule 3 is applied (and no node has to
be cloned or edges redirected), we can stop and move on to the next phase,
since all the strings to be inserted are already in the graph and no adjust-
ment is needed for the classes.

Remark 5 If a new edge is created entering the final node during exten-
sion

�
of any phase

�
, then Rule 1 will always apply at extension

�
in any

successive phase. That is, new characters will always be appended at the
end of the last edge in the path associated with

��� ����� � �
, that will enter the

final node. Thus, when a new edge is created entering the final node with
label

��� ����� � � 3��
, we label it with integers � and � (

� � � � � � 3
), where �

denotes the current phase, that is, the current end position in the string. If

98 THE WONDERS OF TEXT INDEXING STRUCTURES

we implement � with a global variable, and set it to
� � 3

at the beginning
of each phase

� � 3
, we perform implicitly all the extensions that would end

up at the final node.

Every phase
�

starts with a series of applications of Rules 1 and 2, that
put
���

at the end of an edge entering the final node; when Rule 3 is applied
for the first time, it will be also applied to all further extensions. Now, let���

be the first extension where Rule 3 is applied with cloning in phase
�
,

and
� �� the first extension where it is applied without edge redirection to

the cloned node. Extensions
� � � 3

to
� �� � 3

will redirect edges to the last
node created. Extensions from

� �� � 3
to
�

need not to be performed, since
in each of them we would not do anything. In phase

� � 3
, all extensions

from
3

to
� � � 3

will apply Rule 1, therefore they are implicitly performed
by setting the counter � to

� � 3
. Thus, we can start phase

� � 3
directly from

extension
� �� � 3

, until we find an extension where Rule 3 is applied without
cloning or edge redirection. This can be done by starting phase

� � 3
from

the position in the graph of the last suffix of
���43���� � �

that had to be redirected
to the cloned node. This took place at extension

� �� � 3
. The first extension

in phase
� � 3

will have to look for
� � �
 exactly at the endpoint of the last

extension of phase
�
. This will also implicitly perform all extensions from���

to
� �� � 3

. Of course, if in phase
�

Rule 3 is first applied without cloning
we can move on to phase

� � 3
as well.

The algorithm does not need to know which extension it is currently
performing. That is, it starts phase

� � 3
from the endpoint of phase

�
,

adding
��� �
 . Then it starts moving in the graph by using suffix links, and

adding
��� �
 at the end of each path. If the backward walk ends at � , and% � %
 ����� % � is the label of the path traversed, then it looks for the path la-

beled
% � �����(% � . Phase

� � 3
ends when the algorithm applies for the first time

Rule 3 without node cloning or edge redirection. Moreover, whenever we
find

��� �
 at the end of a non–solid edge, we no longer have to check what
happened at the previous extension, and just clone the node. In fact, if the
representative of the class had been met during one of the previous exten-
sions, we would have stopped the phase at that point, without reaching the
current extension.

At the end of phase
�

, we have constructed the implicit CDAWG for
string

�
. In order to obtain the actual CDAWG, we perform an additional

extension phase
� � 3

, extending the string to a dummy symbol $ that does
not belong to the string alphabet. Anyway, we do not increment the phase
counter � to

� � 3
, so as to avoid appending $ to edges entering the final

node. Moreover, whenever a new node � has to be created, we do not
add edge

� � & � & � 	 to the graph. Nodes created in this phase will thus have
outdegree one, and will correspond to terminal nodes of the CDAWG.

4.2 COMPACT DIRECTED ACYCLIC WORD GRAPHS 99

a
b

c

a
b

b
c

b

c

b
aa

c
c

c

a
b
c

b

b

c

b

c

b

a

c

a
b

c

b

b
c

b

c

a

c

c

c
b

b

b
a

c

c

b
c

a
b
c

b

b
c

b

c

a

c
c

cb

b
c

d

d
d

d

d

d

c
b

a
c
b

Figure 4.14: From left to right, construction of the CDAWG for string
� � � � � � � � � : at the end of phase

-
(implicit CDAWG for string � � � � � �); at

the end of phase
1

(� � � � � � � , where � � � , � � , and � belong to the same strict
class of factors); at the end of phase

�
(� � � � � � � � , where

� � and � have been
removed from the class with representative � � �); the final structure. Dot-
ted points indicate the position in the graph reached at the end of the last
extension of each phase.

Notice that, whenever a path
��� � ��� � �

ends along an edge, we always
create a new node and mark it as terminal, while cloning of nodes and
redirection of edges work as in the previous phases. When a path

��� ����� � �
ends at a node, we mark the node as terminal. At the end of the additional
phase, the implicit CDAWG has been transformed into the actual CDAWG
for string

�
. An example of the on–line construction of a CDAWG is shown

in Fig. 4.14. With arguments analogous to Ukkonen’s algorithm for suffix
trees, we can prove the following:

Theorem 4 Given a string
� � �9
 ������� �

over a finite alphabet
�

, the on line al-
gorithm implemented with suffix links and implicit extensions builds the CDAWG
for
�

in
� ��� 	

time and
� ��� � � � 	 space if the nodes of the graph are implemented

with a pointer array, or in
����� � � � 	 time and

� ��� 	
space with linked lists of point-

ers.

Proof: The operations performed in any explicit extension (creation or
cloning of nodes, edge redirections), that is, extensions that are not per-
formed implicitly by incrementing the � counter, take constant time. Let

� ��
be the last explicit extension performed at phase

�
, and

� � �
 the first explicit
extension performed at phase

� � 3
. In the worst case, we have

��� �
 � � �� � 3
.

Moreover, for each
�
,
��� � ��� �
 . Thus, at most

� �
explicit extensions are

performed by the algorithm. At any extension
�

of phase
�
, to locate the

endpoint of
�-� � ��� � �

the algorithm walks back at most one edge from the
endpoint of

��� � � 3���� �3�
, follows a suffix link, and than traverses some edges

100 THE WONDERS OF TEXT INDEXING STRUCTURES

checking the first symbol on each edge. If the graph is implemented with a
pointer array in each node, traversing an edge takes constant time. Else, it
takes

� � � � � 	 time. The only thing unaccounted for is the overall number of
edges traversed. For every node � of the graph, let the node depth of � be the
number of nodes on the path from the root to � labeled with the represen-
tative of the class associated with � . As in Ukkonen’s algorithm for suffix
trees, the node depth during all the explicit extensions is reduced at most
by
����� 	

edges, and since the maximum node–depth is
�

, the maximum
number of edges traversed is bounded by

����� 	
. �

4.3 THE CDAWG FOR A SET OF STRINGS

The basic idea of the CDAWG for a set of strings
�� � � �
 &�������&�� � �

is the
same of the single string structure. Now, the nodes of the structure corre-
spond to patterns that occur as prefix of the same suffixes in every string
of the set. In other words, given .0/21 � �� 	

(the set of the suffixes of the �
strings), the nodes of the CDAWG correspond to strict classes of factors for
� ������� �	�� .The only difference is that now we have � final nodes �
 ����� � � , one
for each string, and we want all the suffixes of

� �
to end at the correspond-

ing final node � � . This result can be obtained by appending a different
termination symbol, not belonging to the string alphabet, to each string of
the set. More formally:

Definition 8 The CDAWG for a set of strings
�� � �
 ���������

is a directed acyclic
graph where:

1. a node is marked as initial and � distinct nodes �
 ����� � � are marked as final;

2. edges are labeled with non empty substrings of at least one of the strings;

3. labels of two edges leaving the same node cannot begin with the same char-
acter;

4. for every string
� �

in the set, all the suffixes of
� �

are spelled by paths start-
ing at the initial node and ending at final node � � ;

5. paths ending at non final nodes correspond to strict classes of factors of the
congruence relation � ������� �	�� .

The CDAWG for a set of strings can be constructed with the algorithm
presented in the previous section. First, we build the CDAWG for string

�

(with the termination symbol) and final node �
 . Notice that, since the ter-
mination symbol does not occur elsewhere in

�

, the resulting structure is

4.3 THE CDAWG FOR A SET OF STRINGS 101

I 1
abc$ab

b

F1

F2

2
c

c

ab#

$

#

I 1
abc$

c$

ab

b

F1

c$

Figure 4.15: CDAWG for strings � � � � � � and � � � � ��� , after the insertion of
� � � � � � (left) and � � � � ��� (right). Characters � and

�
are used as termina-

tions. Dotted edges show suffix links.

a CDAWG, with no need to perform the additional phase. Then, string
� �

is added to the graph, but in this case with final node � � . The same will ap-
ply to every other string in the set. Node cloning and edge redirection rules
ensure the correctness of the resulting structure. It can be proved that the
algorithm takes

� ����	
time to construct the structure, implemented with

pointer arrays, where
� � ��� �� ��� � � ����
 � �

�
� . This structure (with marginal

differences) was first described in [16], where it was built by reducing a
DAWG. Therefore, adding a new string to the set required the construc-
tion of a new DAWG from scratch. The algorithm presented here, instead,
permits to add strings directly to the compact structure (see Fig. 4.15). As
in [16] we can give an upper bound on the size of the structure.

Theorem 5 (Blumer et.al., [16]) The CDAWG for a set of strings
�
 ������� �

, has
at most

� � � nodes, where
� � � ����
 � �

�
� .

Proof: Consider the suffix tree for string
�� � �
��
�� � � � �����2��� � � , that is, the

concatenation of the � strings augmented with the termination symbols.
The tree has

� � � leaves and at most
�

internal nodes. Its minimization
into a CDAWG merges all leaves into the unique final state � , and possi-
bly merges other nodes. Thus, the CDAWG has at most

� � 3
nodes. The

CDAWG for the set of strings can be derived from the CDAWG by redi-
recting edges entering the final node to the final node corresponding to the
first termination symbol encountered on their label. At the end, we have
� final nodes instead of one. The overall number of nodes is therefore at
most

� � � . �

102 THE WONDERS OF TEXT INDEXING STRUCTURES

4.4 HOW MUCH SPACE DO WE SAVE?

As we have seen, the theoretical bounds show that a CDAWG for a string
has in the worst case half the nodes of the corresponding suffix tree. This
result comes directly from the fact that all the leaves of the tree are merged
into a single final node.

As shown in [17], the theoretical average number of states for a
CDAWG of a random

�
character string is

� � � � . �
. An efficient way to

implement it is described in [26]. For each node, the target nodes of outgo-
ing edges can be implemented with a pointer array of � � � integers. Usually,
four bytes per integer are sufficient. Moreover, for each edge we need to
store the value of the starting and final position in the input string of its la-
bel. Finally, we can indicate whether an edge is solid or not with a one–bit
flag (

� � 3 ���
bytes), with an average memory requirement of

�(��� � � bytes per
input character.

One might ask why saving memory in the implementation of text–
indexing structures is such an issue. After all, RAM is becoming cheaper
and cheaper, and it’s not unusual, nowadays, to find desktop PCs equipped
with 1 Gigabyte of RAM, or even more. Interestingly enough, in the first
paper that presented the CDAWG ([16], dated 1987) the authors stated that

The drawback of the suffix tree is the space it occupies. Al-
though significantly smaller than the suffix tree in many cases,
the compact DAWG for a large set of text, say 1 Megabyte, still
requires considerable storage space, depending on the imple-
mentation (...) Unless these problems can be overcome, the ap-
plication of the CDAWG will be limited to smaller, intensively
searched or analyzed text collections (...)

Sic transit gloria mundi. In the biological applications of text indexing
structures, the input strings are usually huge. See again Table 2.1 for some
figures. The smallest genomes, the bacterial ones, range from 500,000 char-
acters to more than five million. To have an idea, consider that Dante’s Div-
ina Commedia is composed by about 500,000 characters, including spaces. If
we want to build a suffix tree for a relatively small bacterial genome, say, of
2 Mbytes, the implementation of the tree alone requires about 60 Mbytes of
memory, without all the additional data structures needed, for example, to
annotate the tree, or traverse it. Thus, the advantage of using more space–
efficient text indexing structures is self evident: the more space you save
for the structure, the longer is the genome sequence you can analyze. If we
manage to halve the memory requirement, for example by using a CDAWG
instead of a suffix tree, then our algorithms are able to treat sequences twice
as long.

