
Algorithms for Molecular Biology Fall Semester, 2001

Lecture 4: 6 December, 2001
Lecturer: Ron Shamir Scribe: Oks Eduard and Shrayber Yevgeny1

4.1 Multiple Alignment

Definition A multiple alignment of strings S1, S2, . . . , Sk is a series of strings with spaces
S ′

1, S
′
2, . . . , S

′
k such that

1. |S ′
1| = |S ′

2| = . . . = |S ′
k|.

2. S ′
j is an extension of Sj , obtained by insertions of spaces.

For an example of a multiple alignment, see Figure 4.1.

AC..BCDB
.CADB.D.
ACA.BCD.

Figure 4.1: A multiple alignment of ACBCBD, CADDB and ACABCD.

We are interested in finding a common alignment of several sequences, because this
multiple similarity suggests a common structure of the protein product, a common function
or a common evolutionary source. A multiple alignment carries more information than a
pairwise one, as a protein can be matched against a family of proteins instead of only against
another one. See Figure 4.2 for example.

1Based in part on a scribe by Elery Pfeffer and Orit Kilper, November 20, 2000 and Itay Lotan and Ziv
Modai, January 3 ,1999 and a scribe by Sariel Har-Peled, December 18, 1995.

2 Algorithms for Molecular Biology c©Tel Aviv Univ.

Figure 4.2: An Alignment between globins produces by an alignment program Clustal. The
proteins that appear in the alignment are human beta globin, horse beta globin, human
alpha globin, horse alpha globin, cyanohaemoglobin, whale myoglobin and leghaemoglobin
in that order. The boxes mark the seven α helices composing each globin.

Multiple Alignment 3

Figure 4.3: Alignment path for 3 sequences [7].

4.1.1 Dynamic Programming Solution

The best multiple alignment of r sequences is calculated using an r-dimensional hyper-cube
D (for example see Figure 4.3), defining D(j1, j2, . . . , jr) to be the best score for aligning the
prefixes of lengths j1, j2, . . . , jr of the sequences x1, x2, . . . , xr, respectively.
We define

D(0, 0, . . . , 0) = 0

And we calculate

D(j1, j2, . . . , jr) = minε∈{0,1}n, ε �=0{D(j1 − ε1, j2 − ε2, . . . , jr − εr) + ρ(ε1xj1 , . . . , εrxjr)}
where ρ is the cost function, and

ε = (ε1, ε2, ..., εn) ∈ {0, 1}n

is a vector that indicates the directions of alignment progress in the hyper-cube. The size of
the hyper-cube is O(

∏r
j=1 nj), where nj is the length of xj , where computation of each of each

entry consider 2r −1 others. If n1 = n2 = . . . = nr = n, the space complexity is of O(nr) and
the time complexity is O(2rnr) ·O(computation of the ρ function). Hence the exact solution,
using dynamic programming, is practical for only a small number of strings. Moreover, the
exact multiple alignment problem, using sum-of-pairs or evolutionary-tree scoring metrics,
has be proven to be NP-complete [9].

4.1.2 Scoring Metrics

There are several known useful possibilities for measuring the divergence of a set of aligned
sequences, namely the total distance between them (i.e., possible ρ functions):

4 Algorithms for Molecular Biology c©Tel Aviv Univ.

• Distance from Consensus - The consensus of an alignment is a string of the most
common characters in each column of the alignment. The total distance between the
strings is defined as the number of characters that differ from the consensus character of
their column: let C be the consensus sequence, then the total distance is

∑
i D(Si, C).

• Evolutionary Tree Alignment - The weight of the lightest evolutionary tree that can be
constructed from the sequences, with the weight of the tree defined as the number of
changes between pairs of sequences that correspond to two adjacent nodes in the tree,
summed over all such pairs.

• Sum of Pairs - The sum of pairwise distances between all pairs of sequences:
∑
i<j

D(Si, Sj).

4.1.3 Faster DP for Multiple Alignment

Carrillo and Lipman [1] found a heuristic method for accelerating the search for the best
multiple alignment. An extension of their idea was implemented in the program called MSA
[6]. The method is based on the property that if the strings are relatively similar, the
alignment path would be close to the main diagonal. Therefore not all the values in the
multi-dimensional cube need to be calculated. Assuming an upper bound on cost of the best
alignment, we will discard some alignments that are a priori known to be more expensive
than the bound on the cost.

Let A be an alignment of sequences x1, x2, . . . , xr. Denote by Ai,j the pair of rows in
A containing only xi and xj , and by c(Ai,j) the cost of this pairwise alignment. The only
difference from usual pairwise alignment is the possibility of alignment of space against
space, that can be ignored. Denote by c(A) the total cost of A, and suppose we define
c(A) =

∑
i<j c(Ai,j). Let A

∗ be the optimal alignment (the one with the minimal cost), and
suppose we know that c(A∗) ≤ c′. Therefore,

c′ ≥ c(A∗) =
∑
i<j

c(A∗
i,j) = c(A∗

u,v) +
∑

i<j,(i,j)�=(u,v)

c(A∗
i,j) ≥ c(A∗

u,v) +
∑

i<j,(i,j)�=(u,v)

D(xi, xj)

where D(x, y) is the optimal score for aligning strings x and y, and u, v are arbitrary chosen
indices so that

1 ≤ u ≤ r, 1 ≤ v ≤ r, u �= v.

It follows that
c(A∗

u,v) ≤ c′ − ∑

i<j,(i,j)�=(u,v)

D(xi, xj)

A∗
u,v is a projection of A∗ to the uv-plain. By calculating D(xi, xj) for each i and j, we can

find B(u, v) = c′ − ∑
i<j,(i,j)�=(u,v) D(xi, xj).

Approximation Algorithms for Multiple Sequence Alignment 5

Now, consider a cell (i1, i2, . . . , iu = s, . . . , iv = t, . . . , ir) whose projection to the uv-plane
is (s, t). If the best alignment A∗ passes through this cell, then its projection A∗

u,v passes

through (s, t), and its cost c(A∗
u,v) agrees with best

(u,v)
s,t ≤ c(A∗

u,v) ≤ B(u, v) where best
(u,v)
s,t

is an upper bound on the optimal score for an alignment through (s, t) in the uv-plain. We
can compute such an upper bound as:

best
(u,v)
i,j = D(xu,1xu,2 . . . xu,i−1, xv,1xv,2 . . . xv,j−1) + d(xu,i, xv,j)+

+D(xu,i+1 . . . xu,nu , xv,j+1 . . . xv,nv)

where d(κ1, κ2) is the cost of matching the characters κ1 and κ2.
This can be computed by forward dynamic programming, keeping a queue of cells whose
final D value has not yet been set. The algorithm will set the D value of the cell w at the
head of the queue and remove that cell. When it does, it updates the shortest distance from
cell (0, ..., 0) to all neighbors of w, whose D value can be influenced by w, and if any of the
neighbors is not yet in the queue, it is added to the end of the queue [4, p 346].

Therefore if best
(u,v)
s,t > B(u, v), then the best alignment A∗ cannot pass through the cell

(i1, i2, . . . , iu = s, . . . , iv = t, . . . , ir) for any i1, i2, . . . , iu−1, iu+1, . . . , iv−1, iv+1, . . . , ir, and
these cells can be discarded from the computation of the r-dimentional DP.

Notice that the bound c′ is found by using heuristics giving ”promising” solutions first.
In practice, MSA [6] can align ∼ 6 sequences of length ∼ 200 [4, p 346].

4.2 Approximation Algorithms for Multiple Sequence

Alignment

Denote by D(S, T) the best score of aligning S with T . Let σ(x, y) be our scoring function,
i.e., the price of aligning the character x with the character y, for x, y ∈ Σ ∪ {−}.
We assume that

• σ(−,−) = 0,

• σ(x, y) = σ(y, x),

• the triangle inequality σ(x, y) ≤ σ(x, z) + σ(z, y) holds.

4.2.1 The Center Star Method for (SP) Alignment

In this section, we present an approximation algorithm for calculating the optimal multi-
ple alignment under the SP metric (see, e.g., [4, pp 348–350]. The algorithm achieves an
approximation ratio of two.

6 Algorithms for Molecular Biology c©Tel Aviv Univ.

Figure 4.4: A generic center star for six strings, where the center string (Sc) is S3 [4, p 349].

Problem 4.1 The SP alignment problem.
INPUT: A set of sequences S = {S1, S2, ..., Sk}.
QUESTION: Compute a global multiple alignment M with minimum sum-of-pairs score.

Definition 4.1 Given a set of k strings S, define a center string Sc ∈ S as a string that
minimizes

∑
Sj∈S D(Sc, Sj).

Definition 4.2 Define the center star to be a star tree of k nodes, with the center node
labelled Sc and with each of the k − 1 remaining nodes labelled by a distinct string in
S \ {Sc}. For an example, see Figure 4.4.

Definition 4.3 Define the multiple alignment Mc of the set of strings S to be the multiple
alignment consistent with the center star.

The Center Star Algorithm:

1. Find St ∈ S minimizing
∑

i�=t D(Si, St) and let M = {St}.
2. Add the sequences in S \ {St} to M one by one so that the alignment of every newly

added sequence with St is optimal. Add spaces, when needed, to all pre-aligned se-
quences.

Approximation Algorithms for Multiple Sequence Alignment 7

Running time analysis:

1.
(

k
2

)
O(n2) for step 1.

2.
∑k−1

i=1 O((i · n) · n) = O(k2 · n2) for step 2 (since the worst-case length of S ′
t after the

addition of i strings is (i+ 1) · n) [4, p 348].

Approximation analysis:

• Let M denote the multiple alignment produced by the algorithm.

• Let d(i, j) be the score of the pairwise alignment it induces on Si, Sj. (Note that
D(Si, Sj) ≤ d(i, j)).

• Let σ(M) =
∑k

i=1

∑k
j �=i,j=1 d(i, j).

• Let M∗ denote the optimal alignment of S.
• Let d∗(i, j) denote the value of the alignment between Si and Sj induced by M∗.

We assume w.l.o.g that S1 is the center found by the algorithm, so for each 1 ≤ l ≤ k, d(1, l) =
D(S1, Sl).

Theorem 4.1
σ(M)

σ(M∗)
≤ 2(k − 1)

k
< 2.

Proof:
σ(M) =

∑k
i=1

∑k
j �=i,j=1 d(i, j) ≤

∑k
i=1

∑k
j �=i,j=1[d(i, 1) + d(1, j)] =

= 2(k − 1)
k∑

m=2

d(1, m) = 2(k − 1)
k∑

m=2

D(S1, Sm) (4.1)

The inequality follows from the triangle inequality. Since the triangle inequality holds
for every single column of the alignment by the definition of the scoring scheme, it also holds
for entire strings by the definition of d. Also,

k
∑k

m=2 D(S1, Sm) =
∑k

i=1

∑k
j=2 D(S1, Sj) ≤

≤
k∑

i=1

k∑
j �=i,j=1

D(Si, Sj) ≤
k∑

i=1

k∑
j �=i,j=1

d(i, j) = σ(M∗) (4.2)

The theorem follows.

Theorem 4.1 implies that calculating the multiple alignment of the center star produces a
multiple alignment with a value which is at most Rk =

2(k−1)
k

times the value of the optimal
alignment. For example R3 =

4
3
, R4 =

3
2
.

8 Algorithms for Molecular Biology c©Tel Aviv Univ.

4.2.2 Multiple Alignment with Consensus

In this section we look at an approximation algorithm for a multiple alignment that optimizes
a different score metric - the consensus error. As before, we assume the existence of a pairwise
scoring scheme σ satisfying the triangle inequality.
Notice, that Consensus sequence doesn’t have to be similar to any of the aligned sequences
(see Figure 4.5).

Figure 4.5: An example of multiple alignment with consensus string.

Definition 4.4 Given a set of strings S, the consensus error of a string S̄ with respect to
S is E(S̄) =

∑
Si∈S D(S̄, Si). Note that S̄ need not be in S.

Definition 4.5 S∗ is an optimal Steiner string for S if it minimizes E(S).

Problem 4.2 Optimal Steiner string.
INPUT: A set of strings S.
QUESTION: Find a string S∗ which minimizes the consensus error E(S).

The Steiner string S∗ attempts to capture the common characteristics of the set of strings
S and reflect them in a single string. We will present an approximation algorithm for the
optimal Steiner string problem with worst-case approximation ratio of 2.

Lemma 4.2 [4, pp 349–351] Let S contain k strings, and assume that the scoring scheme σ

satisfies the triangle inequality. Then there exists a string S̄ ∈ S such that E(S̄)
E(S∗)

≤ 2− 2
k
< 2.

Proof: For any S̄ ∈ S:

E(S̄) =
∑
Si∈S

D(S̄, Si) ≤
∑

Si �=S̄

[D(S̄, S∗) +D(S∗, Si)] = (4.3)

(k − 2) ·D(S̄, S∗) +D(S̄, S∗) +
∑

Si �=S̄

D(S∗, Si) = (k − 2) ·D(S̄, S∗) + E(S∗)

If we pick S̄ ∈ S such that S̄ is the closest to S∗ then:

E(S∗) =
∑
Si∈S

D(S∗, Si) ≥ k ·D(S̄, S∗) (4.4)

Approximation Algorithms for Multiple Sequence Alignment 9

The center string Sc ∈ S minimizes
∑

Si∈S D(Sc, Si) and therefore its consensus error is
smaller then the consensus error of S̄ (the string closest to S∗). Hence:

E(Sc)

E(S∗)
≤ E(S̄)

E(S∗)
≤ (k − 2) ·D(S̄, S∗) + E(S∗)

E(S∗)
≤ (k − 2) ·D(S̄, S∗)

k ·D(S̄, S∗)
+ 1 = 2− 2

k
< 2. (4.5)

The proof above uses the lemma 4.2 and the fact that E(Sc) ≤ E(S̄) by definition.

It is worthwhile noting that Steiner string was defined without alignment, and the only
requirement is the distance function, that satisfies the triangle inequality. We will next start
discussing consensus strings that are alignment motivated.

4.2.3 Consensus Strings from Multiple Alignment

Definition 4.6 Given a multiple alignment M of a set of strings S, the consensus character
in column i of M is the character that minimizes the sum of distances to it from all the
characters in column i. Let d(i) denote that minimum sum in column i.

Definition 4.7 The consensus string SM derived from the alignment M is the concatena-
tion of the consensus characters for each column of M.

Definition 4.8 The alignment error of SM equals
∑l

i=1 d(i) where l is the number of char-
acters in SM.

Definition 4.9 The optimal consensus multiple alignment is a multiple alignment M of an
input set S whose consensus string SM minimizes the alignment error. It can be shown that
the optimal consensus multiple alignment is equal to the optimal Steiner string, as defined
in section 4.2.2.

We can use the center string (Sc) for approximating the optimal multiple alignment with
an alignment error smaller than (2− 2

k
) times the optimal alignment error.

Theorem 4.3 [4, p 353]. Let S denote the consensus string of the optimal consensus mul-
tiple alignment. Then, removal of the spaces from S creates the optimal Steiner string S∗.
Conversely, removal of the row for S∗ from the multiple alignment consistent with S∗ creates
the optimal consensus multiple alignment of S.

Proof: Let S have k strings, and letM be any multiple alignment of S. By definition, each
character of the consensus string SM derived from M is associated with a distinct column
of M, and this association induces a particular pairwise alignment between SM and each Si

in S. Clearly, the score of that alignment is at least D(Si, SM). Now the alignment error

10 Algorithms for Molecular Biology c©Tel Aviv Univ.

of SM is exactly the sum of the scores of those k pairwise induced alignments, and so the
alignment error of SM is at least

∑
i D(Si, SM), which is the consensus error of SM for S.

But by definition, S∗ has the minimum consensus error for S, so the alignment error of SM
is at least the consensus error of S∗.

Now consider the multiple alignment M∗ of S ⋃
S consistent with S∗, and for any string

α in S ⋃
S, let ᾱ denote the string in the row of M∗ corresponding to α. By consistency,

the score of the induced alignment in M∗ of S̄∗ and S̄i is D(S∗, Si) for any Si ∈ S. Let M′

be M∗ after removing the row for S∗. Then, the alignment error of S̄∗ with M′ is exactly∑
i D(S∗, Si), which is the consensus error of S∗ for S. Hence, using the conclusion from the

first paragraph, the alignment error of any other consensus string SM for any other multiple
alignment M must be at least as large as the alignment error of S̄∗ for M′. It follows that
M′ is the optimal consensus multiple alignment for S and that S̄∗ is its consensus string.
Therefore, since S∗ is obtained from S̄∗ by removing the spaces in S̄∗, the theorem is proved.

4.3 Multiple Alignment to a Phylogenetic Tree

Definition 4.10 A tree T with a distinct string label (from a set of strings S) assigned to
each leaf is called a phylogenetic tree on S.

Definition 4.11 Given a phylogenetic tree T on S, a phylogenetic alignment T ′ for T is an
assignment of one string label to each internal node of T . Note that the strings assigned to
internal nodes need not be distinct and need not be from the set S. For an example, see
Figure 4.6.

For example, when T is a star, choosing the sequence to label its central node is a phylogenetic
alignment.

The phylogenetic tree T is meant to represent the ”established” evolutionary history of
a set of objects of interest, with the convention that each extant object is represented at a
unique leaf of the tree. Each edge (u, v) represents some evolutionary history that transforms
the string at u (assuming u is the parent of v) to the string at v. For convenience, when
denoting an edge by a pair of nodes, we shall hereafter write the parent node first.

Definition 4.12 If strings S and S ′ are assigned to the endpoints of an edge (i, j), then the
edge distance of (i, j) is defined to be D(S, S ′).

Definition 4.13 Let MT be a phylogenetic alignment for a phylogenetic tree T . The dis-
tance of MT is given by the sum of all the edge distances over all the edges of T .

Multiple Alignment to a Phylogenetic Tree 11

Figure 4.6: A phylogenetic tree alignment.

Problem 4.3 Phylogenetic alignment:
INPUT: A set S = (S1, . . . , Sk) of strings and a phylogenetic tree T on S.
QUESTION: Find a phylogenetic alignment MT with minimum distance.

We assume that the structure of the tree T is known to us. This usually happens in
practice when T was previously reconstructed using solid evolutionary data.

Notice that this problem is also NP-complete [9], so a heuristic solution must be used.

4.3.1 Lifted Alignment tree - a Heuristic for Phylogenetic Align-

ment.

Jiang-Wang-Lawler 1996 [5]

Definition 4.14 A phylogenetic alignment is called lifted alignment if for every internal
node v, the string assigned to v is also assigned to one of v’s children (see Figure 4.7).
Trivially, in such a case, all internal nodes are assigned labels from the set of leaf strings.

Let T ∗ be the optimal alignment for a tree T . We will construct a lifted alignment TL =
Lift(T ∗), which is based on T ∗, and has at most twice the pairwise distance. Note that this
construction is only conceptual since we usually do not know T ∗.

For each node v let its label in T ∗ be S∗
v . We shall assign every v a label SL

v . Initially,
only the leaves are labelled, and by definition SL

v = S∗
v for each leaf v. The labelling process

12 Algorithms for Molecular Biology c©Tel Aviv Univ.

Figure 4.7: A phylogenetic tree with lifted alignment. Each internal node is labelled by one
of the strings labelling its children [4, p 355] .

successively traverses the internal nodes in any order, provided that a node is not visited
before any of its children. Upon visiting a node, it is lifted i.e. labelled by one of the labels
of its children. Thus, the resulting phylogenetic alignment is lifted (see Figure 4.8).
Procedure Lift(T : Tree)

begin
while there exists an unlifted node v, all of whose children have been lifted, do :

Find a child j whose label Sj is the closest to S∗
v . Namely,

for every child i of v: D(S∗
v , Sj) ≤ D(S∗

v , Si)
Label S∗

v with Sj

end while
end

Theorem 4.4 [5] The distance of the phylogenetic alignment TL = Lift(T ∗) is at most
twice the distance of the optimal phylogenetic alignment T ∗.

Proof: Let e = (v, w) be an edge in T . Suppose that in TL, Sj is the label of v and Si is
the label of w. If i = j then D(Sj , Si) = 0. Otherwise:

D(Si, Sj) ≤ D(Sj, S
∗
v) +D(S∗

v , Si) ≤ 2 ·D(S∗
v , Sj) (4.6)

The first inequality is due to the triangle inequality, and the second follows from the labelling
algorithm. For an edge e = (v, w) with Sw = Si, let Pe be the path in T from v to the leaf

Multiple Alignment to a Phylogenetic Tree 13

Figure 4.8: The lifting construction at node v. The numbers on the edges are the distances
from S∗

v to the lifted strings labelling its children. On the left is the tree before lifting, and
on the right the result of the lift. After the lift one edge will have a distance of 0 [4, p 356].

labelled Si. Due to the triangle inequality

D(S∗
v , Si) ≤ the total length of Pe in T ∗ (4.7)

Define a path as a collection of nodes in T ∗ starting from a leaf and continuing while its
sequence is lifted. Then T ∗ can be partitioned into such pathes.

We say that the edge e = (v, w) is blue in TL if v is labelled with string Sj and w is
labelled with Si, Si �= Sj . The distance of a lifted alignment TL is equal to the sum of edge
distances on all the blue edges in the tree. For a blue edge e = (v, w), observe that the
definition of lifted alignment implies that along the path Pe every node except v is labelled
Si, and no node outside Pe is labelled Si. Hence, if e

′ = (v′, w′) is any other blue edge, then
Pe and Pe′ have no edges in common. This defines a mapping from every blue edge e in TL

to a path Pe in T ∗ such that:

• The distance in TL of the edge e is at most twice the total distance in T ∗ of the edges
on Pe (follows from equations 4.6 and 4.7).

• No edge in T ∗ is mapped to by more than one edge in TL.

Therefore the total distance of TL equals the total distance on blue edges, which is at most
twice the sum of all total distances of paths in T ∗ and therefore at most twice the total
distance of T ∗ (see Figure 4.9).

We now describe how to find the optimal lifted alignment using a dynamic programming
algorithm as listed below. But first we define:

14 Algorithms for Molecular Biology c©Tel Aviv Univ.

Figure 4.9: The lifted tree T ∗
L. The dashed edges show the paths along which a leaf string

has been lifted to some internal node, thus their distance is 0. Solid edges are blue edges in
T ∗

L. The path P(a,b) for example, is the path b, d, S4 along which the string labelling b was
lifted. Edge (a, b) has distance in T ∗

L at most twice the distance of path P(a,b) in T ∗ [4, p
357].

Definition 4.15 Let Tv be the subtree of T rooted at node v and S ∈ S. Let d(v, S) denote
the distance of the best lifted alignment of Tv under the requirement that string S is assigned
to node v.

The algorithm will compute d(v, S) for any S ∈ S working its way from the leaves up using
the following recursion:

• If v is an internal node with all its children being leaves, then d(v, S) =
∑

(v,w) D(S, Sw)
where Sw is the label of w.

• Else, d(v, S) =
∑

(v,v′) minS′∈S[D(S, S ′) + d(v′, S ′)] where v′ is a child of v and S ′ is a
label of one of the leaves of Tv′ .

After the computation is finished, the value of the best lifted alignment is the minimum
of d(root, S), where S ranges over all strings written at the leaves of T . The best lifted
alignment has total distance less than twice that of the optimal phylogenetic alignment.

Time analysis: We perform a preprocessing stage, in which we compute all the
(

k
2

)
pairwise

distances between the k input strings. This takes O(N2) time, where N is the total length of

Common Multiple Alignments Methods 15

Figure 4.10: Example of profile multiple alignment.

all the strings. The work at any internal node is O(k2), and the overall work of the algorithm
is O(N2 + k3).

4.4 Common Multiple Alignments Methods

4.4.1 Aligning a String to a Profile

Given a database of sequences, we would like to partition it into families of “similar” se-
quences. For this purpose we would like to encompass our knowledge on the common proper-
ties of the sequences in a family profile (formal definition to follow). Constructing a profile of
a family enables us to identify its members and test whether or not a new sequence belongs
to the family. Moreover, searching the database with a profile is more sensitive than search-
ing using a single sequence of the family: when considering a string for membership in an
established family, or when searching a database for new candidate members of a family, it
is usually mush more effective to align the candidate string to a representation of the known
family members, rather than aligning to single members of the family. When successful,
identifying the family of a new newly identified protein is very useful, as the researcher gains
tremendous clues about the physical structure or biological function of the protein.

A profile of a multiple alignment gives letter frequencies per column (for example, see
Figure 4.10). Alternatively, log likelihood ratios can be used: log pi(a)/p(a), where pi(a) is
the fraction of a’s in column i and p(a) is the fraction of a’s overall (see Figure 4.11).

Definition 4.16 For an alignment S ′ of length l, a profile is an l×|Σ∪{−} | matrix, whose
columns are probability vectors denoting the frequencies of each symbol in the corresponding
alignment column.

Any alignment between a sequence B and a profile P (i.e. both have the same length)
can be evaluated by

∑m
j=1 σ(pj, bj). Clearly, using dynamic programming, we can find the

16 Algorithms for Molecular Biology c©Tel Aviv Univ.

best alignment of a sequence against a profile.

The key in pairwise alignment is scoring two positions x and y : σ(x, y). For a letter x
and a column y of a profile, let σ(x, y) be the probability of x being in column y. The value
for x depends on the frequency of its occurrences in the column y. We also need to devise a
score for σ(x,−). In order to find whether a given sequence is a member of certain family,
we use the usual pairwise dynamic programming alignment to compare the given sequence
to the family profile.

Figure 4.11: Profile for Classical Chromo Domains [10].

4.4.2 Iterative pairwise alignment

This approach uses pairwise alignment scores to iteratively add one additional string to a
growing multiple alignment. We start by aligning the two strings whose edit distance is the
minimum over all pairs of strings. Then we iteratively consider the string with the smallest
distance to any of the strings already in the multiple alignment.

Common Multiple Alignments Methods 17

More generally, the algorithm works as follows:

1. Align some pair.

2. while (not done)

(a) Pick an unaligned string which is ”near” some aligned one(s).

(b) Align with the profile of the previously aligned group.
Resulting new spaces are inserted into all strings in the group.

4.4.3 Progressive alignment

Feng-Doolittle 1987 [2]

In this algorithm, the key idea is that the pair of strings with minimum distance is almost
likely to have been obtained from the pair of objects that had most recently diverged, and that
the pairwise alignment of these two specific strings provides the most ”reliable” information
that can be extracted from the input strings. Therefore any spaces (gaps) that appear in the
optimal pairwise alignment of those two strings should be preserved in the overall multiple
alignment.

The algorithm is as follows:

1. Calculate the
(

k
2

)
pairwise alignment scores, and convert them to distances.

2. Use an incremental clustering algorithm [3] to construct a tree from the distances.
(Clustering algorithms will be described later in the course.)

3. Traverse the nodes in their order of addition to the tree, progressively aligning the
sequences. This way, the most similar pair is aligned first, followed by the addition of
the next most similar sequence or set of sequences.

Features of this heuristic:

• The order of aligning of sequences, or sets of sequences, is determined by their highest
scoring pairwise alignment.

• ”Once a gap, always a gap”: replace gaps in alignments by a neutral character.

18 Algorithms for Molecular Biology c©Tel Aviv Univ.

CLUSTALW

ClustalW is a software package for multiple alignment (implementing an algorithm of
Thompson, Higgins, Gibson 1994 [8]). The basic idea is the same as in the Feng-Doolittle
algorithm:

1. Calculate the
(

k
2

)
pairwise alignment scores, and convert them to distances.

2. Use a neighbor-joining algorithm to build a tree from the distances.

3. Align sequence - sequence, sequence - profile, profile - profile in decreasing similarity
order.

This algorithm makes use of many ad-hoc rules such as weighting, different matrix scores
and special gap scores.
For an example of a alignment tree built by ClustalW, see Figure 4.12.

Figure 4.12: Alignment tree built by ClustalW [11].

Bibliography

[1] H. Carrillo and D. Lipmann. The multiple sequence alignment problem in biology. SIAM
J. Appl. Math, 48:1073–1082, 1988.

[2] D. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisite to correct
phylogenetic trees. J. Mol. Evol., 25:351–360, 1987.

[3] W. M. Fitch and E. Margoliash. Construction of phylogenetic trees. science, 15:279–284,
1967.

[4] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press,
New York, 1997.

[5] T. Jiang, L. Wang, and E. L. Lawler. Approximation algorithms for tree alignment with
a given phylogeny. Algorithmica, 16:302–315, 1996.

[6] D. J. Lipman, S. Altshul, and J. Kececiogly. A tool for multiple sequence alignment.
Proc. Natl. Academy Science, 86:4412–4415, 1989.

[7] M. Murata, J.S. Richardson, and J.L. Sussman. Three protein alignment. Medical
Information Sciences, 231:9, 1999.

[8] J. D. Thompson, D. G. Higgins, and T. J. Gibson. Clustal w: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Res, 22:4673–80, 1994.

[9] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Computa-
tional Biology, 1:337–348, 1994.

[10] http://www.uib.no/aasland/chromo/chromoCC.html.

[11] http://www.uib.no/aasland/chromo/chromo-tree.gif.

19

