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Abstract

Understanding the complex mechanisms governing basic biological processes requires the

characterisation of regulatory motifs modulating gene expression at transcriptional and post-

transcriptional level. In particular, extent, chronology and cell-specificity of transcription are

modulated by the interaction of transcription factors with their corresponding binding sites,

mostly located near (or sometimes quite far away from) the transcription start site of the gene.

The constantly growing amount of genomic data, complemented by other sources of

information such as expression data derived from microarray experiments, has opened new

opportunities to researchers in this field. Many different methods have been proposed for the

identification of transcription factor binding sites in the regulatory regions of co-expressed

genes: unfortunately this is a very challenging problem both from the computational and the

biological viewpoint. This paper provides a survey of existing methods proposed for the

problem, focusing both on the ideas underlying them and their availability to the scientific

community.

INTRODUCTION
One of the greatest challenges facing

modern molecular biology is the

understanding of the complex

mechanisms regulating gene expression.

In particular, extent, chronology and cell-

specificity of transcription are modulated

by the interaction of transcription factors

(TFs) with their corresponding binding

sites (TFBS), mostly located nearby the

transcription start site (TSS) of the gene

(ie proximal promoter region) or further

apart (enhancers, silencers, etc).1,2 The

constantly growing amount of genomic

data (complemented by other sources of

information such as full-length cDNA

sequencing projects3,4 that permit the

precise mapping of the TSS on the

genome sequence) as well as expression

data derived from microarrays and other

experiments, have opened new

opportunities to researchers.

Hence, the need for efficient and

reliable methods for detecting novel motifs

(or signals), that are significantly over-

represented in the regulatory regions of

sets of genes sharing common properties

(eg expression profile, biological function,

product cellular localisation). These

motifs could in turn correspond to

binding sites for some common TF(s)

regulating the genes. Unfortunately,

binding sites of the same TF are generally

short (usually less than 12–14 base pairs,

bp, long) and degenerate (similar but not

identical) oligonucleotides, and this fact

makes their computational discovery and

large-scale annotation significantly harder.

The problem is further complicated by

the size of the sequences to be examined,

which ranges from a few hundreds of

nucleotides for a ‘simple’ organism such as

yeast, to human regulatory regions, where

TFBSs can be located several kilobases

away from the TSS and on both sides.

This paper provides, without the claim

of being exhaustive, a survey of a number

of different methods and approaches to

the problem, focusing in particular on

those algorithms whose implementation is

available to the scientific community,

either via a web interface or by free

download of the program. In any case, we

also provide references to articles where
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strategies and methods are described in a

more detailed way. We will not discuss

here other different flavours of the

problem, for example how to determine

whether a set of sequences contains

already known binding sites for some TF,

or phylogenetic footprinting, for which

we refer the reader, respectively, to

Rahmann et al.5 and Bulyk,6 and

references therein.

THE PROBLEM
To get things started, the problem can be

formulated as follows. There is a set of

regulatory regions taken from a set of

genes likely or somehow known to be

regulated by the same transcription

factor(s). Ideally, there would be a some

crystal ball that, taking the sequences,

outputs something like ‘the binding sites

recognised by the common TF(s) are

these, and these are their locations in the

regulatory regions’. Of course, things are

not this simple, from the very beginning.

For example, it is quite hard to be sure

that every gene of the set is regulated by

the same transcription factor. But, as we

will see, the problem is complicated

enough even when we have a ‘perfect’

input, that is, all the sequences considered

actually interact with the same TF(s). A

similar analysis can be performed on

whole genomes: That is, all (or a large

number of) the regulatory regions of an

organism are considered, and over-

represented oligos can be suspected to

play some role in the regulation of the

genes, and therefore considered to be

candidate TFBSs.

Virtually all the methods proposed so

far are based on a few fundamental steps:

• First, one or more groups of

oligonucleotides, similar enough to

one another to be recognised by the

same TF, are detected in the input

sequences; these are candidate motifs.

• Each group is evaluated from the

statistical point of view, to have an

estimate on how ‘surprising’ it is to

find such a group in the input; this

measure should consider both the size

of the group and how conserved it is,

that is, how many times the oligos are

found in the sequences and how much

they differ from one another.

• The most significant motifs are

output, and the oligos forming each

one are the best candidate TFBSs for

the same TF.

Modelling motifs
For the first step, it is necessary a method

to describe a set of similar oligonucleotides,

representing binding sites for the same

TF. Clearly, this choice will influence the

rest of the process, that is, the strategies

used to find and evaluate the best groups.

Two main approaches have been

introduced for this task: represent the set

of oligos with a consensus, or describe

them with their alignment, expressed

with a profile (also found in literature

under the names frequency matrix, position-

specific score matrix, position specific weight

matrix). A simple example is shown in

Figure 1. A consensus describes a set of

oligos with the most frequent nucleotide

in each position; thus, we can denote a set

of TFBSs with a single oligonucleotide,

but we have to somehow specify how and

how much other oligos can differ from

the consensus in order to be considered

valid binding sites for the same TF.

Sometimes, however, some positions of

binding sites do not show a definite

preference for a nucleotide, but rather

admit more than one base or even any

base. Thus, instead of limiting the

consensus description to a single

nucleotide for each position and allowing

a maximum number of substitutions,

another strategy is to incorporate the

different alternatives in the description

itself, by using ambiguous symbols. For

example, GAL4 binding sites in yeast can

be summed up as

CGGNNNNNNNNNNNCCG,7

where N stands for any nucleotide. In this

way, substitutions are allowed only in the

core of the motif instances, that is, all
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oligos starting with CGG and ending with

CCG, with any 11 nucleotides in the

middle, are considered GAL4 binding

sites. Other symbols can be used for

describing any combination of

nucleotides, as shown in Table 1. Thus,

YYRRNAA, for example, stands for ‘any

oligo made of pyrimidine–pyrimidine–

purine–purine–any nucleotide–adenine-

adenine’. This method is used to describe

binding site consensuses in TF databases

such as TRANSFAC9 and the SCPD.7

While more powerful than single-

nucleotide consensuses, these descriptions

should be however taken with a grain of

salt. The set of binding sites of Figure 1

could be represented with CWTCC or

MWTCC. Assuming the list of sites in

Figure 1 to be comprehensive (ie

including all possible binding sites

recognised by the same TF), the valid

binding site ATTCC would not be

included in the first consensus

representation, differently from AATCC,

not a valid binding site, which would

instead be included in the second one.

A more flexible modelling solution is

offered by profiles, obtained by aligning

the TFBS instances, and by describing

their alignment with the frequency of

each nucleotide in each column of the

alignment itself.10–12 The result is a 4 3 m

matrix, where m is the length of the oligos

aligned (without gaps) and where the sum

of each column equals 1. In this way,

ambiguous positions where TFBSs admit

different alternative nucleotides are

implicitly expressed in the respective

column of the matrix, as well as ‘a

preference’, expressed by nucleotide

frequency. Also, the matrix can be used to

evaluate if, and how much, any oligo can

be considered an instance of the sites

described by the matrix itself. On the

other hand, a TFBS consensus can be seen

as a ‘majority vote’ on each of the

columns of the corresponding profile.

It has to be noted, however, that a

comprehensive list of binding sites is

generally not available, and that the major

goal of motif representation is to predict

sites that have not been observed

previously. Of course, the more

comprehensive is the list of valid binding

sites, the more representative we can

expect to be its profile (or consensus)

description as well as its prediction

effectiveness.

Modelling the background
All in all, the most challenging problem in

the discovery of TFBSs is perhaps finding

a good statistical measure able to reflect

the biological relevance of the different

motifs and to discriminate those

describing real binding sites from those

that are the effect of random similarities.

>YAL038W ATTCC
>YAL038W CTTCC
>YAL038W CTTCC
>YCR012W CTTCC
>YCR012W CTTCC
>YCR012W CTTCC
>YDR050C CATCC
>YDR050C CATCC
>YDR050C CTTCC
>YDR050C CTTCC
>YHR174W CATCC
>YOL086C CTTCC

> GCR1 frequency matrix and consensus

1 2 3 4 5
A 0.08 0.25 0.0 0.0 0.0
C 0.92 0.0 0.0 1.0 1.0
G 0.0 0.0 0.0 0.0 0.0
T 0.0 0.75 1.0 0.0 0.0
Consensus C T T C C

Figure 1: A set of
binding sites for yeast TF
GCR1 (taken from
SCPD7), represented
with a frequency matrix
and the corresponding
consensus.

Table 1: IUPAC-IUB recommended codes8 used to denote ambiguous
positions in nucleotide sequences

IUPAC Nucleotides Mnemonics

A Adenine
C Cytosine
G Guanine
T Thymine
R A or G puRines
Y C or T pYrimidines
W A or T Weak hydrogen bonding
S G or C Strong hydrogen bonding
M A or C aMino group at common position
K G or T Keto group at common position
H A,C,T not G
B C,G,T not A
V A,C,G not T
D A,G,T not C
N A,C,G,T aNy
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In this section we briefly introduce some

basic principles of the statistical modelling

of regulatory sequences. The general idea

is to compare what has been observed in

the input sequences with what would

have been obtained by having a ‘random’

data set containing no motif (the

‘background’ of the sequences against

which signals stand out) or a data set built

by picking at random some other

regulatory sequences (and hence very

unlikely to be co-regulated) from the

same organism: but a definition of

‘randomness’ in biological sequences is far

from being immediate.

From a theoretical point of view,

regulatory regions can be seen as

composed of two parts: the binding sites

(summed up either with a consensus or

with a profile), and ‘the rest’, which (at

least in the process we are studying) does

not have any biological role. As we briefly

mentioned, the key point for

discriminating the signals from the

background is over-representation: the

sequences contain a group of oligos

similar to one another that, in the absence

of a shared signal, would not be there, at

least with the same size and/or the same

degree of similarity. Thus, these oligos

might play some important role for the

function of the sequences: in our case,

regulate gene expression.

The first approximation that can be

made is to assume that each position of

the sequences is independent from the

others: thus, the probability of finding a

given nucleotide in any position depends

Table 2: Name and web address of motif-finding programs (suitable or explicitly designed for TFBSs), available free of
charge on the internet as of February 2004

Name Address Exec Rep. Ref. ML Q A C

AlignACE http://atlas.med.harvard.edu/ Yes P 47 R R
ANN SPEC http://www.cbs.dtu.dk/services/DNAarray/ann-spec.php P 48 R
Bioprospector http://bioprospector.stanford.edu/ Yes P 59 R Yes
CONSENSUS http://stormo.wustl.edu/Consensus_Server. Yes P 42 R
Co-Bind http://ural.wustl.edu/softwares.html Only P 68 R Yes
Gibbs Sampler
(recursive
sampler)

http://bayesweb.wadsworth.org/gibbs/gibbs.html Yes P 63

GLAM http://zlab.bu.edu/glam/ Only P 62
MDscan http://bioprospector.stanford.edu/MDscan/index.html Yes P 80 R R
MEME http://meme.sdsc.edu/meme/website/intro.html Yes P 43
MIRA http://compbio.ornl.gov/mira/cgi-bin/newForm.cgi P 26 R R
MITRA http://fluff.cs.columbia.edu:8080/domain/mitra.html Yes P 56 R Yes
MobyDick http://genome.ucsf.edu/mobydick/ C 38
Motif Sampler http://www.esat.kuleuven.ac.be/�thijs/Work/

MotifSampler.html
Yes P 60 R

Multiprofiler http://www-cse.ucsd.edu/groups/bioinformatics/
software.html

Only P 57 R

P-Branching http://www-cse.ucsd.edu/groups/bioinformatics/
software.html

Only P/C 58 R R

REDUCE http://bussemaker.bio.columbia.edu/reduce C 79 R
RSA Tools* http://rsat.ulb.ac.be/rsat/ P/C 34 R
SMILE http://bioweb.pasteur.fr/seqanal/interfaces/smile.html Yes C 31 R R R Yes
Verbumculus http://www.cs.ucr.edu/�stelo/Verbumculus/ Yes C 30
Weeder Web http://www.pesolelab.it/(Tools link) C 32
YMF http://abstract.cs.washington.edu/�saurabh/YMFWebRSH/

YMFInput.pl
Yes C 36 R R

The table lists from left to right whether the executables of the program can be downloaded and installed on a local machine (in the other cases, the
program authors have to be contacted), the reference to the article describing the program and its usage, the type of binding site representation used
(P ¼ profile matrix, C ¼ consensus), and the parameters that are required (R) to start the program: ML (motif length), Q (quorum, number of sequences
that have to contain a motif), and A (degree of approximation, ie number of mutations allowed). Finally, the ‘C’ column lists programs that can find
‘composite’ motifs explicitly.
* RSA Tools is a series of pipelined tools for regulatory sequence analysis that includes facilities for regulatory sequence download, oligonucleotide
frequency analysis, and a Gibbs sampler algorithm.
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only on the probability with which that

nucleotide appears in the sequences,

regardless of the nucleotides in adjacent

positions or the location of the oligo

along the sequence. Thus, the probability

of finding a given oligo p ¼ p1. . .pm in

any position of a regulatory sequence can

be estimated by the product of the single

probabilities of the nucleotides forming it:

Pr( p) ¼
Ym

i¼1

Pr( pi)

where Pr(pi) is the probability of finding

nucleotide pi in the input sequences,

which can in turn be estimated with the

observed frequency of pi in the input data

set or in a set of regulatory regions taken

from the same organism. Thus, when we

represent a motif with a consensus we can

estimate its expected frequency according

to the probability function just defined, as

well as suitable significance measures

based on it.13 For example, one of the

most widely used measures is the z-

score:14–16

z( p) ¼ Obs( p)� Exp( p)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var( p)

p

where Obs(p) is the number of times

consensus p is found (possibly, with

substitutions) in the sequences (or,

alternatively, the number of sequences p is

found in), Exp(p) and Var(p) are the

expected value and variance of Obs(p),

which can be computed starting from

Pr(p) by using a binomial or a Poisson

approximation. Clearly, this measure can

take into account how conserved the motif

is. The more it is conserved, the less

alternative forms a motif has, and the

lower is its expected frequency.

Likewise, the evaluation the statistical

significance of an alignment has to

consider simultaneously how much the

oligos aligned are similar to one another,

and how much the alignment built differs

from a random alignment. Let M be a

4 3 m profile. Perhaps the most widely

used measure is the information content (IC,

or relative entropy) of the profile:

IC(M ) ¼
X4

i¼1

Xm

j¼1

mi, j log
mi, j

bi

where mi,j is entry in row i and column j

of the profile (ranging from 0 to 1), and bi
is the expected frequency of nucleotide i,

computed as in the case of consensuses.

Clearly, for each column j we have that ,

and also . It can be seen how this measure

accounts for how much each column of

the profile is conserved (mi,j), and how

much the values of the profile differ from

what would be expected by aligning

random oligos taken from the same

sequences (the log ratio). The maximum

IC value is obtained when in each

position occurs exclusively the rarest

nucleotide, while the minimum (0) is

reached when in each column the

nucleotide frequency equals the

background frequency (and thus the

profile evaluated is what we should obtain

by aligning random oligos). This measure

is suitable for comparing alignments built

using the same number of sequences. In

order to compare alignments of different

numbers of oligos, the IC of each one can

be multiplied by n, the number of

fragments used, yielding the maximum a

posteriori (MAP, or log-likelihood ratio)

score:

MAP(M ) ¼ �
X4

i¼1

Xm

j¼1

ni, j log
mi, j

bi

where ni,j ¼ n3 mi,j. Notice that also in

this case the different positions in the

signal and in the background are assumed

to be independent from each other. A

similar idea (profile v. background) can be

used, more simply, to determine whether

any oligo p is more likely to be an

instance of a motif described by a profile

or is part of the background:

L( p) ¼ Pr( pjM )

Pr( pjbackground) ¼
Ym

j¼1

mi, j

bi

where i is the ith base of the oligo. In

both cases, the weakest link is the

position-independence assumption. If
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fact, if we just take every gene upstream

region from, say, yeast, count how many

times each oligo of a given length appears

in the sequences, and compare the result

with the expected frequency computed as

above (taking into account also the

possibility of having in some cases

overlapping occurrences of the same

oligo) we notice significant differences:

thus, the probability of having a given

nucleotide in a given position is also

influenced by its neighbours, as discussed

in Arndt et al.,17 where it is shown that

mutation ratios in non-coding DNA

depend on the identity of neighbouring

bases.

All these considerations have led to the

introduction of more sophisticated ways

of modelling interdependencies among

nucleotides within both binding sites and

background regulatory regions. After all,

the better the representation of the signal

and the background is, the more likely a

method is to detect something that

significantly differs from the background

itself, and the strategy used plays a less

essential role. As we have hinted, the

position-independent model does not

seem to be powerful enough to capture

the structure underlying regulatory

regions and TFBSs. An improvement,

introduced in different recent tools, is to

model the background with a higher-

order Markov model. Intuitively, when

we use a jth order Markov model, the

probability of finding a nucleotide in a

given position of an oligo depends on the

j nucleotides preceding it in the oligo

itself.18 These parameters can be estimated

from the analysis of a number of

regulatory regions of different species,

leading to organism-specific probability

distributions and expected oligo

frequencies.

The independence assumption can be

relaxed not only for the background, but

also in site positions (see Benos et al.19 and

Bulyk et al.20 for discussions on this

point). In other words, we know that

substitutions do not occur independently,

and a substitution in a given position

might imply another substitution, in a

different position, in order to have a given

oligo to remain bound by the same TF.

Evidence to this conjecture is brought

also by the high number of false positives

that result from scanning regulatory

sequences using position-independent

profiles built with known TFBSs.5

Modelling dependencies among different

positions (which might not be

consecutive, differently from the Markov

models generally used for the

background) is quite tricky just for known

instances of binding sites,21,22 since they

are likely to change in the different

structural classes of transcription factors.23

However, several observations suggest

that at least adjacent positions in binding

sites are correlated, that is, the nucleotide

in any position j influences the choice of

nucleotides for positions j – 1 and j + 1, a

fact that can be easily incorporated in any

alignment-based algorithm.20 Another

idea is to use a mixture of profiles, which

describe TFBSs also according to their

specificity.24,25 In other words, binding

sites are described with a set of profiles

(instead of one), and each of the profiles is

used to model a subset of TFBSs with a

weight associated with it. The higher is

the weight, the more specific the profile is

for that TF. The score of an oligo with

respect to the profiles is given by the

weighted sum of the single scores.

Input parameters
Before delving into the description and

discussion of the different methods and

approaches, another fundamental issue

must be mentioned: how many, and

which, parameters the user is supposed to

know in advance in order to use an

algorithm? Clearly, when fewer

parameters are needed, the less prior

knowledge is required about the (alleged)

common TF and its binding sites. Usually,

the methods require as input the length of

the motif (sometimes also called width) or

a range for it, especially those that are

‘general-purpose’ methods not necessarily

tailored for TFBSs. Of course, suitable

values in this case range from 6–8 to 14–

16 nucleotides, and some algorithms just
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take these values by default. Then, each

method follows a different strategy. Some

are just iterated over different motif

lengths, and the results of each iteration is

output separately (unless otherwise

specified, we assume that this is the usual

behaviour of the programs we will

describe in the following). Others,

instead, try to compare and merge the

results so to provide the user with a single

overall output. Also, another issue is how

many of the input sequences are supposed

to be co-regulated and thus to share a

motif. In their basic version, consensus-

based methods require a parameter called

quorum, that is, a threshold denoting in

how many sequences a motif should

appear. However, this parameter can be

estimated by the algorithm itself according

to the input sequences and the statistical

measures used to evaluate the output. A

similar parameter, denoting how many

oligos should be selected from each

sequence is anyway needed by alignment

based methods (usually the choice is can

be ‘exactly one’, ‘zero or one’, and, in

some cases, ‘zero or one or more than

one’). Also, consensus-based methods, as

mentioned, require a degree of

approximation to be specified, that is,

how many substitutions are allowed in the

occurrences of a motif (or, alternatively, a

maximum number of ambiguous

IUPAC–IUB symbols allowed in the

description of the consensuses) that have

to be considered ‘valid’. In this case, there

are some ‘rules of the thumb’ that seem to

be suitable. For example, as reported in

Narasimhan et al.,26 yeast sites usually

present two variations in 8-mers, three in

motifs 10 nucleotides long, four in motifs

of length 12, and so on.

DISCOVERING MOTIFS
Consensus-based methods
The consensus for a set of TFBSs can be

seen as a ‘perfect’ form recognised by a

TF. Thus, the idea is to consider all the

oligos that differ from a given consensus

in no more than e positions as belonging

to the same group, ie to be binding sites

for the same TF. The number of

substitutions allowed should in turn

depend on the length of the consensus.

The algorithmic strategies for consensus-

based motifs are mainly based on the

following steps. Suppose we know in

advance the length m of the motif to be

found, and are given as input a set of

regulatory sequences.

• Enumerate all the possible oligos of

length m. Each one represents a

candidate motif consensus. For each

one, count how many times it appears

in the sequences (and/or in how many

sequences it appears) with no more

than e substitutions.

• Save all the motifs that appear in all (or

most of) the sequences of the set.

• Rank the motifs found according to

some statistical measure, and report

the highest-ranking motifs.

Quite naturally, if the length m is not

known in advance, different values have

to be tried. This is essentially the first

approach introduced to the problem,

starting from the mid-1980s.27–29

However, methods of this kind have been

considered for a long time to be ‘too

slow’. This bad reputation derives mainly

from the fact that, given length m, there

are 4m candidate consensuses to evaluate,

with an exponential growth of the

execution time on the motif length. On

the other hand, when working on TFBSs

the length is never too large (it seldom

exceeds 12 or 14 nts); the exhaustive

search can be significantly accelerated by

organising the input sequences in a

suitable indexing structure, such as the

suffix tree,30–33 that yields an execution

time exponential in the number of

substitutions allowed only (that in turn

seldom exceeds four or five); the initial set

of candidates of exponential size can be

downsized in different ways. All these

considerations have led to a rediscovery of

this kind of approach in recent years, both

in genome-wide scans and in set-specific

algorithms.
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Clearly, if only exact oligos are

considered, that is, no substitutions are

allowed in the instances of the same

motif, the problem becomes much

simpler and its complexity is just linear in

the length of the input. Given its

computational efficiency this strategy can

be employed in genome-wide analyses of

over-represented motifs, as for example

(among many others) in van Helden34 for

the yeast genome. Here, all sixmers were

considered, and their frequency of

occurrence in the upstream regions of the

genome was compared to an expected

value derived from their overall frequency

in the non-coding regions of the genome.

Similar over-represented oligos can

anyway be clustered in a post-processing

stage, and considered different forms of

binding sites for the same TF.

Also the Verbumculus algorithm30

considers only exact occurrences. The

number of times each oligo is found in

the sequences is compared with an

expected value based on the nucleotide

frequencies in the input, used to estimate

the probability of occurrence of

nucleotides. A further improvement also

considers higher-order background

models.15 By indexing the sequences with

a suffix tree, the algorithm reaches a linear

time complexity.

Mutations are instead allowed by the

SMILE31 and Weeder32 algorithms. Also

in this case, the exhaustive search for the

exponential number of candidate consensi

is implemented with the preliminary

construction of a suffix tree. While the

structure underlying the algorithm is

virtually the same, the two approaches

differ in how the significance of the

motifs found is evaluated. SMILE

compares the number of occurrences of a

given motif with its occurrences in a

random set of sequences of the same size

built with a Markov model of any order

(which can be chosen by the user) whose

parameters are estimated from the input.

Alternatively, the user can input another

negative set of sequences that should not

contain any instance of the binding sites

supposedly appearing in the positive set,

used to estimate the most significant

motifs found. Clearly, the highest-scoring

motifs will be the ones that present the

most significant variation between the

number of occurrences in the input set

and in the random or negative sets. The

current version of SMILE requires

inputting the motif length(s), the number

of substitutions and the quorum value.

The Web implementation of Weeder,

instead, directly compares the observed

occurrences of an oligo (or a group of

oligos) with expected frequencies derived

from the oligo-frequency analysis of all

the regulatory regions of the same

organism of the input sequences. The

final score is composed by a general term

and a sequence-specific term based

respectively on how many sequences each

motif appears in and how much

conserved it is in each sequence. Different

combinations of ‘canonical’ motif

parameters (length, number of

substitutions and quorum) are

automatically tried by the algorithm in

different runs. The interface also analyses

and compares the top-scoring motifs of

each run in order to detect which ones

could be more ‘interesting’ (even in the

case a motif is not the highest scoring one

of its run) providing the user with an

overall summary and comparison of the

results. Finally, the best instances of each

motif are selected from the sequences by

using a profile built with the oligos found

by the consensus-based algorithm, so to

possibly include also oligos that present a

number of substitutions that exceeds the

predefined threshold and to have a more

fine-grained ranking of the oligos that fit

the substitution threshold.

The YMF algorithm35,36 is based on

‘approximate’ consensuses. Other than

using ambiguous IUPAC–IUB symbols

in the definition, the algorithm also

permits explicit searches for motifs

composed by two conserved parts

separated by a non-conserved region, like

the GAL4 signal described in a previous

section. The expected number of

occurrences of each oligo is estimated

with a Markov model of 4th order, and
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the significance of each motif is evaluated

with a statistical z-score augmented with a

term that depends on how many

sequences a motif appears in, so to avoid

having repeated oligos in a single

sequence being reported as highest-

scoring motifs (as a consequence, no

explicit quorum is needed). As input

parameters, the program requires the

motif length and a maximum number of

approximate IUPAC characters allowed

in the definition of consensuses.

A genome-wide method based on

consensuses augmented with ‘N’ symbols

is also presented in Vilo et al.37 Motifs are

searched in the regulatory regions of yeast

genes, pre-clustered according to

expression levels derived from microarray

experiments. Finally, MobyDick38 is a

tool that permits genome-wide analyses

for over-expressed oligos whose

description can be augmented with

IUPAC ambiguous symbols.

Alignment-based methods
As briefly mentioned before, consensus-

based methods have been considered, for

quite a long time, unsuitable for the

problem. This fact, together with the

opinion that consensuses were not flexible

enough to describe motifs,10–12,39 has led

to the introduction of a completely

different approach. The idea is to build

solutions by picking some oligos from the

sequences and aligning them in the

corresponding profile. Alignments usually

do not allow gaps, that is, the oligos must

be of the same size. The motifs reported

will be those described by the best

(highest-scoring) alignments, and the

oligos building (or better fitting) each

alignment will be considered possible

binding sites for the same TF. In this way,

the number of parameters needed is

reduced mainly to just the motif length,

with no need to specify the degree of

approximation allowed or a quorum

value.

On the other hand, given k input

sequences of length n, there are about nk

possible combinations of oligos to be

evaluated, regardless of the motif length

chosen. From a theoretical point of view,

it has been proven that finding the best

profile is a NP-hard problem:40 in

practice this means that, whatever the

score used, evaluating all the possible

profiles is not computationally feasible.

Thus, methods that look for the best

alignment have to rely on some heuristic,

that is, some way to prune the search

space, avoiding the enumeration of all the

possible oligo combinations and building

only those alignments that according to

some principle (the heuristic) seem to be

more likely to be the best ones. While in

this way a significant amount of time can

be saved, the obvious downside is that the

solutions reported cannot be guaranteed

to be optimal, but are just the best ones

among those considered by the algorithm.

In the following we will introduce the

algorithms assuming that they look for

exactly one site instance per input

sequence. All of them, however, can be

run also in the so called ‘zoops’ mode,

meaning that each sequence can contain

either zero or one motif instance, or in

‘zero, one or more than one’ mode.

Consensus

Even if the name might be a little

deceptive, Consensus is an alignment-

based method that employs a greedy

heuristic.41,42 Given as input a set of

sequences S1 . . . Sk the basic version of

the algorithm requires as input the length

m of the motif to be found, and assumes

that the latter occurs once in each

sequence. The steps performed by the first

version of the algorithm can be summed

up as follows:

• All the length m oligos of S1 are

compared with the oligos of length m

of S2. Each comparison produces a

4 3 m profile M. Each profile is

scored according to its IC, and the

highest scoring matrices are saved.

• Each oligo of length m of sequence S3
is aligned with the matrices saved at

the first step, generating a new set of

three-sequence profiles; each one is
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scored as in the previous step, and the

highest scoring ones are saved.

• The second step is repeated for each

sequence of the set; the final profiles,

output by the program, will contain

one oligo for each input sequence.

The algorithm is greedy, that is, at each

step saves the best partial alignments only,

hoping that they will eventually lead to

the optimal one. Obviously, the more

conserved the motif is, the more likely is

the algorithm to find it. Otherwise, the

risk is to store in the first steps matrices

corresponding to random (but similar

enough) oligos, and to discard the one

that would have led to the highest-scoring

solution. Further improvements are

presented in the WConsensus

algorithm.42 They include the possibility

of finding motifs that do not occur or

appear more than once in each sequence,

and avoid explicitly requiring the length

parameter from the user. Moreover,

profiles are built by comparing directly all

pairs of sequences, and hence the problem

of the result depending on the order of

sequences is avoided. Also, the calculation

of a p-value for an alignment is

introduced. The p-value gives an estimate

of the probability of finding a profile with

the same IC score by chance, which is

especially useful in comparing alignments

with different lengths and different

numbers of sites, cases where comparisons

based on IC alone are not sufficient.

MEME

Another way of looking at the problem of

finding the best alignment profile is to

‘guess’ the position in the input sequences

of the regions forming it. Given a profile

M, the MEME (Multiple Expectation

Maximisation for Motif Elicitation)

algorithm43 evaluates the likelihood of

each sequence region of a length m to fit

the profile with respect to the background

of the sequences, while the rest of the

sequence should fit the background better

than the profile. According to this

principle, a likelihood value zi,j

(normalised such that the sum over all the

zi,j values of sequence j equals 1) is

computed for each position i of each

input sequence j. This is the E

(Expectation) step. Then, the algorithm

builds a new alignment profile by putting

together all the sequence regions of length

m, but weighing each one with the

corresponding zi,j value. This is the M

(Maximisation) step. The algorithm starts

by building a different profile from each

m-mer in the input sequences, using a

frequency value of 1
2
for the nucleotides

of the oligo and 1/6 for the others. Then,

for each profile (each m-mer in the input)

it performs a single E and a single M step.

The highest MAP scoring profile

obtained (after the single iteration) is

further optimised with additional EM

steps, until no further increase on the

score is obtained. Finally, the profile is

reported, and its oligos are removed from

the input sequences. Then, the algorithm

is restarted, until a number of profiles that

can be specified as input has been

generated. Thus, MEME can detect

multiple motifs within the same set of

sequences within a single run.

The Gibbs samplers

One of the most successful approaches to

the problem, for the part concerning the

heuristic used to find the highest-scoring

profiles, has been the Gibbs sampling

strategy, first introduced for motif

discovery in protein sequences in

Lawrence et al.44 and Neuwald et al.45 but

nevertheless perfectly suitable also for

nucleotide sequences (and recently further

fine-tuned to TFBSs). The best measure

of its success is perhaps the number of

times it has been used in the algorithmic

part of different methods, which varied

the statistical measures used to generate

and evaluate the results. The main

motivation was to improve a EM local

search strategy46 (similar to the one

employed by MEME), so to avoid the

problem of premature convergence to

local maxima of the IC and MAP

functions. The basic idea, designed for

sequence sets with exactly one site
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instance per sequence can be summarised

as follows:

• An oligo of length m is chosen at

random in each of the k input

sequences (at the beginning, with

uniform probability).

• One of the k sequences is chosen at

random: let S be this sequence.

• A 4 3 m profile M is built with the

oligos that had been selected in the

other k – 1 sequences.

• For each position i in S, let pi ¼ the

m-mer of S starting at position i. For

each pi a likelihood value L(pi) is

computed, representing how well it pi
fits the model induced by the matrix

M with respect to the background

nucleotide distribution.

• A new probability value, proportional

to L(pi), is assigned to each position i

of S. Thus, the oligos that fit well in

the alignment described by M are

more likely to be chosen at the next

cycle.

• Go to the first step: now the

probability with which the m-mers of

sequence S can be picked are those

computed at the previous step.

These steps are iterated a number of

times, or until convergence is reached.

This variant of the algorithm is also

known as the site sampler. The main

difference with MEME is in the first step:

while the local search always picks oligos

deterministically according to how much

they fit a profile, the Gibbs sampler

chooses the fragment that has to be added

to the profile in a stochastic way. At the

beginning all the oligos have the same

probability of being chosen; in successive

iterations, those that better fit the profile

are more likely (but not certain) to be

selected. The algorithm is thus less likely

to get stuck in local optima; on the other

hand, given its probabilistic nature, it has

often to be run different times, and the

final results can be obtained by comparing

the outputs of each run. Additions to the

basic algorithm were presented

successively,45 allowing multiple

occurrences of a motif within the same

sequence, or, conversely, the motif did

not have to occur in every sequence

(algorithm known as motif sampler). This

variant, however, needs an estimate of the

overall number of times a motif is

expected to appear in the input

sequences. Modifications of the basic

Gibbs sampling technique especially

devised for DNA sequences are described

in Hughes et al.47 and Workman and

Stormo.48 AlignACE47 is a program

where the basic Gibbs sampling algorithm

is fine-tuned in order to work on DNA

regulatory sequences, including for

example both strands of each input

sequence and introducing a different

sampling technique that also considers

similarity in the position relative to the

TSS of each of the oligos of a group. That

is, a functional motif should correspond to

similar regions appearing at similar

distance from the TSS. In the ANN-Spec

algorithm,48 a Gibbs sampling method is

combined with an artificial neural

network that replaces the frequency

matrix. Instead of aligning the oligos

selected and scoring the matrix, the

algorithm trains a neural network in order

to recognise the oligos selected against the

rest of the sequences.

HOW TO USE A MOTIF
DISCOVERY TOOL
There are several examples on how motif

discovery methods can be efficiently used

(integrated with other tools) for to obtain

meaningful results and insight. Among

many others, we might also cite Lee et

al.,49 Ohler et al.,50 Rajewsky et al.51 and

Beer and Tavazoie.52 The most recent

study we found is presented in Beer and

Tavazoie.52 First of all, yeast genes are

clustered according to a large number of

expression values (255 in all) obtained

from several experiments whose data are

publicly available. In this way, the
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clustering phase is more reliable and fine-

grained than in experiments where fewer

values are used. Each of the 40 clusters

obtained is then processed separately, by

examining the upstream regions of the

genes with AlignAce (as well as by

detecting the presence in them of known

TFBSs listed in the SCPD database7). At

this point, as usual a large number of

candidate motifs are obtained. But, these

motifs are further examined, in order to

find correlations in relative position,

distance from the TSS, and strand

orientation. In this way, a subset of

‘interesting’ motifs is selected, as well as

information on which motifs might

cooperate to regulate gene expression and

with what effect. Finally, a further

validation is performed, in order to

determine to which extent the motifs

found can represent real TFBSs. In this

last phase, the analysis outlined at the

previous points is performed by leaving a

subset of the genes out (the test set). Motifs

are collected from other genes and their

expression values. Then, the motifs found

are used to predict the expression values of

the genes left in the test set (and not used

to build motifs), and the predicted

expression values are compared to the

known values. This analysis is repeated by

using different test sets with a cross-

validation technique, and a similar

example is presented for a subset of

Caenorhabditis elegans genes.

All in all, the results reported are very

encouraging, with a significant correlation

between real expression values and those

predicted by using solely the motifs

detected. This study proves without any

doubt that, while we are still far from the

‘crystal ball’ mentioned in the

introduction (and that many researchers

expect tools to be), motif discovery can

provide very useful and meaningful

results, if used with a grain of salt.

Improvements
Historically speaking, the algorithms we

have described were the first alignment-

based methods to be introduced, and as

we have seen they are still widely used

today with good results. In any case, their

heuristic (in how solutions are generated)

and probabilistic (in how solutions are

evaluated) nature lends itself to different

improvements. Current directions of

research are mainly the following:

• Improving the heuristics: the

algorithms happen to miss a motif

altogether because they do not include

the optimal matrix (corresponding to

the motif) among the candidate

solutions. The reason could also lie in

the choice of initial profiles that are

optimised.

• Improving the scoring function:

heuristics work just fine, but the

algorithms happen to miss a motif

because if we use the traditional IC

and MAP scores, the corresponding

frequency matrix is not the highest-

scoring one (or, alternatively, the real

motif is ‘lost’ among many random

motifs with higher or similar scores,

and further work is needed to

discriminate it).

• Looking for a single motif in some

cases is not enough: that is, a motif is

made of two or more TFBS, located

within short distance from each other,

whose biological function (and

statistical relevance) is the effect of

their simultaneous appearance within a

promoter, and their relative distance.53

Moreover, each of the cooperating

TFBSs is not overrepresented enough

to be detected by itself (as instead we

saw in the example we presented).

These have also been called composite

or structured or (in case of pairs) dyad

motifs.

The main motivation for the first point

was a series of tests performed on

artificially generated data sets. In these

tests, a ‘simulated’ motif was implanted in

a set random sequences with uniform

nucleotide composition.48,54 The length

of the motif varied from 8 to 20

nucleotides, with a proportionally
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increasing number of mutations that

could occur in any position of the motif.

The three traditional alignment-based

methods did not perform very well, since

they got stuck into random (and lower

scoring) alignments. For example, they

performed poorly when a 15 nucleotide

long motif was implanted in 20 sequences

of 600 bp, with four substitutions in each

occurrence (that could be at any position),

even if the correct motif length was given

as input and, on the other hand, the

artificial motif was the highest-scoring

one. This observation led to the

introduction of a number of new

approaches and heuristics to the problem.

Among others, SP-Star and Winnower,54

Projection,55 MITRA,56 Multiprofiler57

and P-Branching58 may be mentioned.

While aimed at finding the highest-

scoring profile, these methods (that

essentially differ in how initial profiles are

built before an optimisation procedure)

nevertheless require as input parameters

the length of the motif and the number of

mutations allowed for its occurrences, as

consensus-based methods that can

guarantee to find the optimal solution in

acceptable time.32 All in all, the results on

this line, and on the artificial data sets, are

quite satisfactory: unfortunately, in many

cases the best solution is not ‘unique’: that

is, it is not the only oligo of length 15 that

appears in all the sequences with four

mutations (and thus, basically, the only

motif that satisfies some properties), but it

is one of the thousands of oligos of, say,

length 8 appearing in the sequences with

two mutations. And the issue of whether

IC and MAP scores are suitable for

finding real binding sites remains open.

On the other hand, research moved

along the other direction, that is, finding a

scoring function able to reflect, as much

as possible, the ‘biological’ side of TFBSs

(and thus solving the one-out-of-

thousands issue). As we have discussed,

one major point was (and still is), how to

model ‘randomness’, that is, what happens

in the absence of shared TFBSs, or, in

other words, in the ‘background’ of the

sequences.

The MIRA algorithm26 implements

more involved models for both signals

and background. It is essentially a local

search alignment-based method, where

starting alignments are built by picking,

for each oligo appearing in the sequences,

all the other oligonucleotides differing

from it in a fixed number of positions,

with a strategy analogous to consensus-

based methods. Each profile is scored

with a modified version of the IC

function, which takes into account both

correlations between adjacent nucleotides

in the motif, and uses a background

model of order four.

Also the MEME algorithm has been

improved and enhanced over the years.

The current version (3.0) uses a higher-

order background model, accepts a range

value for motif lengths, and post-processes

automatically the results of different

lengths producing a single overall output.

Enhanced Gibbs samplers
In this section we separately list some of

the newest algorithms, which are still

based on the Gibbs sampling technique

but present some improvements over the

‘traditional’ method, essentially based on

the considerations we outlined in the

previous section.

Bioprospector59 is a Gibbs sampler with

some additional features. First of all, the

background is described with a third

order Markov model based on the

genome-wide analysis of different

organisms (thus users must specify which

species their sequences are taken from).

Also, the choice of the sequence to be

sampled is modified in order to take into

account the fact that a sequence can

contain zero or more than one instance of

a motif. Finally, it can detect also

composite (as we will discuss in the

following) motifs.

Another version of the Gibbs motif

sampler is presented in Thijs et al.,60 and is

part of a larger toolset for the analysis of

regulatory sequences.61 Also in this case,

additional features are the possibility of

considering multiple occurrences of the

same motif within the same sequence, as
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often is the case in eukaryotic promoters

(or zero, as well), and a higher-order

organism-specific modeling of the

background.

GLAM62 is a Gibbs sampling algorithm

especially tailored to TFBSs, where the

sampling procedure as well as the IC score

have been modified in order to compare

profiles of different size sparing the user

the visual inspection and comparison of

the results obtained on different lengths.

The optimal motif length is computed

with a simulated annealing strategy.

Also the authors of the original Gibbs

sampler have released a version of their

algorithm designed and adapted for

TFBSs,63 with a new method for the

modelling of the sequence background.

The idea is to use position-specific

frequencies for the bases: in other words,

if an oligo is located 100 bps upstream of

the transcription start site, its expected

frequency is estimated by analysing the

oligos that appear at approximately the

same distance from the TSS with a

Bayesian segmentation algorithm. As a

matter of fact, different analyses have

shown strong preferences of the sites for

given position ranges with respect to the

TSS,64 while the same oligo seems to be

inactive when appearing at the ‘wrong’

place. Thus, the same oligos can yield

profiles of completely different

significance values when located at

different positions relative to the TSS.

This new version is also able to search

simultaneously for multiple motifs within

the same data set (instead of optimising a

single motif), and sets all the parameters

needed by the algorithm to default values

suitable for TFBSs.

Finding composite motifs
Sometimes, a motif cannot be detected

because its presence alone is not

significant enough or, in other words, it

does not act alone in the regulation of

gene expression but appears to be

correlated with other motifs. Thus, the

resulting biological activity is the effect of

the simultaneous presence of different

sites, as well as their order, orientation,

strand and relative position.53,65 Some of

the methods we mentioned include

explicitly the possibility of detecting these

combinations of single motifs, instead of

leaving this task to a post-processing stage.

Clearly, suitable statistical modelling has

to be defined also for this case.66 Among

consensus-based methods, SMILE can

discover motifs made of an arbitrary

number of separate parts, provided with

their number, respective size and

maximum relative distance within the

sequences. A similar strategy is employed

by MITRA, which can detect dyad motifs

composed of two parts. Among Gibbs

samplers, dyad motifs are also included in

Bioprospector, which needs the size of

each part and a gap range for the region

separating them. Mermaid67 implements a

variation of the local search of MEME,

with some changes in the IC function

used to score profiles, also allowing motifs

composed of any number of parts. Finally,

the ANN-Spec approach, based on neural

networks, is extended to finding binding

sites for cooperating TFs (with parameters

analogous to the other tools) in the Co-

Bind algorithm.68 The main drawback of

these methods usually is that the

complexity is increases with the width of

the gap-separating motifs, and the latter

parameter is very often unknown and

hard to estimate.

CONSENSUS OR
ALIGNMENT?
The debate on which ‘philosophy’ is

more suitable for capturing TFBSs is

nearly as old as the problem itself.10,11,39

Clearly, profiles (and derivates) are more

flexible, and seem to require less prior

knowledge to be discovered. On the

other hand, as we have seen in the

previous section, the failure of an

alignment-based method can derive from

many factors: for example, the methods

always report some signal, but the user has

to figure out whether it is a real signal,

and if it is not whether it is because of the

absence of a common TF or because the

method simply did not see another more

interesting motif (for this task, most
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alignment-based algorithms output also a

p-value associated with each profile,

expressing the probability of obtaining

such an alignment by chance, or perform

other analogous statistical tests).

An interesting comparison was

presented in Sinha and Tompa.69 The

contestants were YMF, MEME (version

3.0) and AlignACE. The battlefield was

the set of TFs listed in the yeast promoter

database (SCPD).7 A different data set was

built for each TF, composed of all the

promoter sequences listed in the database

as containing an experimentally known

binding site for the TF (thus, each data set

was ‘clean’, ie the motif appeared in all

the sequences, and each data set was

known to contain a motif that could

appear more than once in each sequence).

In this way 34 data sets were built,

containing a varying number of sequences

of 800 bp. The performance of the

algorithms was measured as how much

the predicted binding sites matched the

solution. Rather than showing a definite

preference for one of the methods, the

results highlighted that the two

approaches seem to be ‘complementary’.

In some cases, most of the correct site

instances were picked (or, for different

reasons, completely missed) by all the

three methods; but on some data sets, the

motif seemed to fit the consensus

description much better than the profile

one, and vice versa in some others.

The results of this test just seem to hint

that there cannot be a definite preference

for either way of modelling TFBSs,

especially in the absence of any prior

information concerning the structure and

the degree of conservation of a motif.

Rather, the lesson we might learn is that,

given a set of sequences, the best way to

proceed is to try different methods, based

on wholly different principles, and to

compare their results. First of all, once we

have the outputs we should check

whether one or more programs found in

the sequences something that has already

been discovered and characterised, by

checking databases such as TRANSFAC9

or other species-specific data repositories.

Otherwise, if the methods we used agree

on some novel motif (even if the overall

representation is different, all the

programs usually output explicitly the

sites used to construct the best solutions,

and therefore the results can be directly

compared), then the motif can be

considered a very promising candidate for

having a true biological activity. Also,

virtually all the methods we mentioned in

this paper output more than a motif, and

sometimes the ‘real’ one is not the highest

scoring one, but it appears in the top-five

or top-ten list. Or, in other cases, they

output separate lists of motifs of different

length, making hard to the user to figure

out which motif of which length should

be considered more reliable. Comparing

the results of different methods might be

of help also in this case, that is, if a motif is

caught among the highest ranking ones

(but not necessarily the best one) by more

than one method, then it might be worth

further investigation. When the methods

totally disagree, the issue becomes more

complicated, since the significance

measures differ from algorithm to

algorithm, and it is very hard to judge

whether the highest scoring consensus of,

say, Weeder or YMF is better or worse

than the highest-scoring profile of MEME

or the Gibbs sampler, and if one of them

(or none) actually corresponds to real

conserved TFBSs. In this case, however,

there is the latest resort: the experience

and the judgment of the biologist using

the tools that will never be replaced by

any computer program.

THE NEXT STEP: BACK TO
SQUARE ONE?
Throughout the paper, methods,

approaches and philosophies have been

described that assume (as the developers

of the methods often did) that the user has

built a feasible input data set, that is, all or

most of the genes he/she put together are

actually co-regulated. While this is surely

the case of the data sets used to evaluate

and compare the performance of the

different programs, it is much less likely in

real life. That is, users often just suspect
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(or maybe hope) that their sequences are

co-regulated. As we have seen, most of

the methods can somehow accommodate

the fact that the common TF regulates

only a subset of the genes, by setting a

suitable quorum threshold or using the

‘zero or one occurrence’ mode. But, the

likelihood of picking the correct motif

clearly decreases as the number of

spurious sequences in the data set is

increased, since the basic feature all the

methods hinge upon, over-representation,

starts to fade into background noise.

However, in some cases the input data set

is derived from some preliminary analysis

of other data, such as microarray

expression levels: that is, regulatory

regions of genes belonging to the same

cluster, obtained with some method (see,

for example, Huber et al.70 and Baldi and

Wesley Hatfield71) are in turn fed to some

motif-discovery program as we previously

described and shown in, among many

others, Vilo et al.37 and Tavazoie et al.72

The large and constantly increasing

number of gene clustering methods based

on expression data (whole journal issues

solely dedicated to this problem often

appear) is a clear sign that also putting

together the right genes is an open and far

from being solved problem. On the other

hand, there is significant evidence that

variations in expression levels can be

directly correlated with the presence of

TFBSs in the upstream regions of a

gene,73–75 and recent research has moved

also in this direction. Instead of leaving to

the user the task of preparing a set of

related sequences, some new methods can

work on whole genomes (or large data

sets of thousands of genes), taking as input

directly the expression levels. The same

idea can be used to improve whole-

genome analyses. In fact, a given oligo

appearing a limited number of times can

be completely missed by considering

over-representation only: but if its few

occurrences happen to be in co-regulated

genes (or genes having similar expression

profile), then its importance has to be

reconsidered. Ideally, integrating

sequence and expression data should

provide different advantages: first of all, a

positive and negative sequence set are

supplied implicitly, since a motif should

appear in the promoters of over-expressed

genes and not in those under-expressed

(as in Haverty et al.,76 where

TRANSFAC profiles of already known

sites are used); then, it bypasses

completely the clustering phase and the

bias in the data sets that it inevitably

causes; finally, we no longer need to have

an idea on how many sequences in the

data set could contain an instance of a

motif. While the feasibility of this

approach on human or mouse sequences

is still debated (see, for example, Dieterich

et al.77), since in this case the regions to be

considered are much larger and more

prone to false positives, some preliminary

analyses on yeast microarray and ChIP

experiments have given encouraging

results.

The aim of REDUCE78,79 is to

correlate gene expression levels with the

presence of conserved motifs appearing in

the regulatory regions. Only exact

consensus occurrences are considered.

Each oligo is scored according to its

occurrence frequency in the input

sequences, weighted by the expression

level values associated with the sequences

it appears in. Then, the expression values

associated with the sequences are

‘explained’ according to the highest-

scoring oligos with a linear regression

technique.

MDscan80 directly explores the

regulatory regions of the most over-

expressed genes (whose number has to be

supplied by the user) of a set with a

consensus-based strategy, building a

frequency matrix from the occurrences

collected for each consensus. Then, each

matrix is ranked according to its MAP

score against a background model of the

3rd order, built from the intergenic

regions of yeast (the organism analysed in

the article). The highest-scoring matrices

are saved and undergo a final local

optimisation step that considers a larger

set of highly expressed genes (although

under-expressed genes are not
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simultaneously considered, and thus no

negative set is used as counter-example).

In Conlon et al.,81 MDscan is integrated

with Motif Regressor, which performs a

linear regression of microarray expression

values (similar to REDUCE) based,

instead of single oligos, on the motif

profiles reported by MDscan.

Clearly, while this is a new and

promising direction for direction,

developers of future methods should also

bear in mind, and incorporate in their

solutions, all the considerations we

scattered throughout the paper when

describing the philosophy of existing

methods and possible improvements (or,

better, those considerations they think

make sense), as well as all the biological

information they can collect from studies

on how and why TFBSs influence and

modulate gene expression.

CONCLUSIONS
Perhaps as a consequence of the

simultaneous explosion of different types

of data coming from the world of

molecular biology, such as whole

genomes, transcriptomes and gene

expression analyses, the prediction of

TFBSs in regulatory regions of related

genes has become one of the hottest

topics in bioinformatics, as witnessed by

the constant growth of the number of

articles and methods devoted to this task.

As we have seen, the problem is

extremely challenging at every level, that

is, from the modelling of binding sites, to

the construction of candidate solutions, to

the evaluation of the best solutions.

Moreover, most of the tests performed so

far are based on the results of the analysis

of yeast genes, where regulatory regions

are short (less than 1000 bp) and simple,

while for human much longer regions

with a complex organisation of regulatory

modules (enhancers, silencers, etc.) have

to be considered.2 This paper has

provided a survey of existing algorithms

and research trends, covering as many

methods and standpoints as possible.

Apologies are given in advance for

possible unintentional omissions that are

by no means due to a negative evaluation

from our point. In any case, new

approaches and ideas will surely appear

even while this article is in press, and we

strongly advise the interested reader to

check journals and conferences on a

regular basis for new updates and methods

in one of the fastest-evolving branches of

bioinformatics.
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