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Introduction

Hierarchical classification problems

Hierarchical classification problems

Several interesting real-world classification problems are
characterized by hierarchical relationships between
classes
E.g. : textual classification of web content [Rousu et al.,
2005], music categorization and semantic scene
classification [Tsoumakas et al. 2009], bioinformatics
(Barutcuoglu et al. 2006).
Different approaches: a) methods restricted to multilabels
with single and no partial paths [Dekel et al. 2004];
b)methods extended to multiple and also partial paths
[Cesa-Bianchi et al. 2006].



True Path Rule and H-Bayes hierarchical cost-sensitive ensembles for gene function prediction

Introduction

Genome and ontology-wide gene function prediction

Genome and ontology-wide GFP

Novel high-throughput biotechnologies accumulated a
wealth of data about genes and gene products
Manual annotation of gene function is time consuming and
expensive and becomes infeasible for growing amount of
data.
For most species the functions of several genes are
unknown or only partially known: “in silico” methods
represent a fundamental tool for gene function prediction at
genome-wide and ontology-wide level [Friedberg, 2006].
Computational analysis provide predictions that can be
considered hypotheses to drive the biological validation of
gene function [Pena-Castillo et al. 2008].
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Introduction

Genome and ontology-wide gene function prediction

Main characteristics of the GFP problem

Large number of functional classes: hundreds (FunCat) or
thousands (Gene Ontology (GO)).
Multiple annotations for each gene (multilabel
classification)
Hierarchical relationships between functional classes (tree
forest for FunCat, direct acyclic graph for GO)
Different level of evidence for functional annotations
Class frequencies are unbalanced: positive examples are
usually largely lower than negatives
Different strategies can be applied to choose negative
examples
Multiple sources of data available: each type captures
specific functional characteristics of genes/gene products
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True Path Rule Ensemble Algorithms

The “true path rule” 11
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“An annotation for a class in the hierarchy is automatically
transferred to its ancestors, while genes unannotated for a
class cannot be annotated for its descendants”.
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True Path Rule Ensemble Algorithms

TPR: an algorithm that obeys the True Path Rule

(Valentini, 2010)
1 Training of the base learners (1 for each node)
2 Evaluation phase: the trained classifiers provide a local

decision for each node/class
3 Positive decisions may propagate from bottom to top

across the graph: they influence the decisions of the
parent nodes and of their ancestors.

4 Negative decisions do no affect decisions of the parent
node

5 Negative predictions for a given node are propagated to
the descendants. Positive decisions do not influence
decisions of child nodes.
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True Path Rule Ensemble Algorithms

TPR ensembles: an asymmetric flow of information
01
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From bottom to top : positive predictions influence ancestor
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True Path Rule Ensemble Algorithms

Basic notation and definitions
A gene/gene product x can be assigned to one or more
functional classes:
C = {c1, c2, . . . , cm}
Assignments can be coded through a vector of multilabels
y =< y1, y2, . . . , ym >∈ {0,1}m.
If x belongs to class ci , then yi = 1, otherwise yi = 0.
Nodes corresponding to the class ci can be simply
denoted by i .
child(i) represents the set of children nodes of i ;
par(i) the set of its parents.
The TPR ensemble classifier D : X → {0,1}m computes
the multilabel associated to each gene x ∈ X
di(x) ∈ {0,1} is the label predicted by the TPR classifier at
node i . If there is no ambiguity we represent di(x) simply
by di .
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True Path Rule Ensemble Algorithms

The rules a TPR ensemble must obey
Considering the parents of a given node i :{

di = 1 ⇒ dpar(i) = 1
di = 0 ; dpar(i) = 0

Considering the children of a given node i :{
di = 1 ; dchild(i) = 1
di = 0 ⇒ dchild(i) = 0

Example: (black di = 1, white di = 0)
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True Path Rule Ensemble Algorithms

The True Path Rule (TPR) ensemble learns in two steps

The basic hierarchical True Path Rule (TPR) ensemble

Base classifiers estimate local probabilities p̂i(x) that a
given example x belongs to class ci

The ensemble provides an estimate of the “consensus”
global probability pi(x)

The “consensus” global probability pi(x) is estimated in two
steps:
Bottom-up step pi(x) is computed by averaging the local

probabilities of the “positive” predictions of
computed at node i and child(i)

Top-down step If pi(x) < 1/2 then the subtree "is set to 0":
∀j ∈ desc(i),dj(x) = 0
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True Path Rule Ensemble Algorithms

The True Path Rule (TPR) ensemble learns in two steps

The basic hierarchical True Path Rule (TPR) ensemble
Given the set φi(x) of all the children nodes of node i for which
we have a positive prediction for the gene x :

φi(x) = {j |j ∈ child(i),dj(x) = 1}

The consensus probability pi(x) that a gene x belongs to the
node/class i is:

pi(x) =
1

1 + |φi(x)|

p̂i(x) +
∑

j∈φ(x)

pj(x)


The pi(x) are computed in a bottom-up fashion, visiting
"per-level" the tree from bottom to top, starting from the
leaves, and continuing up to the root.
At each level and for each node we have an asymmetric
flow of information: bottom-up “positive” information, and
top-down “negative” information.
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True Path Rule Ensemble Algorithms

The True Path Rule (TPR) ensemble learns in two steps

The TPR algorithm
Input:
- example x whose classes need to be predicted
- tree T of the m hierarchical classes
- set of m classifiers (one for each node) each predicting p̂i (x), 1 ≤ i ≤ m
begin algorithm
01: for each level k of the tree T from bottom to top do
02: for each node i at level k do
03: if i is a leaf
04: pi (x)← p̂i (x)
05: if (pi (x) > t) di (x)← 1
06: else di (x)← 0
07: else
08: φi (x)← {j|j ∈ child(i), dj (x) = 1}

09: pi (x)← 1
1+|φi (x)|

(
p̂i (x) +

∑
j∈φi (x)

pj (x)
)

10: if (pi (x) > t) di (x)← 1
11: else
12: di (x)← 0
13: for each j ∈ subtree(i) do
14: dj (x)← 0
15: if (pj (x) > pi (x)) pj (x)← pi (x)
16: end for
17: end for
18: end for
end algorithm.
Output: for each node i

- the ensemble decisions di (x) =

{
1 if x belongs to node i
0 otherwise

- the probabilities pi (x) that x ∈ X belongs to the node i ∈ T
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True Path Rule Ensemble Algorithms

The weighted hierarchical True Path Rule (TPR-w) ensemble

The weighted hierarchical True Path Rule (TPR-w) ensemble

TPR-w is a variant of the basic TPR: we can modulate the role
of the local predictor w.r.t. the predictions of its children and
descendants.

We introduce a parent weight wp, 0 ≤ wp ≤ 1, such that the
prediction is shared proportionally to wp and 1− wp between
respectively the local parent predictor and the set of its children:

pi(x) = wp · p̂i(x) +
1− wp

|φ(x)|
∑

j∈φ(x)

pj(x)

This learning behaviour is recursively reproduced from the
leaves up to the root of the overall taxonomy.
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True Path Rule Ensemble Algorithms

Analyzing the behaviour of the TPR algorithm

Analysis of the propagation of the positive decisions (1)

What about the influence of the positive decisions of the
descendants on the decision of their ancestors ?
We define:

qk : the posterior probability computed by the ensemble for
a generic node at level k
q̂k : the probability computed by the base learner local to a
node at level k
qj

k+1: the probability of a child j of a node at level k , where
the index j ≥ 1 refers to different children of a node at level
k
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True Path Rule Ensemble Algorithms

Analyzing the behaviour of the TPR algorithm

Analysis of the propagation of the positive decisions (2)
By defining the average probability computed by the positive
children of a node at level i :

ai+1 =
1
|φi |

∑
j∈φi

q̂j
i+1 (1)

and the average of the probability averages of the positive
grandchildren of a node at level i is:

ai+2 =
1
|φi |

∑
j∈φi

1

|φj
i+1|

∑
k∈φj

i+1

q̂k
i+2 (2)

By iterating this procedure at the next level we obtain:

ai+3 =
1
|φi |

∑
j∈φi

1

|φj
i+1|

∑
k∈φj

i+1

1
|φk

i+2|
∑

l∈φk
i+2

q̂l
i+3 (3)
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True Path Rule Ensemble Algorithms

Analyzing the behaviour of the TPR algorithm

Theorem: Influence of positive descendant nodes

In a TPR-w ensemble, for a generic node at level i , with a given
parameter w ,0 ≤ w ≤ 1, balancing the weight between parent
and children predictors, and having a variable number larger or
equal than 1 of positive descendants for each of the m lower
levels below, the following equality holds for each m ≥ 1:

qi = wq̂i +
m−1∑
j=1

w(1− w)jai+j + (1− w)mai+m

The contribution of descendant nodes decays exponentially
w.r.t. their depth
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True Path Rule Ensemble Algorithms

Experimental set-up

An application of TPR ensembles to a genome and ontolgy-wide
GFP problem

Genome-wide gene function prediction in S. cerevisiae

About 200 FunCat classes (5 hierarchical levels)

About 6000 genes to be classified (1000 unknown)
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True Path Rule Ensemble Algorithms

Experimental set-up

Data sets and experimental set-up

Table: Yeast “omics” data sets

Data set Description n. examples n. feat. n.classes
Pfam-1 protein domain binary data from Pfam 3529 4950 211
Pfam-2 protein domain log E data from Pfam 3529 5724 211
Phylo phylogenetic data 2445 24 187
Expr gene expression data 4532 250 230
PPI-BG PPI data from BioGRID 4531 5367 232
PPI-VM PPI data from STRING 2338 2559 177
SP-sim Sequence pairwise similarity data 3527 6349 211

Experimental comparison between Flat and Hierarchical Top-Down (HTD, see
next slide) ensembles versus the proposed True Path Rule in both basic (TPR,
and weighted (TPR-w) form.

Probabilistic linear SVMs as base learners [Lin et al., 2007]

5-fold cross validation

F-per-class and F-hierarchical measures [Verspoor et al., 2006]
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True Path Rule Ensemble Algorithms

Experimental set-up

The Hierarchical Top-Down (HTD) algorithm

HTD classifies examples in a single top-down pass, starting
from root and down to the leaves.

x : a singe example
di(x): the classifier decision at node i
root(T ): set of nodes at the first level of the tree T

yi =


di(x) if i ∈ root(T )
di(x) if i /∈ root(T ) AND ypar(i) = 1
0 if i /∈ root(T ) AND ypar(i) = 0
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True Path Rule Ensemble Algorithms

Results

F-score results
Average per-class F-score results

Flat HTD TPR TPR-w
0.1489 0.2222 0.1824 0.2414

Hierarchical F-score results
Data set HTD TPR TPR-w
Pfam-1 0.4123 0.3080 0.4131
Pfam-2 0.3406 0.2684 0.3700
Phylo 0.0497 0.2010 0.2174
Expr 0.1166 0.1696 0.1784
PPI-BG 0.3226 0.2670 0.3485
PPI-VM 0.3977 0.2796 0.4000
SP-sim 0.4251 0.2398 0.4472
Average 0.2949 0.2468 0.3392
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True Path Rule Ensemble Algorithms

Results

Tuning hierarchical precision and recall in TPR-w ensembles
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True Path Rule Ensemble Algorithms

Results

TPR summary
TPR is a heuristic ensemble method based on the “true
path rule”
TPR-w achieves significantly better hierarchical F-scores
than the basic TPR and Top-down ensembles, and largely
bettr results than flat approaches
Per-level analysis shows that this is the result of a better
compromise between precision and recall
With a single global parameter we may tune the
precision/recall characteristics of the overall TPR-w
ensemble
Analysis of the bottom-up propagation of the information
across the tree shows that the influence of positive
decisions of the descendant nodes decay exponentially
with their depth =⇒ room to design and experiment new
variants
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HBAYES-CS

HBAYES-CS: a hierarchical cost-sensitive algorithm
for genome-wide gene function prediction

(Cesa-Bianchi and Valentini, 2010)

A variant of the basic HBAYES algorithm [Cesa-Bianchi et
al., 2006]
HBAYES-CS takes into account the unbalance between
positive and neagative examples that characterize gene
functional classes
HBAYES-CS has been applied to genome and
ontology-wide GFP in S. cerevisiae
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HBAYES-CS

The HBAYES ensemble algorithm

The HBAYES method

Train a set of independent classifier (one for each
functional class)
Modification of the labels through a bottom-up recursive
procedure
Underlying stochastic model for the multilabels
Based on an approximation of the bayesian-optimal
classifier for the H-loss
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HBAYES-CS

The HBAYES ensemble algorithm

The H-loss

The main intuition behind the H-loss:
if a parent class has been predicted wrongly, then errors in its
descendants should not be taken into account.

Given the predicted multilabel ŷ = (ŷ1, . . . , ŷN) and the true
multilabel v = (v1, . . . , vN) and the cost coefficients c1, . . . , cN :

`H(ŷ ,v) =
N∑

i=1

ci{ŷi 6= vi ∧ ŷj = vj , j ∈ anc(i)}
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HBAYES-CS

The HBAYES ensemble algorithm

The stochastic model for multilabels
Given:

V = (V1, . . . ,VN) ∈ {0,1}N : the vector random variable
modeling the multilabel of a gene x
par(i): the unique parent of node i in T
the probability pi(x) for node i on input x is:
pi(x) = P

(
Vi = 1 | Vpar(i) = 1, x

)
True path rule consistent predictions: the distribution of the
random boolean vector V is assumed to be

P
(
V = v

)
=

N∏
i=1

P
(
Vi = vi | Vpar(i) = 1, x

)
for all v ∈ {0,1}N

with:
P
(
Vi = 1 | Vpar(i) = 0, x

)
= 0
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HBAYES-CS

The HBAYES ensemble algorithm

The Bayes-optimal classifier

By definition the Bayes-optimal classifier is:

y∗ = argmin
y∈{0,1}n

E
[
`H(y ,V ) | x

]
where the expectation is w.r.t. the distribution of V .

Theorem [Cesa-Bianchi et al., 2005]: The multilabel generated
by HBAYES is the Bayes-optimal for the H-loss.
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HBAYES-CS

The HBAYES ensemble algorithm

The HBAYES algorithm
The classification of an example x is performed node-by-node
with a bottom-up strategy using a per-level (or DFS) visit of the
tree.
For each node i the corresponding label ŷi is computed
according to:

the underlying stochastic model for multilabels
the Bayesian-optimal strategy to minimize the H-loss

that is:
ŷi = 1 ⇐⇒ pi (2−

∑
k∈child(i)

Hk (ŷ)/ci ) ≥ 1

where for each node k Hk is recursively defined as follows:

Hk (ŷ) = ck (pk (1− ŷk ) + (1− pk )ŷk ) +
∑

j∈child(k)

Hj (ŷ)

Note that if i is a leaf node the above rule is equivalent to
ŷi = {pi ≥ 1/2}.
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HBAYES-CS

The HBAYES ensemble algorithm

HBAYES-CS: the cost-sensitive variant
The problem: we have very unbalanced classification tasks

A possible solution: introducing a trade-off between the costs of
false positive (FP) c+

i and false negative (FN) c−i mistakes:
c−i = αc+

i while keeping c+
i + c−i = 2ci with α ≥ 0.

In this setting the decision rule for HBAYES-CS becomes:

ŷi = 1⇐⇒ pi

2−
∑

j∈child(i)

Hj/ci

 ≥ 2
1 + α

.

α > 1 : we put more cost on negative predictions
α < 1 : we put more cost on positive predictions
α = 1 : we come back to the non cost-sensitive version
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HBAYES-CS

Experimental results

Experiments with the yeast: precision and recall

(Precision) (Recall)

Precision and recall across levels (Pfam data).
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HBAYES-CS

Experimental results

Experiments with the yeast: F-score

Win-tie-loss between methods:

win-tie-loss
Methods HTD-CS HTD

HBAYES-CS 2-4-1 6-1-0
HTD-CS - 7-0-0
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HBAYES-CS

Experimental results

Tuning precision and recall through the α parameter

(Pfam-1) (SP-sim)

Hierarchical precision, recall and F-measure as a function of
the cost modulator factor α (Pfam and sequence similarity
data).
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HBAYES-CS

Integration between HBAYES-CS and data fusion methods

Combination of hierarchical ensembles with data
fusion methods

(Cesa-Bianchi, Re and Valentini, 2010)

A two-steps strategy:
1 For each term of the taxonomy, train a classifier using

multiple sources of data
2 Combine the predictions at each node to obtain the

multi-label predictions according to the HBAYES-CS
method.

Two-levels of improvements:
Improvement of flat predictions through the bottom-up
Bayesian correction
Improvement of the single-source predictions by exploiting
multiple sources of data
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HBAYES-CS

Integration between HBAYES-CS and data fusion methods

Data Fusion methods
Weighted voting: P̂(Vi = 1 | g) = 1∑L

s=1 Fs

∑L
t=1 Ft p̂t,i (g)

Kernel Fusion: Kave(g,g′) = 1
L

∑L
t=1 Kt (x t ,x ′t ) .

where:

Vi ∈ {0,1}: random variable that models the labeling of a gene g
for the class ωi ∈ Ω

L different sources of biomolecular data Dt , for t = 1, . . . ,L
p̂t,i (g): classifier’s estimate of the probability that g belongs to ωi
using data Dt

Ft is the F-measure assessed on the training data for the t-th
base learner
g and g′: a pair of genes, and x t ,x ′t ∈ Dt their corresponding
pairs of feature vectors.



True Path Rule and H-Bayes hierarchical cost-sensitive ensembles for gene function prediction

HBAYES-CS

Integration between HBAYES-CS and data fusion methods

Results: Impact of data fusion on flat and hierarchical
methods (average F-scores)

METHODS FLAT HTD HTD-CS HB HB-CS
SINGLE-SOURCE
BIOGRID 0.2643 0.3759 0.4160 0.3385 0.4183
STRING 0.2203 0.2677 0.3135 0.2138 0.3007
PFAM BINARY 0.1756 0.2003 0.2482 0.1468 0.2395
PFAM LOGE 0.2044 0.1567 0.2541 0.0997 0.2500
EXPR. 0.1884 0.2506 0.2889 0.2006 0.2781
SEQ. SIM. 0.1870 0.2532 0.2899 0.2017 0.2825
MULTI-SOURCE (DATA FUSION)
KERNEL FUSION 0.3220 0.5401 0.5492 0.5181 0.5505
WEIGH. VOTING 0.2754 0.2792 0.3974 0.1491 0.3532

6 data sources

2 data fusion techniques: Kernel Fusion and weighted voting

Flat, HTD, HBAYES and their cost-sensitive variants
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HBAYES-CS

Integration between HBAYES-CS and data fusion methods

Comparison of F-scores with and without data
integration

Flat HBAYES-CS

- Black nodes: better results with data fusion
- White nodes: better results with the best single-source data
- p-value= 2.2 · 10−16 (Wilcoxon signed-rank sums test)
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HBAYES-CS

Integration between HBAYES-CS and data fusion methods

Synergy between hierarchical, data fusion and
cost-sensitive techniques

METHODS F-SCORE PREC. REC.
BIOGRID:
FLAT 0.1893 0.1253 0.5801
HTD 0.4311 0.5901 0.3827
HTD-CS 0.4732 0.5645 0.4650
HBAYES 0.3776 0.5404 0.3236
HBAYES-CS 0.4738 0.5654 0.4639
KF:
FLAT 0.2052 0.1293 0.7026
HTD 0.5800 0.7051 0.5560
HTD-CS 0.6091 0.6745 0.6156
HBAYES 0.5512 0.6915 0.5086
HBAYES-CS 0.6073 0.6759 0.6126

- Best F-score: joint hierarchical cost-sensitive and data fusion techniques
- Best precision: HTD and HBAYES but also HBAYES-CS and HTD-CS perform well
- Best recall: FLAT, but also HBAYES-CS and HTD-CS good results
- Better compromise between precision and recall: HBAYES-CS and HTD-CS.
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Conclusions

Conclusions

Hierarchical strategies show better results than “flat”
approaches
TPR-W and HBAYES-CS achieve significantly better
hierarchical F-scores than the basic TPR and HTD

ensembles
This is the result of a better compromise between precision
and recall
With a single global parameter we may tune the
precision/recall characteristics of the overall TPR-W and
HBAYES-CS ensembles
Data fusion significantly improve predictions
We need a sinergy between hierarchical, data fusion and
cost-sensitive approaches to achive the best results.
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Conclusions

Some open problems ...
Biomolecular data integration can improve gene function
prediction performances: which other methods could be
considered?

How to take into account different evidences of association
gene-functional class?

Can we improve the TPR-W algorithm by choosing non
exponential decay rules for the weights?

Can we extend TPR-W and HBAYES-CS to DAG-structured
taxonomies (e.g. GO)?

Can we introduce active learning techniques in this context?

Experimental work: comparison with other promising
hierarchical ensemble approaches and state-of-the-art methods
in the context of genome-wide gene function prediction

Can these methods to be applied to genome and ontology-wide
of multi-cellular eukaryotes? (e.g. A.thaliana, mouse or human)
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Conclusions

Large room for further research ...
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