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Disease and trait-associated variants represent a 
tiny minority of all known genetic variation

Recently ML methods have been applied to the 
detection and ranking of deleterious genetic 
variants in human genome 

State-of-the-art ML methods proposed in this 
context are not designed to deal with highly 
imbalanced data

We propose HyperSMURF, an ensemble 
method designed to process highly imbalanced 
genomic data.
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Next Generation Sequencing (NGS) enables the investigation of 
genomic variation in coding as well in non-coding regions across the 
entire human genome

Detection of genetic variants – disease associations

Application to the detection of mutations associated with Mendelian 
(e.g. Cystic fibrosis or Huntington disease) and complex (e. Alzheimer's 
and Parkinson's) genetic disease.

Two main problems:
1) Most of genetic variation in human genome is “physiological”: how to 
 find “possible deleterious” variants?
2) Most studies focused on coding regions, but what about non coding 
regions?

The imbalancing problem HyperSMURF
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Issues:
● How to find deleterious variants (e.g. variants associated with 

diseases) in the sea of physiological (neutral) genetic variation in 
human genome?

● A huge imbalance between deleterious  (positive examples) and 
neutral (negative examples) variants

● Which features should be used to train learning machines for the 
prediction of deleterious variants?

Prediction of deleterious variants in non-coding 
genome: a challenging machine learning problem

Classical ML algorithms fail: 

they are biased toward the majority class

Prediction of deleterious variants HyperSMURF
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State-of-the-art ML methods for the prediction of 
deleterious variants

● CADD (Kircher, et al. 2014)

● GWAVA (Ritchie et al 2014)

● DeepSEA  (Zhou & Troyanskaya, 2015)

● FATHMM-MKL (Shibab et al. 2015)

● Eigen (Ionita-Laza et al. 2016)

Quite surprisingly none of the above methods (apart from 
GWAVA) use imbalance-aware learning strategies 
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Our ML approach to deleterious variants detection
Hyper-ensemble of Smote Undersampled Random Forests 
(HyperSMURF)

● Balancing training data through differential sampling:

-  Oversampling of the minority class

-  Partitioning and undersampling of the majority class

● Data coverage improvement and variance reduction through 
ensembling techniques

● Enhancing accuracy and diversity of the base learners 
through Hyper-ensembling

HyperSMURF
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HyperSMURF:
Hyper-ensemble of SMote Undersampled Random Forests 

HyperSMURF



Pseudocode of the
HyperSMURF
algorithm
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SMOTE :
Synthetic Minority Oversampling Technique (Hall et al. 2002)

HyperSMURF
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Genomic experiments

Genome-wide 
prediction of 
deleterious 
variants in non 
coding region

1) Mendelian diseases:
406 SNV mutations manually 
curated (positive examples)

14M neutral variants 
(negatives)

2) Complex diseases:
2115 regulatory GWAS hits 
from the GWAS catalog 
(National Human Genome 
Research Institute)

1.4M neutral variants 
(negatives)

Experimental set-up HyperSMURF
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Genomic attributes

1) Mendelian data: 26 
genomic attributes 
downloaded from public 
data bases (UCSC, 
Stanford, NCBI and 
others):

2) GWAS data: 1842 
genomic attributes 
directly extracted from 
DNA sequence through 
deep convolutional 
networks (Zhou & 
Troyanskaya, 2015)

● Conservation scores
● Transcriptional features
● Regulation features
● Overalpping CNVs
● GC content
● Epigenomic features

● DNAse features
● Transcription factor 

features
● Histone features
● Conservation scores

HyperSMURF
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Comparative results with state-of-the-art methods

10-fold “cytoband-aware” cross-validation: precision/recall curves

Mendelian diseases Complex diseases 
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Compared precision, recall and F-score (complex diseases)
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AUPRC results of HyperSMURF and CADD 
at different imbalance levels

HyperSMURF
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Conclusions

● HyperSMURF is motivated by the highly imbalance that 
naturally arises in genome-wide studies for scoring deleterious 
genetic variants

● HyperSMURF relies on: 
a) differential sampling: 

  partitioning, undersampling and oversampling techniques

b)  Ensemble methods

c)  Hyper-ensemble approach

● HyperSMURF software is available from:

- https://github.com/charite/hyperSMURF (Java version)

- https://cran.r-project.org/web/packages/hyperSMURF (R 
package)

HyperSMURF
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Thank you for 
your attention!

http://anacletolab.di.unimi.it
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