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Outline

Gene Function Prediction (GFP)

Gene Ontology and FunCat
Computational approaches to GFP
Hierarchical Ensemble methods for GFP

Two examples of Hierarchical ensembles:

- A Bayesian approach (Barutcouglu et al, 2006)
- True Path Rule ensembles (Valentini, 2011)
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Gene function prediction can be formalized as
a supervised machine learning problem
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Motivation

Novel high-throughput biotechnologies accumulated a
wealth of data about genes and gene products

Manual annotation of gene function 1s time consuming and
expensive and becomes infeasible for growing amount of
data.

For most species the functions of several genes are
unknown or only partially known: “in silico”
methodsrepresent a fundamental tool for gene function

prediction at genome-wide and ontology-wide level
(Friedberg, 20006).

Computational analysis provide predictions that can be
considered hypotheses to drive the biological validation of
gene function (Pena-Castillo et al. 2008).
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Computational prediction supports
biological gene function prediction

.

Biological genome-wide
gene function prediction
through direct experimental
assays 1s costly and time-
consuming
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Computational prediction methods assist the biologist to:

* Suggest a restricted set of candidate functions that can be
experimentally verified

* Directly generate new hypotheses

* Guide the exploration of promising hypotheses
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Characteristics of the Gene Function Prediction (GFP) problem

* Large number of functional classes: hundreds (FunCat) or thousands (Gene
Ontology (GO)) : large multi-class classification

* Multiple annotations for each gene: multilabel classification

* Different level of evidence for functional annotations: labels at different level of
reliability

* Hierarchical relationships between functional classes (tree forest for FunCat,

direct acyclic graph for GO): hierarchical relationships between classes
(structured output)

* C(lass frequencies are unbalanced, with positive examples usually largely lower
than negatives: unbalanced classification

* The notion of “negative example” is not univocally determined: different
strategies to choose negative examples

* Multiple sources of data available: each type captures specific functional
characteristics of genes/gene products: multi-source classification

* Data are usually complex (e.g. high-dimensional) and noisy: classification with
complex and noisy data

G.Valentini, DI - Univ. Milano [E



Taxonomies of gene function

[. Gene Ontology (GO)

http://www.geneontology.org/

Fine grained: classes structured according to a directed

acyclic graph
2. Functional Catalogue (FunCat)

http://www.helmholtz-muenchen.de/en/mips/projects/funcat/

Coarse grained: classes structured according to a tree

G.Valentini, DI - Univ. Milano



The Gene Ontology

The Gene Ontology (GO) project began as a collaboration
between three model organism databases, FlyBase
(Drosophila), the Saccharomyces Genome Database
(SGD) and the Mouse Genome Database (MGD), in 1998.
Now it includes several of the world's major repositories
for plant, animal and microbial genomes.

The GO project has developed three structured controlled
vocabularies (ontologies) that describe gene products in
terms of their associated biological processes, cellular
components and molecular functions in a species-
independent manner
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1) Molecular Function

The Gene Ontology (GO) is
actually three Ontologies

GO term: Malate dehydrogenase activity
GO id: GO:0030060
(S)-malate + NAD(+) = oxaloacetate + NADH.
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2) Biological Process
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3) Cellular Component

GO term: mitochondrion

GO id: GO:0005739

Definition: A semiautonomous, self
replicating organelle that occurs in
varying numbers, shapes, and sizes in
the cytoplasm of virtually all eukaryotic
cells. It is notably the site of tissue
respiration.
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GO term: tricarboxylic acid cycle

GO Accession : GO:0006099
Ontology : Biological Process

Definition
A nearly universal metabolic

pathway in which the acetyl
group of acetyl coenzyme A is
effectively oxidized to two CO2
and four pairs of electrons are
transferred to coenzymes. The
acetyl group combines with
oxaloacetate to form citrate,
which undergoes successive
transformations to isocitrate, 2-
oxoglutarate, succinyl-CoA,
succinate, fumarate, malate, and
oxaloacetate again, thus
completing the cycle. In
eukaryotes the tricarboxylic acid
1s confined to the mitochondria.

998 annotated gene products
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Relationships between terms 1n the GO

The ontologies of GO are structured as a directed acyclic
graph (DAG) G=<V,E>

V = {t| terms of the GO} E={tu)|teVandteV}

Relations between GO terms are also categorized and
defined:

* isa (subtype relations)
* part of (part-whole relations)

* regulates (control relations)
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Is a relation

Ifwe say A is a B, we mean that node A is a subtype of node
B.

For example, mitotic cell cycle 1s a cell cycle, or lyase
activity 1s a catalytic activity.

The 1s a relation is transitive, which means that if A 1s a B,
and B i1s a C, we can infer that A is a C.
E.g.

[ mitochondrion ] isa >Eltracellular crganella isa »[ organelle j
]
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Part of relation

The relation part of represents part-whole relationships in the GO.

The part of relation 1s transitive:

‘ mitochondrion '7 part of = cytoplasm part of = cell
| |
| | | |
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Regulates relation

If we say that A regulates B we mean that A directly affects the
manifestation of B, i.e. the former regulates the latter.

For example, the target of the regulation may be another process—
for example, regulation of a pathway or an enzymatic reaction—
or it may be a quality, such as cell size or pH.

Analogously to part of, this relation 1s used specifically to mean
necessarily regulates:

hﬁLL rEQUH[ESﬁ

[ cell cycle j Eell cycle checkpninﬂ

SOME regulated by

In general regulates is not transitive
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GO DAG of the BP ontology (S. cerevisiae)

1074 GO classes (nodes) connected by 1804 edges

Graph realized through HCGene (Valentini, Cesa-Bianchi, Bioinformatics 24(5), 2008)
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Evidence codes

Evidence codes indicate how the annotation to a particular term
is supported.

Experimental Evidence Codes:
an experimental assay has been used for the annotation

Author statement codes:

indicate that the annotation was made on the basis of a statement made by
the author(s) in the reference cited.

Curatorial evidence codes:
annotations inferred by a curator from other GO annotations

Computational analysis evidence codes:
based on an in silico analyses manually reviewed

Automatically-assigned Evidence Codes :
based on an in silico analyses not manually reviewed
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Groups of evidence codes

Experimental Evidence Codes

EXP: Inferred from Experiment

IDA: Inferred from Direct Assay

IPI: Inferred from Physical Interaction
IMP: Inferred from Mutant Phenotype
IGI: Inferred from Genetic Interaction
[EP: Inferred from Expression Pattern

Author Statement Evidence
Codes

TAS: Traceable Author Statement

NAS: Non-traceable Author Statement

Curator Statement Evidence
Codes

IC: Inferred by Curator
ND: No biological Data available

Computational Analysis
Evidence Codes

ISS: Inferred from Sequence or Structural
Similarity

ISO: Inferred from Sequence Orthology

ISA: Inferred from Sequence Alignment

ISM: Inferred from Sequence Model

IGC: Inferred from Genomic Context

RCA: inferred from Reviewed
Computational Analysis

Automatically-assigned
Evidence Codes

IEA: Inferred from Electronic Annotation

Obsolete Evidence Codes
NR: Not Recorded
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The Functional Catalogue (FunCat)

http://www.helmholtz-muenchen.de/en/mips/projects/funcat

The Functional Catalogue 1s an annotation scheme for the
functional description of proteins of prokaryotic and eukaryotic
origin

Hierarchical tree like structure.

Up to six levels of increasing specificity. FunCat version 2.1
includes 1362 functional categories.

FunCat descriptive, but compact: classifies protein functions not
down to the most specific level.

Comparable to parts of the ‘Molecular Function’ and ‘Biological
Process’ terms of the GO system.

More compact and stable than GO, focuses on the functional
process not describing the molecular function on the atomic level
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Computational approaches to GFP

A very schematic taxonomy of computational GFP

methods:

* Inference and annotation transfer through

sequence similarity (BLAST)
* Network-based methods
* Kernel methods for structured output spaces

* Hierarchical ensemble methods
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Biological networks
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A network-based approach

From: Sharan et al. Mol. Sys. Biol. 2007
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Network based methods: predicting a specific
functional term

Gene function prediction

Chosen class ¢

V = genes

W, = "similarity” of genes
and |

S’ = positive examples

S- = negative examples

U = unlabeled genes

Data source (hetwork) Prediction
G=<V,W, S, S> U
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Network-based methods

Several available methods:

*  Guilt by association (Marcotte et al. 1999, Oliver et al. 2000)

*  Label propagation (Zhu and Ghahramani, 2003, Zhou et al. 2004)

*  Markov random walks (Szummer and Jaakkola, 2002, Azran et al 2007)

*  Markov random fields (Deng et al. 2004)

*  Graph reqgularization techniques (Belkin et al. 2004, Dellaleu et al 2005)

*  Gaussian random fields (Tsuda et al. 2005, Mostafavi et al. 2010)

. Hopfield networks (Karaoz et al. 2004, Bertoni et al. 2011, Frasca et al. 2015)

These different approaches minimize a similar quadratic criterion to improve:
a) Consistency of the initial labeling
b) Topological consistency of the data

They exploit different types of relational data: physical and genetic interactions,
similarities between protein domains or motifs, structural and sequence
homologies, correlations between expression profiels, ...

- need for network integration algorithms
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Kernel methods

Kernel methods are largely applied to classification problems:

1. Obtaining a non-linear classifier, through a non-linear mapping
into the feature space, using an algorithm designed for linear
discrimination :

fx)=w (]

2. Whenever w can be expressed as a weighted sum over the
images of the input examples:
— _ T
W= Z aicb(xi):’f(X)—Z o, h(x;) @(x)
i i
3. The discriminant function can be expressed through a suitable
kernel function:

f(x):Zi:aiK(Xi’X)
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Kernel metods for binary classification problems
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Kernel methods for structured output spaces

A binary classier can predict whether a protein performs a
certain function:

f:X=2Y, v=01 1<i<k
How to predict the full hierarchical annotation y= |y1 VoYV

The main idea: using a kernel for structured output, that 1s a
function:

f: XXY>R

This classification rule chooses the label y that is most compatible
with an input x.

Whereas in two-class classification problems the kernel depends
only on the input (proteins), in the structured-output setting it 1s
a joint function of inputs and outputs (set of the labels)
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Kernel methods for structured output spaces:
a geometric view

plx,v) More
compatible

@

Less

compatible _

O O Margin
o P Ix.¥ |
O lx, vEy,)
From: Sokolov and Ben-Hur, 2010 w' p(x,y)=const

The classifier 1s assumed to be linear in the joint input-output feature space:

f(xylw)=w¢(xy)

G.Valentini, DI - Univ. Milano




Structured output kernel methods
for gene function prediction

* Sokolov and Ben-Hur (2010): a structured Perceptron,

and a variant of the structured support vector machine
(Tsochantaridis et al. 2005), applied to the the prediction

of GO terms in mouse and other model organisms

* Astikainen et al. (2008) and Rousu et al. (2006): Structured
output maximum-margin algorithms applied to the tree-

structured prediction of enzyme functions
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Hierarchical ensemble methods: the next
lecture ...
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