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Outline

• Gene Function Prediction (GFP)

• Gene Ontology and FunCat

• Computational approaches to GFP

• Hierarchical Ensemble methods for GFP

• Two examples of Hierarchical ensembles:

- A Bayesian approach (Barutcouglu et al, 2006)

- True Path Rule ensembles (Valentini, 2011)
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Gene function prediction

Data about 
genes

Predictor Gene 
functions

Gene function prediction can be formalized as 
a supervised machine learning problem
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Motivation

• Novel high-throughput biotechnologies accumulated a 
wealth of data about genes and gene products

• Manual annotation of gene function is time consuming and 
expensive and becomes infeasible for growing amount of 
data.

• For most species the functions of several genes are 
unknown or only partially known: “in silico” 
methodsrepresent a fundamental tool for gene function 
prediction at genome-wide and ontology-wide level 
(Friedberg, 2006).

• Computational analysis provide predictions that can be 
considered hypotheses to drive the biological validation of 
gene function (Pena-Castillo et al. 2008).
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Computational prediction supports 
biological gene function prediction

Biological genome-wide 
gene function prediction 

through direct experimental 
assays is costly and time-

consuming

Computational 
prediction methods

Computational prediction methods assist the biologist to:

• Suggest a restricted set of candidate functions that can be 
experimentally verified

• Directly generate new hypotheses

• Guide the exploration of promising hypotheses
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Characteristics of the Gene Function Prediction (GFP) problem

• Large number of functional classes: hundreds (FunCat) or thousands (Gene 
Ontology (GO)) : large multi-class classification

• Multiple annotations for each gene: multilabel classification
• Different level of evidence for functional annotations: labels at different level of 

reliability
• Hierarchical relationships between functional classes (tree forest for FunCat, 

direct acyclic graph for GO): hierarchical relationships between classes 
(structured output)

• Class frequencies are unbalanced, with positive examples usually largely lower 
than negatives: unbalanced classification

• The notion of “negative example” is not univocally determined: different 
strategies to choose negative examples

• Multiple sources of data available: each type captures specific functional 
characteristics of genes/gene products: multi-source classification

• Data are usually complex (e.g. high-dimensional) and noisy:  classification with 
complex and noisy data
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Taxonomies of gene function

1. Gene Ontology (GO)

http://www.geneontology.org/

Fine grained: classes structured according to a directed 

acyclic graph

2. Functional Catalogue (FunCat)

 http://www.helmholtz-muenchen.de/en/mips/projects/funcat/

Coarse grained: classes structured according to a tree
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The Gene Ontology

The Gene Ontology (GO) project began as a collaboration 
between three model organism databases, FlyBase 
(Drosophila), the Saccharomyces Genome Database 
(SGD) and the Mouse Genome Database (MGD), in 1998. 
Now it includes several of the world's major repositories 
for plant, animal and microbial genomes.  

The GO project has developed three structured controlled 
vocabularies (ontologies) that describe gene products in 
terms of their associated biological processes, cellular 
components and molecular functions in a species-
independent manner 
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The Gene Ontology (GO) is 
actually three Ontologies

2) Biological Process
GO term: tricarboxylic acid 
cycle
Synonym: Krebs cycle
Synonym: citric acid cycle
GO id: GO:0006099

3) Cellular Component
GO term: mitochondrion
GO id: GO:0005739
Definition: A semiautonomous, self 
replicating organelle that occurs in 
varying numbers, shapes, and sizes in 
the cytoplasm of virtually all eukaryotic 
cells. It is notably the site of tissue 
respiration. 

1) Molecular Function
GO term: Malate dehydrogenase activity
GO id: GO:0030060
(S)-malate + NAD(+) = oxaloacetate + NADH.
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(Slide downloaded from www.geneontology.org)
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GO term: tricarboxylic acid cycle 

GO Accession : GO:0006099 
Ontology : Biological Process

Definition 
A nearly universal metabolic 

pathway in which the acetyl 
group of acetyl coenzyme A is 
effectively oxidized to two CO2 
and four pairs of electrons are 
transferred to coenzymes. The 
acetyl group combines with 
oxaloacetate to form citrate, 
which undergoes successive 
transformations to isocitrate, 2-
oxoglutarate, succinyl-CoA, 
succinate, fumarate, malate, and 
oxaloacetate again, thus 
completing the cycle. In 
eukaryotes the tricarboxylic acid 
is confined to the mitochondria.

998 annotated gene products 
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Relationships 
between GO terms 

are structured 
according to a  

DAG
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Relationships between terms in the GO

The ontologies of GO are structured as a directed acyclic 
graph (DAG) G=<V,E>

V = {t | terms of the GO}          E= {(t, u) | t ε V and t ε V}

Relations between GO terms are also categorized and 
defined:

• is a   (subtype relations)

• part of (part-whole relations)

• regulates  (control relations)



G.Valentini, DI - Univ. Milano 13

Is a relation

If we say A is a B, we mean that node A is a subtype of node 
B. 

For example, mitotic cell cycle is a cell cycle, or lyase 
activity is a catalytic activity. 

The is a relation is transitive, which means that if A is a B, 
and B is a C, we can infer that A is a C. 
E.g.:
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Part of relation

The relation part of represents part-whole relationships in the GO. 

The part of relation is transitive:
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Regulates relation

If we say that A regulates B we mean that A directly affects the 
manifestation of B, i.e. the former regulates the latter.

For example, the target of the regulation may be another process—
for example, regulation of a pathway or an enzymatic reaction—
or it may be a quality, such as cell size or pH. 

Analogously to part of, this relation is used specifically to mean 
necessarily regulates:

In general regulates is not transitive
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GO D GO DAG of the BP ontology (S. cerevisiae)

1074 GO classes (nodes) connected by 1804 edges 

Graph realized through HCGene (Valentini, Cesa-Bianchi, Bioinformatics 24(5), 2008)
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Evidence codes

Evidence codes indicate how the annotation to a particular term 
is supported:

Experimental Evidence Codes:
an experimental assay has been used for the annotation

Author statement codes:
indicate that the annotation was made on the basis of a statement made by 
the author(s) in the reference cited.

Curatorial evidence codes:
annotations  inferred by a curator from other GO annotations

Computational analysis evidence codes:
based on an in silico analyses manually reviewed

Automatically-assigned Evidence Codes :
based on an in silico analyses not manually reviewed
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Groups of evidence codes

Experimental Evidence Codes 
EXP: Inferred from Experiment 
IDA: Inferred from Direct Assay 
IPI: Inferred from Physical Interaction 
IMP: Inferred from Mutant Phenotype 
IGI: Inferred from Genetic Interaction 
IEP: Inferred from Expression Pattern 

Author Statement Evidence 
Codes 

TAS: Traceable Author Statement 
NAS: Non-traceable Author Statement 

Curator Statement Evidence 
Codes 

IC: Inferred by Curator 
ND: No biological Data available 

Computational Analysis 
Evidence Codes 

ISS: Inferred from Sequence or Structural 
Similarity 

ISO: Inferred from Sequence Orthology 
ISA: Inferred from Sequence Alignment 
ISM: Inferred from Sequence Model 
IGC: Inferred from Genomic Context 
RCA: inferred from Reviewed 

Computational Analysis 

Automatically-assigned 
Evidence Codes 

IEA: Inferred from Electronic Annotation 

Obsolete Evidence Codes 
NR: Not Recorded 
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The Functional Catalogue (FunCat)
http://www.helmholtz-muenchen.de/en/mips/projects/funcat
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The Functional Catalogue (FunCat)
http://www.helmholtz-muenchen.de/en/mips/projects/funcat

• The Functional Catalogue is an annotation scheme for the 
functional description of proteins of prokaryotic and eukaryotic 
origin 

• Hierarchical tree like structure.
•  Up to six levels of increasing specificity. FunCat version 2.1 

includes 1362 functional categories. 
• FunCat descriptive, but compact: classifies protein functions not 

down to the most specific level. 
• Comparable to parts of the ‘Molecular Function’ and ‘Biological 

Process’ terms of the GO system. 
• More compact and stable than GO, focuses on the functional 

process not describing the molecular function on the atomic level 
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Computational approaches to GFP

A very schematic taxonomy of computational GFP 

methods:

• Inference and annotation transfer through 

sequence similarity (BLAST)

• Network-based  methods

• Kernel methods for structured output spaces

• Hierarchical ensemble methods
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Biological networks

S. Cerevisiae
4389 proteins
14319 interactions
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A network-based  approach

From: Sharan et al. Mol. Sys. Biol. 2007
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Network based methods: predicting a specific 
functional term
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Several available methods:
• Guilt by association (Marcotte et al. 1999, Oliver et al. 2000)
• Label propagation (Zhu and Ghahramani, 2003, Zhou et al. 2004)
• Markov random walks (Szummer and Jaakkola, 2002, Azran et al 2007)
• Markov random fields (Deng et al. 2004)
• Graph regularization techniques (Belkin et al. 2004, Dellaleu et al 2005)
• Gaussian random fields (Tsuda et al. 2005, Mostafavi et al. 2010)
• Hopfield networks (Karaoz et al. 2004, Bertoni et al. 2011, Frasca et al. 2015)

These different approaches  minimize a similar quadratic criterion to improve:
a) Consistency of the initial labeling
b) Topological consistency of the data

They exploit different types of relational data: physical and genetic interactions, 
similarities between protein domains or motifs, structural and sequence 
homologies,  correlations between expression profiels, …

- need for network integration algorithms

Network-based  methods
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Kernel methods
Kernel methods are largely applied to classification problems:

f ( x )=wTϕ ( x )

1. Obtaining a non-linear classifier, through a non-linear mapping 
into the feature space, using an algorithm designed for linear 
discrimination : 

w=∑
i

α iϕ ( x i )⇒ f ( x )=∑
i

α iϕ( x i )
Tϕ ( x )

3. The discriminant function can be expressed through a suitable 
kernel function:

f ( x )=∑
i

α i K ( x i ,x )

2. Whenever w can be expressed as a weighted sum over the 
images of the input examples:
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Kernel metods for binary classification problems

        Non linear

      kernel 
mapping

Original input space Transformed feature space
ϕ
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Kernel methods for structured output spaces

A binary classier can predict whether a protein performs a 
certain function:

f : X→Y i Y i={0,1 }

How to predict the full hierarchical annotation                                   ?y= { y1 ,y 2 ,. .. ,y k }

1≤i≤k

The main idea: using a kernel for structured output, that is a 
function:

f : X×Y →ℜ

This classification rule chooses the label y that is most compatible 
with an input x.

Whereas in two-class classification problems the kernel depends 
only on the input (proteins), in the structured-output setting it is 
a joint function of inputs and outputs (set of the labels)
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Kernel methods for structured output spaces: 
a geometric view

The classifier is assumed to be linear in the joint input-output feature space:

f ( x,y|w )=wTϕ ( x,y )

From: Sokolov and Ben-Hur, 2010
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Structured output kernel methods 
for gene function prediction

• Sokolov and Ben-Hur (2010): a structured Perceptron,

and a variant of the structured support vector machine 

(Tsochantaridis et al. 2005), applied to the the prediction 

of GO terms in mouse and other model organisms 

• Astikainen et al. (2008) and Rousu et al. (2006): Structured 

output maximum-margin algorithms applied to the tree-

structured prediction of enzyme functions
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Hierarchical ensemble methods: the next 
lecture ...


