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Genomic Medicine

“Personalised Medicine refers to a medical 
model using characterisation of individuals’ 
phenotypes and genotypes (e.g. molecular 
profiling, medical imaging, lifestyle data) for 
tailoring the right therapeutic strategy for the 
right person at the right time, and/or to determine 
the predisposition to disease and/or to deliver 
timely and targeted prevention.”

Horizon 2020 Advisory Group for Social 
Challenge “Health, demographic Change and 
Wellbeing” 



Genomic, Precision, Personalized 
Medicine

 Precision diagnostics: patients stratification on 
the basis of their biomolecular profiles

 Precision therapeutics: therapies targeted to the 
biomolecular profiles of patients

 Omics biotechnologies generate heterogeneous 
big data to profile patients

 Editing technologies able to modify the genome



Goals of Genomic Medicine (GM):

1) Determine how variations in the DNA of 
individuals can affect the risk of different 
diseases

2) Find causal explanations so 
that targeted therapies can be designed. 



✔ No well-targeted therapies available for most pathologies 

✔ Most of clinically validated targeted therapies are not actually curative:

- only a subset of patients respond to therapies 

- only limited sets of bio markers are available

✔ Most monotherapies not able to deal with the multi-pathway involved in most 
diseases

Genomic medicine challenges

✔ Need for innovative omics technologies to measure hidden “cell 
variables”

✔ Need for innovative Artificial Intelligence methods to analyze the 
data and make inferences

✔ Need for multi-disciplinary teams 
(Medicine, Biotechnology, Artificial Intelligence, Bioinformatics)



 The scale and complexity of genomic data dwarfs the small 
number of measurements that are traditionally used in laboratory 
tests (Rubin, Nature, 2015)

 ML models the relationship between DNA and the quantities of 
key molecules in the cell (cell variables,) may be associated with 
disease risks (Leung et al., Proc. of IEEE 2016). 

 The effects of genetic variation and potential therapies can be 
explored quickly, cheaply, and more accurately than can be 
achieved using laboratory experiments and model organisms.

Why we need Machine Learning for 
GenomicMedicine ?



 Phenotype from genotype prediction 
as a ML supervised problem. 

Direct inference is very hard 

need for hidden variables:
underlying biophysical chemical 
pathways, interactions, intermediate 
regulatory machinery 



 Predicting cell variables (molecular 
phenotypes) is simpler



 Why using cell variables?

1) more directly related to genotypes

2) high throughput technologies generate data profiling cell 
variables

3) cell variables help to discover targets for therapies



 Assays to measure cell variables
  

➢ DNA microarray
➢ Universal protein binding microarrays (PBMs) 
➢ ChIP-chip 
➢ High-throughput sequencing technologies:

— identifying protein binding sites 
— sequencing the genomes of different organisms 
in evolutionary studies,
— profiling the genomes of individuals in medical 
studies for the purpose of discovering variations
— analysis of transcripts

➢ DNA methylation 
➢ Assays for chromatin structure, 
➢ Assays for RNA or protein folding 
➢ ...

Wealth of data: must be processed with computational methods



CELL BIOLOGY, MACHINE LEARNING, AND GENOMIC 
MEDICINE 

Leung et al, Machine Learning in Genomic Medicine: 
A Review of Computational Problems and Data Sets Proc of IEEE, 2016



 Why ML is necessary for Genomic 
Medicine?

The details of many interactions, quantities, and 
processes in the cell are ‘‘hidden’’ from us because we do 
not have the technology to systematically measure them .

In other words, the few cell variables that we can observe 
are the outcome of many layers of interacting 
cell variables that we cannot observe. 

 Predicition of 
cell variables 
and disease risk 
from genotype

Machine learning

High-throughput 
experimental data

Modeling underlying 
biological processes



A paradigmatic example:  approaches for
mapping genetic variants with disease 

risks

1) through association (GWAS)
2) through the use of comparative genomics.
3) Through advanced ML methods trained on 
well-designed experimental data



Genome-Wide Association Studies

GWAS  detect how traits within a population can be related to variants 
in particular genomic locations using microarray and sequencing 
techniques.
P. M. Visscheret al. 10 Years of GWAS Discovery: Biology, Function, 
and Translation, Amer. J. Human Genetics, Vol. 101, Issue 1, 2017

 



Genome-Wide Association Studies

SNP-trait associations with p-value<5.0 X 10-8 in the GWAS Catalog (NHGRI-EBI) 



Drawbacks of GWAS

➢ Difficult to establish a statistical significance between a 
potentially causal variant with a change in risk for particular 
disease

➢ Indicates correlation, not causation.
➢ GWAS  provides a huge number of putative causal 

mutations →  researchers biased toward candidates that 
have greater ‘‘narrative potential’’

➢ Assessing the statistical significance of an immense 
number of SNPs is challenging and requires careful 
multiple-hypothesis correction.



Methods based on  Evolutionary 
Conservation: 

Mostly rely on sequence conservation. 

Rationale behind sequence conservation:
A. Evolution driven by two forces: 

- the slow accumulation of random mutations
- selective pressures against mutations that damage 
fitness within a population.

B. Genomes compared across species: sequence 
conservation is the effect of selective pressure (if time 
enough is passed)

Conservation scores are available for multiple organisms:
a) phastCons (Siepel et al 2005), GERP (Cooper et al. 2005) phyloP (Pollard et al. 
2010).  Conservation scores for each position in the human genome can be 
viewed online.



Methods based on  Evolutionary 
Conservation: 

OTX2: the encoded protein acts as a transcription factor and plays a 
role in brain and sensory organ development

image from the ECR browser



 Deleterious and pathogenic mutations

➢ Mutation that lowers reproductive fitness is called
deleterious

➢ Mutation that causes a disease is  called pathogenic 
(MacArthur et al. Nature, 2014).

➢ Conservation only provides information about 
deleteriousness, but deleteriousness is related to 
pathogenicity



Identification of deleterious variants: first 
proposed methods relied on coding sequences



Combined Annotation 
Dependent Depletion (CADD) 
scores

One 
Score

> 60 diverse annotations
Evolutionary constraint

Sequence context
Gene model annotations

Missense annotation
Epigenetic measurements

Functional predictions

published online 2 February 2014; doi:10.1038/ng.2892

http://cadd.gs.washington.edu



Scoring all 8.6 x 109 possible 
SNVs

"PHRED"-like scaling: -10 · log10(rank/(8.6·109))



Separating ClinVar pathogenic 
from ESP benign sites (AF > 
5%)

C-scores

GerpS

PhCons

PhyloP

PolyPhen

SIFT

Grantham



Measuring "deleteriousness" 
as proxy for pathogenicity

Proxy benign 
~15 million fixed or nearly fixed human-derived alleles (i.e. 95-
100% derived allele frequency)

Proxy deleterious 
~15 million simulated mutations (empirical model of primate 
sequence evolution)

vs.



• Ensembl Enredo-Pecan-Ortheus (EPO) six primate alignments to 
obtain the ancestral sequence A

• Include human reference genome sites that: 
     -  differ from A
     -  with AF < 5% (1000G project)  
     - Low frequency derived variants (DAF <95%) excluded 

2
5

Modified from Paten B et al. Genome Res. 
2008;18:1829-1843

Nearly fixed human derived alleles (likely to be benign)

Fixed/nearly fixed human-derived 
alleles 



Simulation of variants

● Local mutation rate (μ) as determined from 1.1Mb windows across the 
genome (±5 x 100 Kb blocks) neighborhood

Substitution parameters InDel parameters
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CADD annotations in more 
detail

• Genome-wide measurements that correlate with 
function/biological constraint :
• Accessibility of chromatin (DNase, FAIRE-seq, ...)
• Activity of region (polyA-transcript expression, histone marks)
• Predicted overlapping transcription factor motifs
• Segway genomic segmentation type inferred from ENCODE data
• Conservation scores: GERP + human-free Phast and PhyloP

+ Gene model based information, e.g. Ensembl VEP: 
• Type of change, amino acids, position in transcript, ...
• Distance to transcription start/end and splice sites
• Grantham, PolyPhen, SIFT scores

Variant Effect Predictor: 
https://www.ensembl.org/info/docs/tools/vep



CADD 1.0  uses a linear SVM as 
classifier

Rows = variants (~30M)
    y=0 for proxy benign 
    y=1 for proxy deleterious

Columns = annotations
    X1,…,Xn  63 annotations,

    indicator variables, and
    subset of interactions

Linear SVM 



Challenge 1: Dimensionality & 
correlations

3
0

High dimensionality
(>900 features, 
>400 due to amino 
acid replacements) 
and correlated 
features
Sparse and 
structured

Pearson correlation

Accessibility

TF peaks
Histone marks

Rel. transcript position

Conservation



Challenge 2: Large amount of 
mislabeling 

3
1

By definition, large proportion (< ~80%) of simulated and 
small proportion (< ~5%) of human-derived variants 
expected to be incorrectly labeled
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error: 41.2% (64.3% 
classification error on 
simulated variants and 
18.2% on human-derived 
variants)



Challenge 3: Model choice 

Choosing model and training 
parameters
Selection of interactions terms / 

 non-linear models
 Additional model parameters, e.g. 
 class weights, regularization constant 
 C for SVM, L1/L2 penalty for a logistic 
 regression
 Training termination criteria

Training computationally expensive
E.g. >200G for training matrix in R
Training and evaluation objectives 
different

Generalization 
parameter (C)

Training 
error

Test 
error

10000 41.45% 41.34%

1000 41.06% 40.97%

100 41.45% 41.39%

10 41.23% 41.19%

1 41.55% 41.42%

0.1 41.59% 41.48%

0.01 41.62% 41.48%

0.001 42.64% 42.60%

0.0001 42.67% 42.55%

CADD v1.0 SVM training

LIBOCAS <20G of memory, no 
convergence within a week of 
computation
CADD v1.0: 10 runs sampling 
matching number of 
simulated variants. Averaging 
model coefficients after 24h 
of training



• Improved training data: 

• Updated Ensembl EPO whole 

• genome alignments

• Increased number of 

• training variants (+5%)

• GraphLab 1.4 (Guestrin, 2016) logistic 

regression model trained in 11.1 min

Latest release: CADD v1.3 (July 2015)



3
4

Quang et al. used  CADD data set to train a deep neural network 
to improve performances (Quang et al. Bioinformatics, 2014)

ClinVar vs ESPTraining objective (test data)

Can deep learning improve results?



 Deep learning showed promising results in 
several contexts of Genomic Medicine:

➢ Feedforward neural networks for alternative splicing 
patterns (Leung et al. Bioinformatics 2014) 

➢ Convolutional neural networks for binding specificity by 
Alipanahi et al. Nat. Biotechnol. 2015)

➢ Convolutional neural networks for chromatin effects 
prediction (Zhou and Troyanskaya, Nat. Methods, 2015)

➢ Deep autoencoder to predict  survival in Liver Cancer 
(Chaudury et al. Clinical Cancer Research 2018)



 Deep learning

INPUT OUTPUT

HIDDEN NEURONS

Image taken from www.opennn.net/
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algorithm for a 3-layers neural network
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But learning is problematic with deep fully connected neural networks ...



Convolutional neural networks and “smart”
learning make feasible DNN training - 1

Convolutional 
network: sparsity 
of connections

Fully connected network

Locality does not mean 
reducing the receptive field ...



Convolutional neural networks and “smart”
learning make feasible DNN training - 2

Convolution allows 
parameter sharing

Pooling allows invariant 
transformations and 
generalization

Output of 
convolutional 
layer

pooling layer



Convolutional neural networks and “smart”
learning make feasible DNN training - 3

Stochastic gradient descent  and dropout learning algorithms 
(Srivastava et al., 2014 ) allow fast training of big deep 
networks.



The DeepSea method for interpreting 
non coding variants











Cell variables to be predicted:
● DNase hypersensitivity
● TF binding
● Histone modification
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State-of-the-art ML methods for the prediction of 
deleterious/pathogenic variants

● CADD (Kircher, et al. 2014)

● GWAVA (Ritchie et al 2014)

● DeepSEA  (Zhou & Troyanskaya, 2015)

● FATHMM-MKL (Shibab et al. 2015)

● Eigen (Ionita-Laza et al. 2016)

● LINSIGHT (Huang et al. 2017)

Quite surprisingly none of the above methods (apart from 
GWAVA) use imbalance-aware learning strategies 
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