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Genomic Medicine

“Personalised Medicine refers to a medical
model using characterisation of individuals’
phenotypes and genotypes (e.g. molecular
profiling, medical imaging, lifestyle data) for
tailoring the right therapeutic strategy for the
right person at the right time, and/or to determine
the predisposition to disease and/or to deliver
timely and targeted prevention.”

Horizon 2020 Advisory Group for Social
Challenge “Health, demographic Change and
Wellbeing”



Genomic, Precision, Personalized
Medicine

-~ Precision diagnostics: patients stratification on
the basis of their biomolecular profiles

> Precision therapeutics: therapies targeted to the
biomolecular profiles of patients

~ Omics biotechnologies generate heterogeneous
big data to profile patients

-~ Editing technologies able to modify the genome




Goals of Genomic Medicine (GM):

1) Determine how variations in the DNA of
individuals can affect the risk of different

diseases

2) Find causal explanations so
that targeted therapies can be designed.



Genomic medicine challenges

v No well-targeted therapies available for most pathologies

v Most of clinically validated targeted therapies are not actually curative:
- only a subset of patients respond to therapies
- only limited sets of bio markers are available

v Most monotherapies not able to deal with the multi-pathway involved in most

diseases

v Need for innovative omics technologies to measure hidden “cell
variables”

v Need for innovative Artificial Intelligence methods to analyze the
data and make inferences

v Need for multi-disciplinary teams
(Medicine, Biotechnology, Artificial Intelligence, Bioinformatics)




Why we need Machine Learning for
GenomicMedicine ?

> The scale and complexity of genomic data dwarfs the small
number of measurements that are traditionally used in laboratory
tests (Rubin, Nature, 2015)

> ML models the relationship between DNA and the quantities of
key molecules in the cell (cell variables,) may be associated with
disease risks (Leung et al., Proc. of IEEE 2016).

> The effects of genetic variation and potential therapies can be
explored quickly, cheaply, and more accurately than can be
achieved using laboratory experiments and model organisms.



Phenotype from genotype prediction
as a ML supervised problem.
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Predicting cell variables (molecular
phenotypes) is simpler
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Why using cell variables?

1) more directly related to genotypes

2) high throughput technologies generate data profiling cell
variables

3) cell variables help to discover targets for therapies



Assays to measure cell variables

> DNA microarray

> Universal protein binding microarrays (PBMs)

> ChlIP-chip

> High-throughput sequencing technologies:
— identifying protein binding sites
— sequencing the genomes of different organisms
In evolutionary studies,
— profiling the genomes of individuals in medical
studies for the purpose of discovering variations
— analysis of transcripts

> DNA methylation

> Assays for chromatin structure,

> Assays for RNA or protein folding

.

Wealth of data: must be processed with computational methods




CELL BIOLOGY, MACHINE LEARNING, AND GENOMIC
MEDICINE
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Why ML is necessary for Genomic
Medicine?

The details of many interactions, quantities, and
processes in the cell are “hidden” from us because we do
not have the technology to systematically measure them .

In other words, the few cell variables that we can observe
are the outcome of many layers of interacting
cell variables that we cannot observe.

Machine learning \ Predicition of
Modeling underlying | el variables
biological processes and disease risk

High-throughput / from genotype

experimental data



A paradigmatic example: approaches for
mapping genetic variants with disease
risks

1) through association (GWAS)
2) through the use of comparative genomics.
3) Through advanced ML methods trained on

well-designed experimental data




Genome-Wide Association Studies

GWAS hits Gene
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Trait Gene with GWAS hits Known or candidate drug
Type 2 Diabetes SLC30A8/KCNJ11 ZnT-8 antagonists/Glyburide
Rheumatoid Arthritis PADI4/IL6R BB-Cl-amidine/Tocilizumab
Ankylosing TNF-
Spondylitis(AS) INERL/PUGERA, T2 inhibitors/NSAIDs/fostamatinib
Psoriasis(Ps) IL23A Risankizumab
Osteoporosis RANKL/ESR1 Denosumab/Raloxifene and HRT
Schizophrenia DRD2 Anti-psychotics
LDL cholesterol HMGCR Pravastatin
AS, Ps, Psoriatic Arthritis IL12B Ustekinumab

GWAS detect how traits within a population can be related to variants
in particular genomic locations using microarray and sequencing

techniques.

P. M. Visscheret al. 10 Years of GWAS Discovery: Biology, Function,
and Translation, Amer. J. Human Genetics, Vol. 101, Issue 1, 2017



Genome-Wide Association Studies

th p-value<5.0 X 10 in the GWAS Catalog (NHGRI-EBI)
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Drawbacks of GWAS

> Difficult to establish a statistical significance between a
potentially causal variant with a change in risk for particular
disease

> Indicates correlation, not causation.

> GWAS provides a huge number of putative causal
mutations — researchers biased toward candidates that
have greater “narrative potential”

> Assessing the statistical significance of an immense
number of SNPs is challenging and requires careful
multiple-hypothesis correction.




Methods based on Evolutionary
Conservation:

Mostly rely on sequence conservation.

Rationale behind sequence conservation:
A. Evolution driven by two forces:

- the slow accumulation of random mutations
- selective pressures against mutations that damage
fitness within a population.

B. Genomes compared across species: sequence
conservation is the effect of selective pressure (if time

enough is passed)

Conservation scores are available for multiple organisms:
a) phastCons (Siepel et al 2005), GERP (Cooper et al. 2005) phyloP (Pollard et al.
2010). Conservation scores for each position in the human genome can be

viewed online.




Methods based on Evolutionary
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image from the ECR browser

OTX2: the encoded protein acts as a transcription factor and plays a
role in brain and sensory organ development



Deleterious and pathogenic mutations

> Mutation that lowers reproductive fitness is called
deleterious

> Mutation that causes a disease is called pathogenic
(MacArthur et al. Nature, 2014).

> Conservation only provides information about
deleteriousness, but deleteriousness is related to
pathogenicity



|dentification of deleterious variants: first
proposed methods relied on coding sequences

Typical pipeline for identification of deleterious variants
found in coding sequence (WES, panels, ...)

Conservation score
Entropy, frequencies, ...

Physicochemical prop.
Biochemical properties

Input Machine
amino acid 3D structure Iearm:g / Output
substitution Secondary structure Tﬂ:f:ﬁc:l predictions
and proteln |D Surface area properties
B factors, ... ihoeds

Ann. from swissprot
pr‘edicted scores

dbSNF, ...




published online 2 February 2014; doi:10.1038/ng.2892
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A general framework for estimating the relative
pathogenicity of human genetic variants

Martin Kircher!*, Daniela M Witten?>, Preti Jain®%, Brian ] O’Roak!4, Gregory M Cooper? & Jay Shendure!

Current methods for annotating and interpreting human
genetic variation tend to exploit a single information type
(for example, conservation) and/or are restricted in scope (for

comparable, making it difficult to evaluate the relative importance
of distinct variant categories or annotations. Third, annotation
methods trained on known pathogenic mutations are subject to major

/

> 60 diverse annotations
Evolutionary constraint
Sequence context
Gene model annotations
Missense annotation
Epigenetic measurements
Functional predictions

~
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http://cadd.gs.washington.edu



Scoring all 8.6 x 10° possible
SNVs

1.0

00 02 04 06 0.8

Scaled C-score
10 20 30 40 50 60

0

Normalized frequency of categories by scaled C-score

Disease
(905)

10 15 20 25 30

Median nonsense C-Score by "

tta.t

Essential GWAS LoF
(74) (157) (45)

"PHRED"-like scaling: -10 -

35 40 45

gene class"

Olfactory Other
(374) (500)

log,,(rank/(8.6:10°))

50 =51

STOP LOST
[ (11; 0-43)

STOP GAINED
L] (37; 0-99)

|:| CANONICAL SPLICE
(15; 0-37)

B NON SYNONYMOUS
(15; 0-38)

. SYNONYMOUS
(7; 0-27)

. NONCODING CHANGE
(4; 0-35)

SPLICE SITE
[ (7; 0-35)

INTRONIC
L] (3; 0-39)

|:| REGULATORY
(5; 0-37)

] DOWNSTREAM
(3; 0-38)

3'UTR
[ (5; 0-34)

5'UTR
L (6; 0-32)

UPSTREAM
L (3; 0-39)

INTERGENIC
[ (2; 0-39)




Separating ClinVar pathogenic
from ESP benign sites (AF >
5%)

C-scores Missense variation (n=13,553)
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/Proxy benign
~15 million fixed or nearly fixed human-derived alleles (i.e. 95-
100% derived allele frequency)

(&

VS.

Proxy deleterious

~15 million simulated mutations (empirical model of primate
sequence evolution)

&




Fixed/nearly fixed human-derived
alleles

* Ensembl Enredo-Pecan-Ortheus (EPO) six primate alignments to
obtain the ancestral sequence A
* Include human reference genome sites that:
- differ from A
- with AF < 5% (1000G project)
- Low frequency derived variants (DAF <95%) excluded

Nearly fixed human derived alleles (likely to be benign)

D Multiple Sequence Ancestor Alignment
20

Modified from Paten B et al. Genome Res.
2008,;18:1829-1843



CpG island

mutation
Substitution parar‘ne/tep/rate InDel parameters
Local
mutation —»p 0.522% MCpG 4.979% 3 -
rate %CpG 1.9%
A>C 4.574%
A>G 17.507% m |
A>T 4.042% °© 1 deletion per ~16 SNV
C>A 4.610% C>A 3.00% > 1 insertion per ~22
C>G 4.350% C>G 2.48% 3 SNV
C>T 14.896% C>T 44.60% g S -
G>A 14.978% G>A 44.38% -
G>C 4.358% G>C 2.51%
G>T 4.620% G>T 3.03% o
T>A 4.001% °
T>C 17.469%
T>G 4.595% -
0 10 20 30 40

Length
« Rates obtained by comparison between the human reference genome and
and the inferred ancestral human-chimpanzee sequence

* Local mutation rate (n) as determined from 1.1Mb windows across the
genome (x5 x 100 Kb blocks) neighborhood



CpG island
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- Genome-wide measurements that correlate with

function/biological constraint :

* Accessibility of chromatin (DNase, FAIRE-seq, ...)

* Activity of region (polyA-transcript expression, histone marks)

* Predicted overlapping transcription factor motifs

* Segway genomic segmentation type inferred from ENCODE data
* Conservation scores: GERP + human-free Phast and PhyloP

+ Gene model based information, e.g. Ensembl VEP:
* Type of change, amino acids, position in transcript, ...

* Distance to transcription start/end and splice sites
* Grantham, PolyPhen, SIFT scores

Variant Effect Predictor: ’
https://www.ensembl.org/info/docs/tools/vep f:__,?.



Rows = variants (~30M)
y=0 for proxy benign
y=1 for proxy deleterious

Columns = annotations
X,,...,.X_ 63 annotations,

Indicator variables, and
subset of interactions

Linear SVM




Challenge 1: Dimensionality &
correlations

High dimensionality
(>900 features,
>400 due to amino
acid replacements)
and correlated
features

Sparse and
structured
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By definition, large proportion (< ~80%) of simulated and
small proportion (< ~5%) of human-derived variants
expected to be incorrectly labeled

™ Simulated A

© | m - verage model test

i = Human derved error: 41.2% (64.3%

o classification error on
> ~ simulated variants and
@ 18.2% on human-derived
O o .
0 —- variants)

O

d _

o

o

-2 -1 0 1 2

Distance to decision boundary

= W



Challenge 3: Model choice

CADD v1.0 SVM training

Choosing model and training
parameters
Selection of interactions terms /
—non-linear models
— Additional model parameters, e.q.
— class weights, regularization constant
— C for SVM, L1/L2 penalty for a logistic
— regression
—Training termination criteria 'ELBn?/gfgSe:feofvif;ir:gTVZ'glé o
Training computationally expensive computation

E.g. >200G for training matrix in R CADD v1.0: 10 runs sampling
- . - . . matching number of

Training and evaluation objectives simulated variants. Averaging

different model coefficients after 24h

of training



ClinVar vs ESP (5% cutoff, n=13373/13373)

* Improved training data: 1.0- —
- Updated Ensembl EPO whole -
* genome alignments
Z06-
* Increased number of 5 )
. - . . o B o4l " m CADD v1.0 (94.84%)
training variants (+5%) 0.4 7 m oADD 13 (65.73%)
B GerpsS (88.79%)
0.2 PhCons (86.13%)
W PhyloP (87.64%)
00 mutindex (57.49%)
* GraphLab 1.4 (Guestrin, 2016) logistic 00 02 04 06 08 10
1-Specificity

regression model trained in 11.1 min



Quang et al. used CADD data set to train a deep neural network
to improve performances (Quang et al. Bioinformatics, 2014)

ClinVar vs ESP

Training objective (test data)
1.0} - 10f e ]
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o.0l g --- Random guess | ool L --- Random guess
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Deep learning showed promising results in
several contexts of Genomic Medicine:

> Feedforward neural networks for alternative splicing
patterns (Leung et al. Bioinformatics 2014)

> Convolutional neural networks for binding specificity by
Alipanahi et al. Nat. Biotechnol. 2015)

> Convolutional neural networks for chromatin effects
prediction (Zhou and Troyanskaya, Nat. Methods, 2015)

> Deep autoencoder to predict survival in Liver Cancer
(Chaudury et al. Clinical Cancer Research 2018)



Deep learning
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Perceptron

o I n S p i red by n e U ro n Direction message travels

Soma
(cell body)

« Simple binary classifier
— Linear decision boundary

Bias 1~ WMo

i n
Lif wo+ Y wx, >0
x2 A 0 - 4 i=1
W,

0 otherwise

X4 -+ X1000.T



Activation function

 \What makes the neuron “fire”?

— Step function

(

) 0 1f x<0
X) =+
1 1 x=20
— Sigmoid function
1
J(xX)=——
I+e

— Rectified linear unit (ReLU)

f(x)= maX(O, x)

Images from Wikipedia: Activation function

J(x)

J(x)

J(x)




Neural networks

Single perceptron not useful . —
In practice Perceptron
Input O

Neural network combines

Output
layers of perceptrons
Learn “hidden” features Hidden layer 2
Complex decision boundary Hidden layer 1

Train with backpropagation ot



A schematic view of the error backprogation
algorithm for a 3-layers neural network

N [
error , .
¢ )

Output

Hidden
layers

' Forward computation

Input

' Error backpropagation



A schematic view of the error backprogation
algorithm for a 3-layers neural network

N [
error , .
¢ )

Output

Hidden
layers

' Forward computation
' Error backpropagation

Input

But learning is problematic with deep fully connected neural networks ...




Convolutional neural networks and “smart”
learning make feasible DNN training - 1

Convolutional
network: sparsity
of connections

Locality does not mean
reducing the receptive field ...



Convolutional neural networks and “smart”
learning make feasible DNN training - 2

Convolution allows Pooling allows invariant
parameter sharing transformations and
generalization
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Output of
convolutional
layer



Convolutional neural networks and “smart”
learning make feasible DNN training - 3
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Stochastic gradient descent and dropout learning algorithms
(Srivastava et al., 2014 ) allow fast training of big deep
networks.



The DeepSea method for interpreting
non coding variants

nature methods

T et by, Hud §ili i g4 dal chabem hirg

Predicting effects of
noncoding variants with

deep learning-based
sequence model

Jian Zhou'-* & Olga G Troyanskaya!=#

Identaifying functional effects of noncoding vanants 1s a
majer challenge in human genetics. To predict the noncoding-
varant effects de nove from sequence, we developed a deep
learming—based algerithmic framewark, DeepSEA (http://
deepsea.princeton.adu/), that directly learns a regulatory
sequence code from large-scale chromatin-profiling data,
enabling prediction of chromatin effects of sequence
alterations with single-nucleotide sensitivity. We further
used this capability to improve prientization of functional
variants including expression quantitative trait loci (e0QTLs)
and disease-asseciated variants.



Almost all single nucleotide variants

Somatic mutations

in cancer are noncoding
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However, very few of these are driver mutations

Khurana
Nature
Reviews
Genetics
2016



Ways a noncoding variant can
be functional

Disrupt DNA sequence motifs
— Promoters, enhancers

* Disrupt miRNA binding
Mutations in introns affect splicing
Indirect effects from the above changes

Examples in Ward and Kellis Nature Biotechnology 2012



Variants altering motifs
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Khurana Nature Reviews Genetics 2016



Variants affect proximal and
distal regulators

Loss or gain due to s
mutations ~.__

Promoter
ncRNA locus

l Transcription

: m NCRNA NN mRNA

Qsl transcli“inal/‘
Khurana Nature Reviews regulation

Genetics 2016




DeepSEA

e Given:

— A sequence variant and surrounding sequence
context

* Do:

— Predict TF binding, DNase hypersensitivity, and
histone modifications in multiple cell and tissue
types

— Predict variant functionality

Cell variables to be predicted:
 DNase hypersensitivity

e TF binding

« Histone modification




Classifier input and output

N genomic windows

« Qutput
— 200 bp windows of genome
— Label 1 if window contains peak

— Label for each epigenetic data type

H3K4me3

« Multiple types of epigenetic features

» Multiple types of cells and tissues

Roadmap Epigenomics
Consortium Nature 2015

 Input: 1000 bp DNA sequence centered at window
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Desired properties for
epigenomic classifier

+ Learn preferences of DNA-binding proteins
— Locally: “motifs” and other simple sequence patterns
— Sequence context: “cis-regulatory modules”

200 bp b—
(K562 cells)

« Support nonlinear decision

boundaries ﬂ
Neph Nature 2012  DNA sequence ;.: :6 CT 6 6
* Multiple, related prediction tasks
i I e R et

Roadmap Epigenomics Consortium Nature 2015



First hidden layer

 First hidden layer scans input sequence

 Activation function fires if “motif’ is recognized

1000100001

Motif width
(window size)
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First hidden layer

* Multiple hidden nodes to recognize different
motifs at a particular position

» Check for motif at each position in sequence
A hidden node W =L — s + 1 starting positions

«— With its own
weight vector

D motifs
(hidden
layer
depth)

H@QOp

1.
0
0
0

A
C
G
T




First layer problems

* We already have a /ot of parameters
— Each hidden node has its own weight vector

* We're attempting to learn different motifs at
each starting position



Convolutional layers

* Input sequence and hidden layer as matrices

« Share parameters for all hidden nodes in a row
— Search for same motif at different starting positions

DX W
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vector for @@ @
all nodes |:>
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Pooling layers

* Account for sequence context

« Multiple motif matches in a cis-regulatory
module

» Search for patterns at a higher spatial scale
— Fire if motif detected anywhere within a window



Pooling layers

bl

Pooling
layer

/

Convolutional

layer

T . //

e &

 Take max over window of 4 hidden nodes
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Subsequent hidden layers

* Next convolutional hidden layer on top of

pooling layer
D' is new number of DX W'
patterns o
5 & - onvolutiona
|
s' Is new window size I7_J Fl FI ayer
Ij I]j Ij DX (W/4)

W‘:(W/4)—S'+1 \
Pooling
layer

Once again,

shared weight

vector for all
nodes in a row \‘ﬁ -




Full DeepSEA neural network

» Multitask output makes simultaneous
prediction for each type of epigenetic data

« RelU activations

919 classes

Fully connected layer

Pooling layer

Convolutional layer

Pooling layer

Convolutional layer

Pooling layer

Convolutional layer
Input sequence

27



Predicting epigenetic annotations

» Compute median AUC ROC for three types of

Histone marks

classes
Transcription factors DNase |-hypersensitive sites
1.00 1.00 - 1.00
8 0.75- 8 0.75- 8 0.75-
2 | 2 2
@ 050 % 0.50 @ 0.50
o) o o)
Q. Q Q.
: g :
S 0.25 E 025+ = 0.25
= — -
0.958 0.923
0~ 0 04
1 I 1 I 1 | | | | |
0 025 050 0.75 1.00 0 025 050 075 1.00
False positive rate False positive rate

Zhou and Troyanskaya Nature Methods 2015
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Predicting functional variants

» Can predict epigenetic signal for any novel
variant (SNP, insertion, deletion)

» Define novel features to classify variant
functionality

— Difference in probability of signal for reference and
alternative allele

« Train on SNPs annotated as regulatory variants in
GWAS and eQTL databases



Predicting functional variants

Probability Output

Boosted logistic I
I Boosted logistic
reg ression regression classliﬁer

Take absolute value, concatenate, and standardize features (1842 features)

Evolutionary conservation Absolute differencefeatures Relative difference I
scores (919 features) features (919 features) CO nse rvat 1on
(PhastCons, PhyloP, -
GERP++ neural evolution P(reference) - P(alternative) log :(‘;;Lm‘”) d nd p red | Cted
and rejected substitution . :
Soures) \‘>.<]‘ epigenetic
! Predicted chromatin Predicted chromatin Im paCt of
features for features for .
reference allele altemative allele variant as

features

T

1000bp flanking genomic sequences with each allele

!
|

Zhou and Troyanskaya Nature Methods 2015 Variantinput



DeepSEA summary

Ability to predict how unseen variants affect
regulatory elements

Accounts for sequence context of motif
Parameter sharing with convolutional layers

Multitask learning to improve hidden layer
representations

Does not extend to new types of cells and
tissues

AUC ROC is misleading for evaluating
genome-wide epigenetic predictions



State-of-the-art ML methods for the prediction of
deleterious/pathogenic variants

« CADD (Kircher, et al. 2014)

 GWAVA (Ritchie et al 2014)
 DeepSEA (Zhou & Troyanskaya, 2015)
e FATHMM-MKL (Shibab et al. 2015)

* Eigen (lonita-Laza et al. 2016)

* LINSIGHT (Huang et al. 2017)

Quite surprisingly none of the above methods (apart from
GWAVA) use imbalance-aware learning strategies
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