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Abstract

Objective:

In the context of “network medicine”, gene prioritization methods represent
one of the main tools to discover candidate disease genes by exploiting the
large amount of data covering different types of functional relationships be-
tween genes. Several works proposed to integrate multiple sources of data
to improve disease gene prioritization, but to our knowledge no systematic
studies focused on the quantitative evaluation of the impact of network inte-
gration on gene prioritization. In this paper we aim at providing an extensive
analysis of gene-disease associations not limited to genetic disorders, and a
a systematic comparison of different network integration methods for gene
prioritization.

Materials and Methods:

We collected 9 different functional networks representing different functional
relationships between genes, and we combined them through both unweighted
and weighted network integration methods. We then prioritized genes with
respect to each of the considered 708 medical subject headings (MeSH) dis-
eases by applying classical guilt-by-association, random walk and random
walk with restart algorithms, and the recently proposed kernelized score func-
tions.

Results:

The results obtained with classical random walk algorithms and the best sin-
gle network achieved an average area under the curve (AUC) across the 708
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MeSH diseases of about 0.82, while kernelized score functions and network in-
tegration boosted the average AUC to about 0.89. Weighted integration, by
exploiting the different “informativeness” embedded in different functional
networks, outperforms unweighted integration at 0.01 significance level, ac-
cording to the Wilcoxon signed rank sum test. For each MeSH disease we
provide the top-ranked unannotated candidate genes, available for further
bio-medical investigation.

Conclusions:

Network integration is necessary to boost the performances of gene prioriti-
zation methods. Moreover the methods based on kernelized score functions
can further enhance disease gene ranking results, by adopting both local and
global learning strategies, able to exploit the overall topology of the network.

Keywords: Gene disease prioritization, network integration, heterogeneous
data fusion, MeSH descriptors, node label ranking

1. Introduction

The raising awareness that a disease is rarely a consequence of an abnor-
mality on a single gene, but it is usually the result of complex interactions
and perturbations involving large sets of genes and their relationships with
several cellular components, lead to development of the “Network medicine”,
a network based approach to human disease [1]. In this context, gene prior-
itization methods have progressed quickly with the aim of discovering can-
didate “disease” genes by exploiting the large amount of available “omics”
data covering different types of relationships between genes [2].

According to [3], automatic gene prioritization methods typically produce
their outputs either by filtering the candidate genes into smaller subsets or
by ranking the candidate genes.

Filtering methods are based on the definition of a set of criteria motivated
by the available knowledge of the molecular basis of the disease under inves-
tigation. Their main objective is to reduce the set of potential disease genes
by exploiting a comparison of all the candidate genes with a sort of gene
template, which encodes the selection criteria in a set of rules [4, 5]. Despite
having been proved effective [6, 7], the hard filtering policy underlying their
functioning is a double-edged sword. Indeed, when a relevant gene fails to
meet just one of the criteria encoded in the filter, it becomes a false negative,



and this prevents the ability to detect genes that are actually involved in the
disease, but with mechanisms not been previously reported in literature.

The second class of gene prioritization methods (ranking based) avoids the
limitations of filtering methods simply by ranking candidates from most to
least promising ones. As in the case of filtering methods, ranking based meth-
ods can integrate multiple sources of evidence in the gene prioritization pro-
cess. These methods can be further classified into three main categories [3]:
text mining [8, 9], similarity profiling and network analysis-based [10-13].

Although powerful in their ability to make a very effective usage of the
available knowledge, text mining approaches show a strong bias toward the
identification of straightforward candidates for which abundant knowledge is
already available [14]. On the contrary, similarity profiling [15] and network
analysis based gene prioritization systems are not affected by this limitation.
Indeed they can exploit both knowledge bases (increasing the specificity of
predictions) and raw data (for novel predictions).

In particular, network based methods are gaining increasing popularity in
disease gene prioritization (see [16, 17] for recent specific reviews). Accord-
ing to this approach, nodes represent genes and edges encode some notion
of functional similarity between genes, e.g. direct molecular interactions,
transcriptional co-expression/regulation, sequence or structure similarity or
paralogy [18]; the prioritization list is then constructed by exploiting the
topology and the edge weights of the network and a set of “core” genes known
to be associated to the disease under study. In this category some methods
used a random walk or a heat kernel [19], while others applied Web and so-
cial networks methods on a protein-protein interaction (PPI) network [20],
and other approaches exploited PPI and pathway information to prioritize
candidate genes [15, 21].

Most gene prioritization methods exploited different sources of informa-
tion and gene networks [22, 23], ranging from phenotypic similarities be-
tween diseases and functional similarity between genes [24], to GO ontology
and InterPro domain annotations [25] and protein-protein interactions, gene
expression and common membership to KEGG pathways [26], and also to
several other sets of data sources [15, 27, 28] (see [22] for a more detailed
presentation of the different combinations of sources of evidence exploited by
recent disease genes prioritization methods).

Despite the large availability of works describing specific combinations of
datasets to develop tools suitable for disease genes prioritization, “our un-
derstanding of how to perform useful predictions using multiple data sources
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or across biological networks is still rudimentary” [3], and in particular, to
our knowledge, no systematic studies focused on the comparison of different
network integration methods.

To contribute to fill this gap, in this paper we propose, compare and
analyze different network integration strategies to combine multiple gene
networks constructed with different sources of single or heterogeneous data.
In particular we apply simple unweighted integration methods, that combine
gene networks solely on the basis of the structural characteristics of the nets,
and we propose weighted integration methods that combine networks ac-
cording to the “predictiveness strength” of each type of network, estimated
through the assessment of the accuracy of the learning algorithm trained
on each of the combined networks. We constructed and integrated 9 differ-
ent gene networks, including also semantic similarity-based gene networks,
since it has been recently shown that they improve gene-disease prioritiza-
tion [29, 30].

Another contribution of this work consists in the application of the ker-
nelized score functions to the gene-disease prioritization problem. This novel
semi-supervised network method for node label ranking adopts both local
and global learning strategies to learn from both the neighborhood of each
node and at the same time from the overall topology of the network [31, 32].

Another open issue is represented by the choice of the “seed genes” to
characterize the diseases involved in the gene prioritization analysis [22].
Previous methods focused on specific diseases [33, 34] or on genetic dis-
eases [23, 35| according e.g. to the online Mendelian inheritance in man
(OMIM) database [36]. In order to extend the analysis to a larger set of
diseases, not limited to genetic disorders, in this work we used “seed genes”
borrowed from the MeSH taxonomy of diseases [37], by exploiting gene-MeSH
disease associations provided by the comparative toxicogenomics database
(CTD) [38].

Summarizing, our main contributions can be schematized as follows:

e We propose one of the widest gene-disease prioritization studies, involv-
ing gene-MeSH disease associations covering more than 700 diseases,
not limited to genetic disorders.

e We propose novel weighted integration methods able to combine multi-
ple networks according to the “predictiveness strength” of each source
of data;



e A comparative analysis of different network-integration methods, and
a quantitative evaluation of their impact on gene-disease prioritization;

e An extensive application of the kernelized score functions, a recently
proposed semi-supervised network-based method that embeds local and
global learning strategies, to the gene disease prioritization problem.

This paper is structured as follows. In Section 2.1 we introduce MeSH and
the pipeline we applied to annotate the “seed genes” used in our experiments.
Section 2.2 describes the functional networks considered in our experiments.
Then in Section 2.4 the unweighted and weighted integration methods and
in Section 2.5 the gene prioritization methods used in our experiments are
introduced. The overall experimental setting is described in Section 3.1, and
the results relative to the application of the gene prioritization methods to
the single functional networks are discussed in Section 3.3. These results
are then quantitatively compared with those obtained through unweighted
(Section 3.4) and weighted (Section 3.5) network integration methods, while
in Section 3.6 the top-ranked unannotated genes and the AUC and p-value
associated to each of the 708 MeSH diseases analyzed in this work are pre-
sented. The Conclusions outline the main findings of this work and suggest
novel research lines in the context of the gene prioritization and network
integration problems.

2. Materials and Methods

2.1. MeSH: Medical Subject Headings

MeSH is a controlled vocabulary produced by the National Library of
Medicine for indexing, cataloging, and searching biomedical and health-
related information and documents (http://www.nlm.nih.gov/mesh, ac-
cessed: 30 November 2013). The descriptors or subject headings of MeSH
are arranged in a hierarchy. MeSH covers a broad range of topics and its
current version consists of 16 top level categories. The MeSH thesaurus is
used for indexing articles from the world’s leading biomedical journals for the
MEDLINE/PubMED database. One of the MeSH top level terms (Diseases)
is used to label the gene sets used in our experiments and to evaluate the
impact of network integration on the inference of relationships between genes
and diseases.



The associations between the genes and the MeSH disease terms have
been downloaded from the CTD [38], a public resource that provides infor-
mation about the interaction of environmental chemicals with gene prod-
ucts and their effects on human diseases. These relationships are annotated
from the scientific literature by professional biocurators who manually cu-
rate a triad of core interactions including chemical-gene, chemical-disease
and gene-disease relationships. The CTD integrates these core data to gen-
erate inferred chemical-gene-disease networks.

To provide a “gold standard” of “seed genes” to infer novel gene-disease
associations, we first downloaded the associations between the human genes
considered in our experiments (Section 2.2) and all the available MeSH dis-
ease terms available in CTD. We then filtered out all the diseases associated
with less than 5 and more than 200 genes in order to both ensure a minimum
amount of a priori information for our prediction tasks and to avoid classes
whose associated gene sets are too heterogeneous. This led to the definition
of a set composed by 708 MeSH diseases. (Fig. 1).

[Figure 1 about here.|

The full set of the “gold standard” seed genes - MeSH disease associations is
available from http://homes.di.unimi.it/valentini/DATA/DiseaseGeneNetworks
(Accessed: 30 November 2013).

It is worth noting that MeSH controlled vocabulary of diseases has been
just proposed in the context of text-mining-based gene prioritization [39], but
those results cannot be safely generalized to network-based methods, since
text-mining approaches show a bias toward genes for which a large “a priori”
knowledge is actually available in literature [14].

2.2. Functional networks

We collected different sources of data to represent different functional rela-
tionships between genes. More precisely, we constructed gene networks using
physical and genetic interactions, transcriptional co-expression/regulation
and localization, protein domain and gene chemical interactions, co-occurrence
of disease-gene pairs in scientific texts, homologues implicated in generating
similar phenotypes in other organisms, common molecular pathways between
gene products, and common GO annotations.

Table 1 summarizes the main characteristics of the nine gene functional
networks used in our experiments. Each gene network includes a set .S of 8449



genes (or a subset of them) selected according to the procedures described
in [40]. We considered a set of genes for which sufficient functional data
are available, and for which a relatively comparable coverage across gene
networks can be assured. In this way, on the one hand a certain amount of
functional information is ensured for each gene, and on the other hand the
available information for each considered gene results comparable.

[Table 1 about here.]

In the rest of this section we provide a brief description of each gene net-
work. The full data sets are downloadable from: http://homes.di.unimi.
it/valentini/DATA/DiseaseGeneNetworks (Accessed: 30 November 2013).

Functional interaction network - finet. In [41] Wu and colleagues constructed
a functional protein interaction network based on functional interactions pre-
dicted by a Naive Bayes classifier trained on pairwise relationships extracted
from curated pathways and non-curated sources of information, including
protein-protein interactions, gene co-expression, protein domain interaction,
Gene Ontology (GO) annotations and text-mined protein interactions. From
the original network we extracted the subnetwork including the subset S of
genes used in our experiments.

Human net - hnnet. Similar in spirit to the approach in [41], the functional
network construction method presented in [27] by Lee and colleagues inte-
grates diverse lines of evidence in order to produce a functional human gene
network. It has been used in several tests to predict causal genes for hu-
man diseases and to increase the power of genome-wide association studies.
Also in this case we extracted from Human Net the subnetwork including
the subset S of genes.

Cancer module network - cmnet. By exploiting gene expression profiling,
Segal and colleagues constructed a functional module map for cancer to in-
vestigate commonalities and variations between different types of tumor [42].
In their work the authors analyzed a collection of expression profiles with the
aim to identify sets of genes that act in concert to carry out specific functions
in different cancer types, and then produced a module map constituted by a
collection of the gene sets associated to specific cancer gene modules.

We used the relationships between the human genes and the Segal’s can-
cer modules [42] to construct a bipartite network. This network has been



projected onto the gene space thus originating the cmnet network. The type
of projection used in the construction of cmnet is a binary bipartite network
projection, meaning that the weight of the edge linking two genes in the
projected network is 1 if the two genes share at least one neighbour in the
original bipartite network and 0 otherwise (Fig. 2 a).

[Figure 2 about here.|

Gene chemical network - genet. The CTD stores information mined from
literature about the interactions between genes, chemicals and diseases in
many species. Since one of the objectives of this work is the evaluation of
the capabilities of heterogeneous networks integration in the prediction of
genes-diseases relationships, we used the genes-chemicals relationships avail-
able in the CTD to construct a gene interactions network (gcnet). To this
end we downloaded from CTD the chemicals-genes interactions file (http://
ctdbase.org/reports/CTD_chem_gene_ixns.csv.gz, accessed: 30 Novem-
ber 2013) and we constructed a bipartite network. We then performed a
SUM projection onto the gene space, by which the weight of an edge link-
ing two genes equals the number of the common neighbors of the genes in
the bipartite network. The resulting network has finally been binarized us-
ing a cutoff of five or more common chemicals interactors to set a binary
interaction between a pair of genes (Fig. 2 b).

BioGRID database network - dbnet. This is a protein-protein interaction net-
work constructed using direct physical and genetic interactions obtained from
BioGRID [43] (v. 3.2.96 - January 2013).

BioGRID projected network - bgnet. Instead of setting-up a binary interac-
tion network based on the direct interaction between the S genes, we con-
structed a bipartite network based on the content of the BioGRID, but using
as top nodes the S genes and as bottom nodes all the human genes B avail-
able in BioGRID. More precisely, if in BioGRID does exist an interaction
between a node a € S and x € B, we added the (a,x) edge in the bipartite
network. Then, according to a binary projection to the S space, an edge
(a,b),a € S,;b € S is added to the projected network if @ and b share at least
one common node x € B in their neighborhoods of the bipartite network. In
this way we can capture indirect interactions between pairs of genes.



Semantic similarity-based networks: bpnet, mfnet and ccnet. The last three
networks considered in this work have been constructed by computing the
Resnik semantic similarities [44] between the terms of each division of the
Gene Ontology: biological process, molecular function and cellular compo-
nent. We obtained a pairwise gene similarity measure by choosing the max-
imum Resnik semantic similarity between all the terms for which the two
genes are annotated. The resulting networks were named bpnet, m fnet and
ccnet respectively. The semantic similarity measures have been computed
using a MATLAB application implementing methods described in [45].

2.8. Basic notation

Gene networks for disease prioritization can be represented through an
undirected weighted graph G = (V, E), where V is the set of vertices corre-
sponding to genes and F the set of edges corresponding to some notion of
functional relationship between pairs of genes/vertices. Vertices of the graph
and genes can be denoted with natural numbers 1,2, ..., n, since each vertex
of GG is univocally associated to a gene. The corresponding adjacency matrix
W with weights w;; represents the “strength” of the relationship between
vertices 7,5 € V; Vi C V denotes a subset of “positive” vertices belonging
to a specific MeSH subject heading M (e.g. a MeSH descriptor of a disease
— Section 2.1).

We considered the integration of n gene networks, G¢ = (V¢4 E4),1 < d <
n, and we denote by G the integrated network G = (V, E), with V = |J, V¢
and E C [J, E?. The weights of the edges (i, j) € E? are represented with w,.
Finally a set of features &; € X can be associated to a gene i. For instance,
x; could represent the genetic or protein interactions, the expression profile
or whatever available data for a given gene/vertex i.

2.4. Network integration methods

We designed and applied different network integration methods to com-
bine different sources of evidence of functional relationships between genes.
Our aim consists in providing an analysis of the impact of network integra-
tion to gene prioritization, in order to understand whether the combination
of multiple networks, constructed from different sources of information, can
significantly enhance the performance of gene prioritization methods, and
to provide a quantitative assessment of this hypothesized improvement. To
this end we programmatically considered relatively simple methods, rang-
ing from unweighted to weighted network integration algorithms, excluding
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more complex algorithms proposed in the literature, to allows us to perform
an extensive analysis involving a large set of diseases, a large set of human
genes and a significant subset of the integration methods applied to gene
prioritization problems.

Unweighted methods are characterized by networks combinations depend-
ing only on the structure of the network itself, while weighted ones depend
on an estimate of the learning capabilities of network algorithms or on the
assessment of the “informativeness” of the available data. The methods pro-
posed in Section 2.4.2 (unweighted integration) and in Section 2.4.3 (weighted
integration) share several general characteristics with previously proposed
methods applied in gene prioritization problems or in other computational
biology problems such as gene function prediction [46-49].

For instance, unweighted approaches such as the simple union of networks
has been applied to the prioritization of genes in Alzheimer’s disease using a
guilt-by-association inference rule [47], or to the integration of PPI data of
model organisms mapped to human through homology [19], or in the con-
text of the functional interpretation of genomic variants to the integration of
gene interaction networks [50], or to find functional modules in networks inte-
grated from multiple public databases [51]. Other unweighted approaches for
gene prioritization average the scaled Gram matrices obtained from different
sources of functional information using suitable kernels [46].

Weighted approaches differ for the way the weights associated to each
network are estimated. For instance, weights can be obtained through an an
iterative algorithm shown to be equivalent to an expectation-maximization
(EM) optimization algorithm [52], or weights are learnt by solving a quadrat-
ically constrained linear program in a novelty detection setting of the gene
prioritization problem [46], or in the context of the gene function prediction
problem weights can be interpreted from a probabilistic standpoint [49] or
estimated using the PPV (positive prediction value) associated to the edges
of the graph [48].

In the following sections we describe the network pre-processing and the
unweighted and weighted network integration methods that we tested in our
experiments.

2.4.1. Network pre-processing

Before the combination phase each network underwent a pre-processing
step to allow networks for having different number of nodes, to filter some
edges in too dense graphs, and to make the weights comparable across differ-
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ent networks. In particular, to deal with genes missing in some networks, we
filled the corresponding rows/columns of the symmetric adjacency matrix W
with zeros. To reduce the complexity of the network and the noise introduced
by too small edge weights, as a pre-processing step we eliminated edges below
a given threshold. In this way we removed very weak similarities between
genes, but at the same time we chose relatively low thresholds to avoid the
generation of “singletons” with no connections with other nodes. In brief, we
tuned the threshold for each network to guarantee that each vertex has at
least one connection: for each node/gene we computed the maximum of the
weights associated to its edges, and between the selected maxima we chose
the minimum as a general threshold for the network. Finally, to make the
weights comparable across different networks, avoiding the undesirable effect
that a certain network could overcome the others because of the high values
of its weights, we applied both Laplacian regularization [53] and a simple
linear regularization to obtain weights 1, € [0, 1]:

Wij — Mg 4 Wy

~

wij =

: (1)

MaXy y Wey — Milly y Wy

where indices x,y € V refer to the vertices/genes of the underlying graph.
In our experiments we adopted the regularization shown in (1), since the

results were comparable with Laplacian regularization (data not shown).

2.4.2. Unweighted network integration

In the unweighted network integration the combination of different net-
works depends only on the structure and the characteristics of each network,
and no learning is involved in the computation of the integrated network.

Unweighted average (UA). One of the widely applied approach is represented
by the UA method [32, 46]. The weight of each edge of the combined networks
is computed simply averaging across the available n networks:

R
d=1

Note that in this integration approach also weights w;; = 0 contributes to the
average, independently of the fact that the measure of functional relationship
between genes ¢ and j underlying the evidence source is available or not.

12



Per-edge unweighted average (PUA). We propose a novel method, similar to
UA, but that assures a high coverage of the genes included in the integrated
functional network, without penalizing genes for which a specific source of
data is unavailable. With respect to the UA method, PUA takes into account
the fact that a given functional relationship between a pair of genes could
be missing, averaging that edge only by the number of networks containing
both genes.

More precisely, given a set of n gene networks the weight w;; of the edge
(i,§) € E is computed as follows:

_ 1
Wij = 7777 Z wfj (3)

where D(i,j) = {d|i € ViNj e Vi}.

Network mazimum integration (MAX). The MAX integration selects the
largest weight among all the available sources of data:

Wij = max w, (4)

This approach performs the union of all the available sources of evidence [47,
50, 51], and when multiple edges (i, j) for a given pair on genes i and j are
available, selects the one with the largest weight.

Network minimum integration (MIN). Analogously, the MIN integration se-
lects the minimum weight:

Wi = m}n w, (5)
In practice it realizes the intersection between multiple networks. It can be
implemented in two different flavours: the “drastic” algorithm (5) for which
it is sufficient a single wzdj = 0 in order to set w;; = 0, and a “soft” version
for which the edges whose weights are set to 0 are discarded, and w;; = 0 if
and only if the weights for the edge (i, 7) in all the available networks are set

to O:

_ 0 if vd wd =0
Wij = Y (6)
ming{wy; | wf; # 0}  otherwise

It is worth noting that that this approach could be highly affected by noisy
data. It could be reliable when a large evidence is shared among different
sources of data.
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2.4.3. Weighted network integration

The unweighted methods do not require to learn any parameters from the
data, while the weighted integration learns the “weight” ~ associated to each
network. The basic idea behind these approaches consists in associating a
v parameter to the “predictiveness strength” of each type of network. This
can be realized by using a learning algorithm to associate the “predictiveness
strength” of a network with the assessment of the accuracy of the learning
algorithm trained on the network itself.

Different weighted approaches have been proposed in the literature [46,
48, 52, 54]. In our experiments, considering that in gene prioritization the
main objective consists in effectively ranking the genes with respect to a
given disease, we computed the weights according to the AUC obtained for
a given MeSH descriptor. More precisely, having n networks and ¢ MeSH
descriptors, we can compute the weight v¢(k) for the d'* network and the k'
MeSH disease in the following way:

__ M(k)
- X MI(k)

where M?(k) represents the metric applied to measure the accuracy of the
prediction (e.g. the AUC or the precision at a fixed recall) with respect to k"
MeSH descriptor and the d* network. The denominator in (7) simply assures
that >, v4(k) = 1. The v¥(k) can be computed for each MeSH descriptor &
by estimating the corresponding AUC by leave-one-out on the training data,
that is to say, an “internal” cross validation is performed to optimize the
weights, by subdividing each fold of an “external” cross validation applied
to evaluate the method in the whole dataset.

(k) (7)

Weighted average per class (WAP). By using the v¢(k) computed according
to (7), the WAP method integrates the networks by putting a weight pro-
portional to the performance of a given learning algorithm on each network
used in the integration:

@y (k) = Yy (k) wi (8)

It is worth noting that in this way we construct a different weighted integrated
network for each MeSH descriptor.
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In order to emphasize the weight of the most informative networks and,
at the same time, to reduce the weights of the least informative ones, a
monotonic logarithmic transformation of the weights can be applied, instead
of using the one proposed in (7):

log(1 — M(k))
S log(1 — M (k)

We assume that the metric M has values in [0, 1] (consider, e.g. the AUC).
Note that in a practical implementation, to avoid y¢(k) — oo, we need to

set an upper bound b < 1 for M. For instance, in our experiments we used
the AUC and we set b = 0.99.

v'(k) =

(9)

Weighted average (WA ). The WAP method adapts the weights 44 (k) accord-
ing to the performance of a learning algorithm on each specific class k£ under
study. On one hand, this could lead to a set of networks well fitted to the
characteristics of each class k, but on the other hand this approach is likely to
overfit the data. To this end we introduce a sort of “regularized” version to
reduce possible overfitting problems in the learning process. More precisely
we compute a regularized weight v¢, by averaging across classes, in the spirit
of the approach proposed in [55] in the context of gene function prediction
problems. In this way we obtain a unique weight v¢ for each network:

A= 3 (10)

The WA method, using the weights estimated in (10), builds a unique inte-
grated network, independently of the MeSH disease considered:

= >l 0T 5 g (11)
Wij = W, PR VWi
d=1 k=1 d=1

Note that in this section we considered the integration of graphs repre-
sented through their corresponding adjacency matrices W, but it is easy to
see that the same method can be applied to kernel matrices K derived from
W, by simply substituting in each equation the w;; elements of the adja-
cency matrix with the k;; elements of the corresponding kernel matrix (see
Section 2.5.1).
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2.5. Gene prioritization methods

In this section we introduce the gene prioritization methods applied in
our experiments. We focused on kernelized score functions, since it has been
recently shown it is among the most competitive methods in the related
problem of cancer module gene ranking [40], and on random walks algorithms,
since they have been successfully applied to prioritize genes with respect to
genetic diseases [19]. As a baseline method we used a simple implementation
of the guilt-by-association (GBA) principle [56].

2.5.1. Kernelized score functions

Kernel-based ranking methods have been recently proposed in the context
of cancer module gene ranking [40], drug ranking [57] and gene function
prediction problems [31, 58]. Methods based on kernelized score functions are
very fast (their time complexity is approximately linear in sparse graphs, once
the kernel matrix is computed) [31], and their accuracy is at least comparable
with state-of-the-art gene prioritization methods [40].

The score functions S : V' — R are based on properly chosen kernels,
by which we can directly rank vertices according to the values of S(i): the
higher the score, the higher the likelihood that a gene belongs to a given
MeSH disease.

Kernelized score functions rely on distance measures defined in a suitable
Hilbert space H. More precisely, let X be a general nonempty set, ¢ : X —
‘H, a mapping to a given universal reproducing kernel Hilbert space H, and
K : X x X — R its associated kernel function, such that < ¢(-), ¢(:) >y=
K(-,-), where < - - >4 represents the internal product in H. By choosing
a distance measure on a Hilbert space, we can exploit the classical “kernel-
trick” [59] and we can embed any valid kernel into the distance measure
itself.

It is worth noting that we extend the notion of neighbour through the
kernel K: by choosing an appropriate kernel, node j can be in the neighbour
of node ¢ even if there is no edge between them in the original graph G:
ie. w;; =0, but K(x;, ;) > 0. From this standpoint the Gram matrix K
can be interpreted as a novel “weighted adjacency matrix” in the projected
Hilbert space induced by the mapping ¢ : X — H.

If we choose the minimum distance Dyy between i and V), (the set of
genes annotated for a given MeSH disease M), we can obtain the nearest-
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neighbours score Sy

Dy (3, VM)—mln—”(ﬁ:l:z o)) || 2 (12)

JEVM 2

By developing the square (12) we obtain:

1 1
Dl V) = min |5 < 6@, o(@:) > +5 < 9(e,),o(e,) >

— < ¢(xi), p(x;) >] (13)
By substituting in (13) the internal product < ¢(-), ¢(-) > with a suitable

kernel K(-,-), we can obtain a similarity measure simply by changing the
sign:

K@) (4)

1
Simyn (i, Var) =— min {—K(wi,mi) —K(x;,z;) +
JE€EVM

If K(x;,x;) are equal for all j € V, we can simplify (14), thus achieving the
nearest neighbours score Syn:

Snn (i, Vay) = — min — K (x;, ;) = max K(xz;, z;) (15)

JEVM J€EVM

A natural extension of the Sy score can be obtained by introducing the
k-nearest neighbours distance:

Dynn (i, Vi) = Z ||¢ ;) :c])ll 2 (16)

JEIk

where I (i)={j € Vy|j is ranked among the first k in Vj;}. By adopting a
similar procedure used to derive the Syy score, we can obtain from (16) the
k-nearest neighbours score Spnn:

SkNN Z VM Z K :132,:1:] (17)
JEIL (1)

Using a distance D4y (i, Vi) of a vertex ¢ € V' with respect to a set of
nodes V), simply as the average distance in the Hilbert space between ¢ and
the set of nodes included in V)

Day (i, Var) = ||¢wz yv ‘ 3" o())]| 2 (18)

JEVM
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we can derive from (18) the average score Syy:

Savli, Var) =~ K 2) + o S Kwi,) (19)

This score represents the average similarity of the gene ¢ with respect to the
genes belonging to the set Vy,. If all K(x;, ;) are equal for each i € V' (i.e.
the “self-similarity” of genes does not matter), we can further simplify (19)
by removing its first term.

Even if any valid kernel K can be applied to compute the above proposed
scores, in the context of network-based gene prioritization, we used random
walk kernels [53], since they can capture the similarity between genes, taking
into account the topology of the overall functional interaction network.

The Gram matrix K associated to the one-step random walk kernel can be
derived from the symmetric adjacency matrix W of the functional interaction
undirected graph G:

K=(-1)I+D :WD2 (20)

where I is the identity matrix, D is a diagonal matrix with elements d; =
>_;jwij, and a is a value larger than 1.

The g-step random walk kernels K ,_g., = K?, can be easily obtained by
matrix multiplication from the one-step random walk kernel matrix (20),
where ¢ represents the number of random walk steps in the underlying
graph [53]. In this way, by setting ¢ = 2 or ¢ = 3 two vertices are considered
similar if they are directly connected or if they are connected through a path
including one or two vertices. Also longer paths could be considered, by set-
ting ¢ > 3: in this way we can deeply explore the graph to find similarities
between genes mediated through long paths in the graph.

2.5.2. Random walks and random walks with restart

Kernelized score functions presented in the previous section can be inter-
preted as a generalization of the random walk algorithms, which have been
successfully applied to gene prioritization problems [19, 60]. Random walk
(RW) algorithms [61] rank genes by exploring and exploiting the topology of
the gene network: random walks across the network are performed starting
from a subset V; C V of genes belonging to a specific MeSH descriptor M by
using a transition probability matrix Q@ = D~'W, where W is the adjacency
matrix, and D is a diagonal matrix with diagonal elements d;; = > ; Wij.-
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Starting from the initial set of probabilities p, of the genes 1...n of
belonging to M, where p! = 1/Vy, if i € Vyy, otherwise p! = 0, the RW
update rule:

Pi1 = QTpt (21)

is repeated till to convergence or for a fixed number of iterations.
We can observe that the random walker could progressively “forget” the
a priori information available for the MeSH descriptor M, by iteratively
walking across the overall network. To avoid this problem, we can stop the
RW algorithm after a few iterations, as outlined above, or we can apply the
random walk with restart (RWR) method: at each step the random walker
can move to one of its neighbours or can restart from its initial condition
with probability 6:
P =(1- 0)Q"p, + 6p, (22)

With both RW and RWR methods at the steady state we can rank the
vector p to prioritize genes according to their likelihood to belong to the
MeSH disease under study.

2.5.83. Guilt by association methods

As a baseline gene prioritization method we applied a simple implemen-
tation of the guilt-by-association (GBA) principle. According to this general
biological principle, a biomolecular entity that interacts or shares some fea-
tures with another biomolecular entity can also share some specific biological
property (for instance, its membership to a given MeSH category). In compu-
tational biology this basic biological principle has been exploited to develop
methods able to assign a given biological or molecular property on the basis
of the labeling of neighborhoods in biomolecular networks [56, 62]. In the
context of gene prioritization problems, we can assess the likelihood that a
given gene belongs to a given MeSH category M on the basis of the M-labeled
genes directly connected to the gene under study.

We implemented a simple version of the GBA approach, in which the
score for each gene is computed by choosing the maximum of the weights
w;; € W of the edges connecting the gene ¢ to positive labeled genes j € Vi,
in the neighborhood N (i) of i:

S(i, M) = 23
(5, M) = max w, (23)

where N(i) ={j|j € Vi A(i,j) € E}.
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3. Results and discussion

3.1. Ezxperimental set-up

One of the main goals of this work consists in performing an extensive
analysis of gene-disease associations, considering a large set of diseases.

Moreover, we experimentally investigated the impact of network integra-
tion on gene prioritization, by performing a quantitative comparison of the
accuracy achieved by the methods described in Section 2.5 using each of the
single gene networks considered in Section 2.2 with that obtained through
the network integration methods introduced in Section 2.4.

More precisely, at first we assessed the “informativeness” of each single
gene network by analyzing the performance of GBA, RW, RWR and kernel-
1zed score function methods. Then we performed a systematic analysis of
both unweighted and weighted network integration methods, by combining at
first the 6 binary gene interaction networks and then by exploiting also the
real-valued semantic similarity-based gene networks through the integration
of all the available 9 different nets (Table 1).

Moreover we indicated some unannotated genes as reliable “disease gene”
candidates for a selected set of MeSH diseases for which we obtained robust
and accurate predictions.

3.2. Evaluation of the gene prioritization and network integration methods

The generalization performances of each gene prioritization and network
integration method has been assessed through a classical cross-validation
procedure [63], setting to 5 the number of the folds. More precisely, the
nodes of the graph have been randomly partitioned in 5 folds, and in turn
a fold is selected as the test fold, while the remaining are the training folds.
The labels of the test fold are removed, and the labels of the training folds
are used to infer the scores to be assigned to the nodes of the test fold
(in our setting we deal with gene prioritization, i.e. a ranking problem).
Finally, having the scores predicted for each of the five folds (that is for
the entire set of the available genes) we can apply standard measures to
evaluate the correctness of the obtained gene ranking with respect to each
disease. In particular we applied the AUC to evaluate the ranking of the
genes. Moreover, we applied also the precision at a given recall to take into
account that for several MeSH diseases we have a relatively low number of
known disease genes (positive examples).
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After the assessment of the generalization performance of the gene pri-
oritization and network integration methods, we reported for each of the
considered 708 MeSH diseases the p-value obtained through a non paramet-
ric statistical test based on the “shuffling” of the gene labels (Section 3.6).
Then we reported the 10 top-ranked unannotated genes for each MeSH dis-
ease, and we performed also an analysis of the unannotated genes as reliable
“disease gene” candidates on the basis of the distribution of the scores of the
annotated genes for the MeSH diseases for which we obtained a very high
estimated cross-validated AUC value.

We outline that the reported results are based, according to the litera-
ture on gene prioritization, on retrospective benchmarks, and for this reason
offer usually optimistic estimates of the generalization performances, since
disease-associations are likely to be directly or indirectly incorporated in the
gene-prioritization data sources [3]. As outlined in [64], this problem is dif-
ficult to address in an initial study and can be resolved only by long-term
perspective benchmarks, wherein predictions are made on the current state
of knowledge (that is the current available annotations) and validated in fu-
ture studies, that is once novel experimental evidence of disease-associations
will be available.

3.3. Gene prioritization with single networks
[Table 2 about here.]

We performed an assessment of the “informativeness” of each gene network
through an extensive experimental evaluation of the average AUC results
across 708 MeSH diseases, using different gene prioritization methods (Ta-
ble 2). The first column of Table 2 shows the gene prioritization methods
and their main associated learning parameters (see Section 2.5 for details).
For each column the best average AUC results achieved by the gene prior-
itization methods are highlighted in bold. Say and Syyy kernelized score
functions achieve usually the best results, but also RW and RWR algorithms
are sometimes comparable with kernelized score functions. The difference is
statistically significant (Wilcoxon rank sum test, « = 0.01) in favor of ker-
nelized score functions for the data sets dbnet, finet, hnnet, bpnet and ccnet,
while for the other 4 functional networks no statistically significant difference
has been detected.

The last row of Table 2 shows the average results across methods for each
gene network. We can observe that on the average gene prioritization meth-
ods achieve the best results with finet and genet, but the AUC performances
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are relatively high also with hnnet and bpnet. The other nets appear to be
less informative on the average, but consider that a certain learning is as-
sured with each of the considered networks, since the average AUC is always
significantly larger than 0.5.

It is not surprising that finet, genet (and also hnnet) are the most “infor-
mative” networks, since they are constructed by integrating different sources
of information (Section 2.2). We only observe that with genet the results are
referred only to a subset of the genes used in our experiments (Table 1). It is
worth also noting the good results obtained with semantic similarity-based
networks constructed from biological processes GO annotations (bpnet), even
if also in this case the results are computed with respect to a subset of the S
genes, and hence the comparison must be considered with a certain caution.
Summarizing, the results witness for the fact that all the considered gene net-
works bear a certain information about the gene prioritization with MeSH
diseases. In particular networks just constructed through the integration of
different sources of evidence seem to be the most “informative” for this gene
ranking task.

3.4. Gene prioritization with unweighted network integration
[Table 3 about here.]

Our network integration experiments started with the combination of the 6
binary gene networks described in Section 2.2 (that is all the available gene
networks excluding real-valued semantic similarity-based nets), using the un-
weighted combination methods presented in Section 2.4.2. Table 3 reports
the average AUC results across MeSH diseases with UA, PUA and MAX inte-
gration methods. Note that we did not perform “soft” MIN integration since
it is easy to see that with binary networks this method is indistinguishable
from MAX, while “drastic” MIN leads to highly disconnected networks.
Comparing Table 2 and 3, we can observe that unweighted integration im-
proves the performance. This is true especially with UA and PUA methods
(the difference is almost always statistically significant at o = 0.01 signifi-
cance level), but in several cases also with MAX. The improvement depends
also on the gene prioritization method used. For instance unweighted inte-
gration degrades performance with Syy (at least with respect to the most
informative single gene networks), while with the other kernelized score func-
tions and with GBA, RW and RWR algorithms often unweighted integration
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improves AUC results. While a larger number of steps improves the per-
formance of kernelized score functions, with the classical RW algorithm we
observe a degradation of the performances. These results show that the clas-
sical RW tends to “forget” the initial “a priori” knowledge, while kernelized
score functions retain the prior information and are able to exploit the overall
topology of the network, confirming previous results [31, 40].

Hereinafter we limited the integration experiments to kernelized score
functions only, since they usually perform equally or better than the other
compared methods, and their empirical time complexity is significantly lower
than RW and RWR algorithms: for instance, while an entire cycle of cross-
validation on the 708 MeSH classes with UA integration requires hours with
RWR, the same task requires only some minutes with kernelized score func-
tions, using an Intel i7 2.80 GHz processor with 16 GB of RAM and a Linux
System.

By adding the real-valued networks based on semantic similarity measures
(Section 2.2), we observe a further significant enhancement of the overall
performance, showing that the integration of different sources of evidence
leads to better results (Table 4). For instance the performances of the UA
approach with Say using a 5 step random walk kernel are boosted from
0.8596 to 0.8831 average AUC (the increment is significant at a = 10730
significance level according to the Wilcoxon signed rank sum test). Note
that the MIN integration fails on this task, since an “intersection” strategy
in this context leads to a significant loss of information, thus not allowing to
exploit the topological information underlying the entire network.

[Table 4 about here.]
[Figure 3 about here.]

Fig. 3 provides a visual clue of the differences of average AUC across
MeSH categories between unweighted integration methods and the best sin-
gle gene network (finet). Fig. 3 (d) confirms that also in this task MIN inte-
gration fails, for the same reasons explained above. On the contrary UA and
PUA integration provides significant enhancements with both S,y and Sy
(Fig. 3 (a) and (b)). Note that unweighted integration with Sy results in
a degradation of the performances (Fig. 3). We have not a clear explanation
of this fact, but we think that the instability of scores computed by using
only one of the neighbours, combined with the impossibility of weighting or
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choosing the best sources of information, may add noise to the prediction
process.

Summarizing, the results show that unweighted integration, and espe-
cially UA and PUA methods, significantly enhances gene prioritization re-
sults. All the considered gene prioritization methods, ranging from random
walks to kernelized score functions (with the exception of Syy), derive a
benefit from unweighted integration. Moreover, the integration of semantic
similarity-based networks further improves the performances of gene priori-
tization. Note that with these networks, considered individually, gene priori-
tization methods do not attain high average AUC scores (at least with mfnet
and ccnet, Table 2), but their integration significantly enhance gene prioriti-
zation results (Table 4), since they convey complementary information with
respect to the other sources of evidence.

3.5. Gene prioritization with weighted network integration

We experimented also with WA and WAP network integration to ex-
plicitly take into account the “informativeness” of each gene network (Sec-
tion 2.4.3). Table 5 shows that weighted integration significantly boosts the
performance of kernelized score functions. In particular 5-steps Sy with
weighted integration of all the 9 available nets (WA-all, Table 5) reaches the
highest AUC average score, but almost all the gene prioritization algorithms
achieve their best results with WA and WAP integration.

[Table 5 about here.]
[Figure 4 about here.|

This is more evident in Fig. 4, where we register a very high increment of
the average AUC score with respect to the best single gene network. This
is true for both Ssy and Sipyy, while for Syy this behavior is limited to
WAP methods only (Fig. 4 (b) and (d)). Nevertheless, note that, on the
contrary, Syy behaves badly with unweighted integration, independently of
the combination method applied (Table 3).

[Figure 5 about here.]

To get more insights into the results obtained with unweighted and weighted
integration methods, Fig. 5 compares the AUC scores for each class achieved
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by 5 steps Say (one of the best gene prioritization method) between un-
weighted and weighted integration with respect to the the best single net-
work finet. A point in Fig. 5 represents the AUC score, relative to a MeSH
disease, attained by the integration method and by the best single gene net-
work. More precisely, the AUC value obtained by the integration method is
represented in ordinate, while in abscissa we have the AUC value achieved
with finet, i.e. the best single network. Points that lie above the bisector of
the first quadrant angle represent MeSH diseases for which the integration
method achieves better results than the single best gene network. In Fig. 5
(a) most of the points lie above the bisector, showing that UA enhances
results obtained with finet. By adding semantic similarity-based gene net-
works several points moves above the bisector line (Fig. 5 (b)), confirming
that these networks add novel useful information for the gene prioritization
task. Looking at Fig. 5 (c) we observe that with WA integration, just with-
out semantic similarity-based gene networks, most of the points lie above the

bisector, and the results are also better when we integrate all the available
networks (Fig. 5 (d))

[Figure 6 about here.|

Fig. 6 provides an overall picture of the distributions of AUC scores compared
between different unweighted and weighted integration methods using 5 steps
Say as gene prioritization algorithm. White boxplots refer to weighted in-
tegration methods, light gray boxplots to unweighted integration methods
without semantic similarity-based gene networks, and dark gray boxplots to
unweighted methods integrating all the 9 available gene networks. Weighted
methods show the best results (especially when all the networks are inte-
grated), but also UAll, that is UA integrating all the available 9 nets, achieve
quite similar results. All the considered methods behave better than the best
single gene network (last boxplot in Fig. 6), except for MIN, that clearly fails
on this task, as just discussed above.

To obtain a more reliable comparison of the results obtained with differ-
ent gene network integration methods, we applied to each pair of them the
Wilcoxon signed rank sum test, to estimate whether a significant statistical
difference does exist using the best performing gene prioritization method
(Sav 5 steps). Table 6 summarizes the main results: a “+” entry means
that a significant statistical difference at 0.01 significance level is registered
in favor of the method in the row with respect to the method in the column;
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a entry means that the opposite holds, and a “=" entry stands for no
significant difference between the methods.

[Table 6 about here.]

We observe that weighted integration is always significantly better or equal
than all the other compared methods. In particular WA-all integration (that
is, WA integrating all the available nets) is significantly better than all the
other considered integration approaches. Note that also UA-all is always
better or equal than all the others (except with WA-all), showing that also a
simple unweighted integration, if a sufficiently large set of sources of evidence
is provided, can achieve results comparable with the more computationally
expensive weighted integration (recall that the weights of the integration
are obtained by evaluating the AUC on each single gene network by inter-
nal cross-validation, see Section 2.4.3). Quite interestingly, WAP does not
outperform WA: even if we construct a specific weighted network for each
MeSH disease this does not introduce a significant advantage (at least, on
the average). This fact could be explained by considering that the per-class
integration (WAP) may introduce a certain overfitting to the data, while
WA, by averaging the weights across classes and thus resulting in a single
integrated network, could reduce the overfitting, acting as a sort of “regular-
ization”, confirming previous results obtained in the context of gene function
prediction [55].

[Figure 7 about here.]

Considering that for a large number of diseases we have a relatively low
number of annotated genes, we compared also the precision at different re-
call levels between different unweighted and weighted integration methods,
using 5 steps S4y as gene prioritization algorithm (Fig. 7). With both the
integration of the 6 basic networks (Fig. 7 (a)) and with the integration of
the 6 basic networks plus the 3 semantic similarity-based networks (Fig. 7
(b)) we achieve significantly better results with any of the considered inte-
grated network with respect to the best “single” network (finet), except for
the MIN integration that obtains the worst results. Also in this case weighted
integration outperforms unweighted integration, but observe that when we
integrate all the available networks UAall, i.e. the unweighted average inte-
gration, achieves better results than the weighted per-class integration ( WA-
Pall), confirming that WA P integration undergoes a certain overfitting to the
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data. Note that when semantic-similarity based networks are added, all the
integration methods improves their precision/recall results (the scale of the
ordinate, that is the precision is equal in Fig. 7 (a) and (b)). For instance
WA, the best performing network integration methods, improves its average
precision at 20% recall from 0.26 to 0.30 with a relative increment of about
15% in precision. As a final observation, note that all the considered network
integration methods (except MIN integration) significantly outperform the
results obtained with the best single network, confirming that also simple
unweighted integration algorithms are sufficient to boost the performance of
gene prioritization methods.

3.6. Finding novel associations between genes and MeSH diseases

The common usage of genes ranking scores in gene-disease prioritization
experiments consists in the selection of the top ranked unannotated genes and
in the their further characterization as possible “candidate” genes actually
implied in the onset and progression of the considered disease.

To this end we provide for each of the 708 MeSH diseases the AUC ob-
tained by 5-fold cross-validation, the p-value achieved through a non para-
metric randomized test (see below), and the 10 top ranked genes currently
not annotated for the MeSH disease under study. The Table summarizing
these informations is available at http://homes.di.unimi.it/re/suppmat/
genesmeshnetwpred/supmatTBL1.html (Accessed: 30 November 2013).

Moreover, we also provide a preliminary analysis of the top ranked most
reliable unannotated genes for the MeSH diseases predicted with high ro-
bustness and accuracy by the best network integration, i.e. WA integrating
all the available nets using 5 steps Sy to prioritize genes.

To evaluate the robustness of the method we performed a non-parametric
statistical test by randomly shuffling 1000 times the labels for each MeSH
disease and counting how many times m the AUC computed with randomly
shuffled labels is larger than the AUC computed with the true labels. The
resulting p-value is just the ratio 555. Interestingly enough, we achieve a
p-value< 0.01 for 649 and a p-value < 0.05 for 676 of the 708 MeSH diseases.
To choose MeSH diseases both robustly and accurately predicted we selected
MeSH descriptors with an average AUC > 0.975 and p-value < 0.01, resulting
in a set of 24 diseases. For each of the selected diseases, we extracted the
lowest score ¢ from the set of positive (annotated) genes. Then, we computed
the empirical cumulative distribution of all the scores equal or larger than c,
considering both annotated and unannotated genes. As a final step, using the
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distribution computed at the previous step, we computed the k-percentiles
of the 3 top ranked unannotated genes within each selected MeSH term.
Considering that we selected 24 MeSH diseases, this procedure lead to a
collection of 72 k-percentiles whose frequency is plotted in Fig. 8.

[Figure 8 about here.]

Fig. 8 shows that most of the top ranked unannotated genes are concentrated
close to the 100-percentile, showing that these top ranked “false positive”
genes are “strongly predicted” as possible candidate disease genes, since their
scores are close to that of the top ranked annotated genes. Consider also that
this is supported by the fact that we selected only diseases for which gene
prioritization achieved a very high AUC and “robust” predictions (AUC' >
0.975 and p-value < 0.01). The top 3 false positives gene symbols along with
the disease identifiers and disease names for the selected 24 MeSH descriptors
are listed in Table 7.

[Table 7 about here.]

Of course the proposed top ranked genes are only disease gene candidates,
and these results need to be biologically interpreted and should undergo a
rigorous bio-medical analysis prior to be actually associated to the disease
itself.

4. Conclusions

We performed an extensive analysis of gene-disease associations not lim-
ited to genetic disorders, including more than 700 MeSH diseases.

By using network integration and gene prioritization methods, we re-
ported for each disease the 10 unannotated top-ranked genes, available for
further bio-medical analysis. Moreover, by analyzing the top-ranked pre-
dictions relative to the 24 best and robustly predicted MeSH diseases, we
showed that our approach can detect reliable candidate disease genes.

It is well-known that the integration of multiple omics sources of evidence
is of paramount importance in several application domains in computational
biology [65-68]. In this work we performed a systematic comparison of un-
weighted integration and our proposed weighted combination methods to
provide an evaluation of the impact of network integration on gene prioriti-
zation. We quantitatively showed that network integration is necessary to
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boost gene prioritization results, according to previous results published in
the literature [15, 27, 28, 46, 47, 69].

In particular, we showed that the proposed weighted integration meth-
ods, by exploiting the different “informativeness” embedded in different gene
interaction networks, significantly outperform unweighted integration. More-
over our experimental results show that the performances strongly depend
on the selection of the sources of evidence and on the characteristics of the
gene networks. For instance, also a simple UA integration can significantly
improve the performance of gene prioritization methods if a sufficient num-
ber of diverse and complementary gene interaction networks are combined.
From this standpoint, a novel research line could be represented by an adap-
tation of test and select methods, originally proposed in the context of su-
pervised ensembles [70] to appropriately choose the most predictive sources
of evidence and gene networks for each MeSH disease through an adaptive
learning process.

Confirming previous results [30], semantic similarity-based networks, com-
bined with other sources of evidence boost the performance of gene priori-
tization methods. A possible improvement of the proposed approach could
consist in combining networks based on semantic similarity measures that
embed the ontology beneath the GO terms and are able to model the anno-
tation uncertainty, according to the approach proposed in [45].

Quite surprisingly WAP does not outperform WA integration: this is
likely due to overfitting, confirming previous results obtained in the context
of gene function prediction [55].

Finally, our results show that S4y kernelized score functions with 5-steps
random walk kernels using WA integration significantly outperform all the
other considered methods. This means that in order to boost gene prioriti-
zation we need: a) gene prioritization algorithms able to exploit the overall
topology of the network; b) weighted integration methods, able to learn from
the data how to combine different gene interaction networks.

These results suggest novel research lines able to combine network inte-
gration methods, that learn from the data how to weight multiple sources
of evidence, with network-based ranking algorithms that can learn from the
overall topology of the integrated network how to prioritize candidate disease
genes.

Recalling that we analyzed relatively simple network integration methods,
a possible development of this work could consist in the comparative analysis
of other more complex network integration approaches.
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Table 1: Characteristics of the gene networks used in our experiments.

network  description type nodes Edges  density
finet Obtained from multiple sources of evidence binary 8449 271466  0.0038
hnnet Obtained from multiple sources of evidence binary 8449 502222  0.0070
cmnet Network projections from cancer modules binary 8449 3414722 0.0478
genet Network projections from CTD binary 7649 1421298  0.0242
bgnet Network projections from BioGRID binary 8449 120169  0.0016
dbnet direct relationships obtained from BioGRID  binary 8449 3023084  0.0423
bpnet semantic similarity network from GO BP real valued 6923 44506147  0.9286
mfnet semantic similarity network from GO MF real valued 6145 26611887  0.7047
ccnet semantic similarity network from GO CC real valued 6693 39652637  0.8851
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Table 2: Single gene networks: AUC results averaged across 708 MeSH
diseases. The last row shows the average results across methods for each

gene network.

cmnet bgnet dbnet finet hnnet gcnet bpnet mjfnet ccnet
GBA 0.6620 0.6389 0.6683 0.7542 0.7323 0.7346 0.7134 0.6395 0.6250
RW 1 step 0.6922 0.6590  0.6037 0.7356 0.7269 0.8418 0.7646 0.6985 0.6845
RW 2 step 0.6829 0.6462 0.6761 0.8194 0.7802 0.8220 0.7635 0.7013 0.6812
RW 3 step 0.6768 0.6406 0.6531 0.8157 0.7531 0.8145 0.7611 0.6985 0.6745
RW 5 step 0.6718 0.6316 0.6426 0.7993 0.6973 0.8089 0.7610 0.6834 0.6711
RW 10 step 0.6694 0.6224 0.6222 0.7575 0.6249 0.8075 0.7411 0.6790 0.6684
RWR 0 =0.6 0.6871 0.6515 0.6781 0.8271 0.7889 0.8401 0.7825 0.7112 0.6856
RWR 6 =0.9 0.6878 0.6513 0.6750 0.8242 0.7870 0.8453 0.7789 0.7085 0.6825
Sav 1 step 0.6894 0.6574 0.6717 0.7669 0.7596 0.8167 0.7889  0.7139  0.6916
Sav 2 step 0.6842 0.6414 0.6831 0.8226 0.7872 0.8328 0.7888 0.7142 0.6914
Sav 3 step 0.6845 0.6417 0.6752 0.8255 0.7897 0.8417 0.7879 0.7146 0.6913
Sav b step 0.6850 0.6418 0.6778 0.8287 0.7943 0.8471 0.7839 0.7151  0.6907
Sav 10 step 0.6849 0.6408 0.6804 0.8312 0.7983 0.8407 0.7640 0.7117 0.6882
Snn 1 step 0.6296 0.6263 0.6667 0.7561 0.7374 0.7308 0.6971 0.6485 0.6565
SNN 2 step 0.6235 0.6105 0.6764 0.8031 0.7624 0.7316 0.7032 0.6478 0.6567
SNN 3 step 0.6228 0.6105 0.6683 0.8044 0.7638 0.7365 0.7103 0.6475 0.6574
SNN 5 step 0.6213 0.6107 0.6708 0.8052 0.7674 0.7481 0.7280 0.6475 0.6593
Snn 10 step 0.6197 0.6136 0.6744 0.8029 0.7729 0.7774 0.7703 0.6493 0.6659
Spnn 1 step k=3 0.6439 0.6336 0.6705 0.7635 0.7523 0.7370 0.7645 0.6812 0.6712
SpnN 2 step k=3 0.6377 0.6179 0.6817 0.8149 0.7788 0.7403 0.7705 0.6937 0.6725
Spnn 3 step k=3 0.6371 0.6183 0.6737 0.8168 0.7805 0.7482 0.7765 0.6999 0.6756
Spnn b step k=3 0.6362 0.6191 0.6763 0.8182 0.7845 0.7647 0.7815 0.7003 0.6788
Spnn 10 step k=3 0.6366 0.6225 0.6798 0.8172 0.7898 0.7993 0.7695 0.7021 0.6803
Spnn 1 step k=19 0.6811 0.6523 0.6717 0.7668 0.7596 0.7860 0.7702 0.6997 0.6798
SpnnN 2 step k=19 0.6756 0.6364 0.6831  0.8222 0.7871 0.8004 0.7763 0.7001 0.6799
SknnN 3 step k=19 0.6755 0.6368 0.6752 0.8249 0.7895 0.8125 0.7819 0.7008 0.6801
Spnn b step k=19 0.6757 0.6373 0.6779 0.8276 0.7940 0.8286 0.7902 0.7025 0.6807
Spnn 10 step k=19  0.6766 0.6373 0.6810 0.8292 0.7986  0.8402 0.7774 0.7063 0.6820
Average 0.6625 0.6338 0.6691 0.8029 0.7657 0.7955 0.7624 0.6899 0.6751
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Table 3: Unweighted integration of the 6 binary gene networks (without
semantic similarity-based nets): AUC results averaged across 708 MeSH cat-
egories.

UA PUA MAX
GBA 0.8313  0.82901  0.6589
RW 1 step 0.8566  0.8563  0.8501
RW 2 step 0.8186  0.8178  0.8154
RW 3 step 0.7937  0.7925  0.7897
RW 5 step 0.7773  0.7760  0.7746
RW 10 step 0.7720  0.7704  0.7706
RWR 6 =06 0.8533  0.8528  0.8520
RWR6 =09 0.8565  0.8531  0.8476
Say 1 step 0.8538  0.8530  0.8286
Sav 2 step 0.8562  0.8554  0.8353
Say 3 step 0.8580  0.8571  0.8405
Sav 5 step 0.8596 0.8587  0.8470
Say 10 step 0.8548  0.8540  0.8485
Sy 1 step 0.6934  0.6921  0.6352
Sy 2 step 0.6950  0.6936  0.6331
SN 3 step 0.6968  0.6954  0.6315
Sy 5 step 0.7020  0.7004  0.6314
Sy 10 step 0.7251  0.7230  0.6546
Spnn 1 step k=3 0.7280  0.7266  0.6593
Sk 2 step k=3 0.7304  0.7289  0.6581
SN 3 step k=3 0.7332  0.7317  0.6580
Sk 5 step k=3 0.7405  0.7389  0.6627
Spnn 10 step k=3  0.7636  0.7616  0.6987
Spnn 1step k=19  0.8138  0.8124  0.7598
Spnn 2step k=19 0.8170  0.8155  0.7639
Sk 3step k=19 0.8199  0.8183  0.7680
Sipnn 5step k=19 0.8251  0.8233  0.7785
Spnn 10 step k=19  0.8374  0.8356  0.8093
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Table 4: Unweighted integration methods: AUC results averaged across 708
MeSH categories including all the available 9 gene networks

UA-all PUA-all MAX-all MIN-all
Savy 1 step 0.8765 0.8667 0.8286 0.6541
Sav 2 step 0.8792 0.8701 0.8353 0.6694
Sav 3 step 0.8811 0.8722 0.8405 0.6824
Say b step 0.8831 0.8744 0.8470 0.7023
Say 10 step 0.8761 0.8708 0.8485 0.7264
Snn 1 step 0.6950 0.7050 0.6352 0.6045
SNN 2 step 0.6980 0.7080 0.6331 0.6087
SNnN 3 step 0.7014 0.7108 0.6315 0.6129
SNN b step 0.7106 0.7185 0.6314 0.6212
Snn 10 step 0.7437 0.7490 0.6546 0.6349
Spnn 1 step k=19 0.8322 0.8331 0.7598 0.6413
SpnN 2 step k=19 0.8368 0.8372 0.7639 0.6520
SennN 3 step k=19 0.8413 0.8404 0.7680 0.6619
SpnnN 5 step k=19 0.8500 0.8465 0.7785 0.6789
Senn 10 step k=19  0.8665 0.8576 0.8093 0.7093
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Table 5: Weighted integration methods: AUC results averaged across 708
MeSH categories. WA and WAP include only the first 6 functional networks,
while WA-all and WA P-all include all the 9 functional networks.

WA WAP  WA-all WAP-all
Say 1 step 0.8649  0.8680  0.8778  0.8768
Say 2 step 0.8733  0.8727  0.8828  0.8802
Say 3 step 0.8774  0.8763  0.8866  0.8830
Say 5 step 0.8817 0.8807 0.8904 0.8861
Say 10 step 0.8812 0.8823 0.8868  0.8850
Sy 1 step 0.7602  0.8080  0.7042  0.8165
Snn 2 step 0.7692  0.8126  0.7155  0.8213
SnN 3 step 0.7709  0.8159  0.7193  0.8240
SN b step 0.7753  0.8206  0.7303  0.8278
Snn 10 step 0.7807  0.8241  0.7707  0.8328
Senn lstep k=19  0.8394  0.8570  0.8325  0.8650
Sknn 2 step k=19 0.8476  0.8614  0.8427  0.8684
Spnn 3step k=19  0.8527  0.8651  0.8489  0.8716
Spnn Bstep k=19  0.8614  0.8703  0.8611  0.8762
Sy 10 step k=19  0.8744  0.8768  0.8819  0.8784
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Table 6: Comparison between network integration methods: methods whose
AUC performance are significantly better are marked with “4”, significantly
worse with “-” and with no significant difference with “=" (0.01 significance
level, Wilcoxon signed rank sum test). The comparisons are in the sense rows
vs. columns.

WAP-all WA  WAP UA-all PUA-all MAX-all MIN-all UA PUA MAX  finet
WA-all + + + + + + + + + + +
WA P-all = = = + + + + + + +
WA = = + + + + + + +
WAP = + + + + + + +
UA-all + + + + + + +
PUA-all + + + + + +
MAX-all + — — = +
MIN-all - - - —
vA + -
PUA + +
MAX +
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Table 7: List of 24 selected diseases and of the corresponding top ranked

unannotated genes.

disease id. disease name top ranked unannotated genes
C535579 Cardiofaciocutaneous syndrome KSR2,PILRA,KSR1
C536436 Coffin-Siris syndrome PYGO1,ARID2,SMARCC2
C536664 Peroxisome biogenesis disorders PEX5,PEX7,LONP2
C536783 T-Lymphocytopenia BIRC8,CASP10,NAIP
C536928 Turcot syndrome MLH3,PMS2L5,MSH3
C537345 Sitosterolemia UGT1A5,UGT2B17,SLCO1B1
C538169 Acitretin embryopathy CASP10,PEA15,SLCO3A1
D000562 Amebiasis DCLRE1C,IL19,CYP2C8
D001404 Babesiosis DCLRE1C,IL19,FCGR2C
D002062 Bursitis UGT2B4,UGT2B15,UGT1A4
D006958 Hyperostosis, Cortical, Congenital NPPC,NPR1,ACE
D007888 Leigh Disease NDUFB10,NDUFB4,NDUFA12
D008118 Loiasis FCGR2C,CYP3A43,CYP8B1
D008375 Maple Syrup Urine Disease ACADS,PDHX,PDHB
D009196 Myeloproliferative Disorders PTPN1,CISH,SLC25A40
D009634 Noonan Syndrome KSR2,KSR1,MRAS
D010483 Periapical Diseases MMP13,IL12B,IL8
D012214 Rheumatic Heart Disease CYP21A2,CYP8B1,CYP3A43
D014353 Trypanosomiasis, African DCLRE1C,BCL2,STAT1
D015823 Acanthamoeba Keratitis DCLRE1C,IL19,CYP2C8
D018235 Smooth Muscle Tumor NFKB1,IL8,IL6
D020299 Intracranial Hemorrhage, Hypertensive NPPC,NPPB,CRH
D056685 Costello Syndrome KSR2,PILRA /KSR1
D056824 Upper Extremity Deep Vein Thrombosis FGGCX,PROZ,F11
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