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Abstract

Motivation: We recently introduced RNA-KG, an ontology-based knowledge graph that integrates biological

data on RNAs from over 60 public databases. RNA-KG captures functional relationships and interactions

between RNA molecules and other biomolecules, chemicals, and biomedical concepts such as diseases

and phenotypes, all represented within graph-structured bio-ontologies. We present the first comprehensive

computational analysis of RNA-KG, evaluating the potential of graph representation learning and machine

learning models to predict node types and edges within the graph.

Results: We performed node classification experiments to predict up to 81 distinct node types, and performed

both generic and specific edge prediction tasks. Generic edge prediction focused on identifying the presence of

an edge irrespective of its type, while specific edge prediction targeted specific interactions between ncRNAs,

e.g. miRNA-miRNA or siRNA-mRNA, or relationships between ncRNA and biomedical concepts, e.g. miRNA-

disease or lncRNA-Gene Ontology term relationships. Using embedding methods for homogeneous graphs,

such as LINE and node2vec, in combination with machine learning models like decision trees and random

forests, we achieved balanced accuracy exceeding 90% for the 20 most common node types and over 80%

for most specific edge prediction tasks. These results show that simple embedding methods for homogeneous

graphs can successfully predict nodes and edges of the RNA-KG, paving the way to discover novel ncRNA

interactions and laying the foundation for further exploration and utilization of this rich information source

to enhance prediction accuracy and support further research into the “RNA world”.

Code Availability: Python code to reproduce the experiments is available at https://github.com/

AnacletoLAB/RNA-KG_homogeneous_emb_analysis
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1. Introduction

Knowledge graphs (KGs) have been widely applied in biomedicine

to collect and integrate diverse data types with concepts grounded

in biomedical ontologies (Nicholson and Greene, 2020; Chandak

et al., 2023).

We recently introduced RNA-KG, an ontology-based KG

that integrates biological knowledge about coding and non-

coding RNAs from more than 60 public databases (Cavalleri

et al., 2024). RNA-KG incorporates functional relationships with

genes, proteins, and chemicals, as well as ontologically grounded

biomedical concepts. It was specifically designed to serve as input

for AI-based techniques aimed at inferring novel knowledge about

RNA molecules, thereby supporting RNA-drug design.

The structure and information encoded in KGs can be

leveraged by graph representation learning (GRL) techniques

to infer new knowledge. GRL encompasses a class of machine
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learning methods that encode graph-structured data as vectors,

referred to as embeddings, while preserving the graph’s structural,

relational, and attribute-based properties (Xia et al., 2021). These

embeddings enable downstream tasks such as link/edge prediction,

which identifies novel associations between concepts (nodes) in the

graph, and node/edge-type prediction, which classifies node or edge

types to reveal the structural organization of biological entities

and their interactions. These techniques aid in identifying data

patterns (Yi et al., 2021).

In this work, we present the first in-depth analysis of RNA-KG,

employing homogeneous GRL techniques to determine whether

relatively simple methods can effectively exploit the topological

structure of local and global node neighborhoods to infer reliable

knowledge from the KG and its biologically relevant subgraphs

(views) extracted from RNA-KG.

More specifically, we first applied GRL methods to predict

up to 81 distinct node types. Next, we performed generic edge

prediction, which involves predicting the presence of any edge

in the graph, irrespective of its type, where the edge type is

determined by the types of the connected vertices. Finally, we

employed GRL techniques for specific edge prediction, focusing on

edges representing particular interactions between RNA molecules

or relationships between RNA molecules and biomedical concepts.

The motivation behind conducting both edge prediction

experiments lies in their distinct objectives and practical

applications. The generic edge prediction task evaluates whether

the information encoded in the graph is sufficient and suitable

for making accurate inferences, serving as a baseline assessment

of the graph’s overall predictive power. However, in practical

applications, the primary focus is often on determining whether

specific nodes interact. For instance, one might seek to establish

whether a particular siRNA (small interfering RNA) interacts with

a target mRNA (messenger RNA) to induce RNA interference

and knock down a specific gene (Damase et al., 2021). Similarly,

specific miRNA-miRNA (microRNA) interactions are of interest,

as a miRNA inhibitor could block the activity of another

miRNA (Paunovska et al., 2022).

To address these practical needs, we introduced specific edge

prediction tasks, each performed on specific RNA-KG views.

These tasks enable more targeted predictions, such as inferring

relationships between a miRNA and a disease by leveraging the

disease ontologies included in RNA-KG.

2. Data and Methods

2.1. RNA-KG

RNA-KG (Cavalleri et al., 2024) is a Knowledge Graph (KG)

that combines the publicly available information from more than

60 databases to obtain a centralized, uniform and semantically

consistent representation of the “RNA world”. These molecules

are widely studied because they have a primary role in biological

processes and pathways, especially those that are altered in cancer,

genetic disorders, neurodegenerative diseases, cardiovascular

conditions, and infections (Damase et al., 2021). The study of

RNA is also one of the most promising avenues of research in

therapeutics, as evidenced by the recent success of mRNA-based

vaccines for the COVID-19 pandemic (Barbier et al., 2022). RNA-

KG represents the existing knowledge about interactions involving

RNA molecules and their interactions with other biomolecular

data as well as with chemicals, diseases, abnormal phenotypes, and

proteins to support the study and the discovery of the biological

role of the “RNA world”.

Supplementary table ?? provides detailed distributions of node

types and edge types, highlighting the most prevalent categories

in RNA-KG.

Fig. 1: View schema. Each view is represented by a graph where

node size is related to the number of nodes in the graph while

edge width and color represent the proportion of edges between

nodes of the respective types. In the figure we omitted node types

accounting for less than 1% of the graph nodes.

miRNA

Gene

Cell
GO

Disease

Phenotype

Anatomy
Species

Chemical

miRNA

Gene

CellGO

Phenotype

Disease

Species

Genomic feature Anatomy

Chemical

GO

Gene

Sequence

Protein
Phenotype

Disease

Anatomy

Pathway

lncRNA

Chemical

Pseudogene
miRNA

Cell

Species

Phenotype

piRNA

Disease
Variant SNP

Genomic feature

GO

Species

Gene
Anatomy Chemical

Cell

piRNA

Genomic feature

Disease

ChemicalGO

Gene

Anatomy

Species

Phenotype

lncRNA Cell

miRNA

Variant SPN

miRNA

Gene

ChemicalPhenotype

Disease

Anatomy

lncRNA

Genomic feature GO Species

Cell

miRNA

Protein
mRNACell

lncRNA

Anatomy

GeneGene

Species Genomic feature

GOGO

In this paper we use the undirected, unweighted version of

RNA-KG.

Among the three classification tasks described in Section 3,

the specific-edge prediction experiments were conducted on seven

RNA-KG views. Each view corresponds to a subgraph of the

original RNA-KG, induced by selected node and edge types,
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and further enriched by integration with relevant portions of

PheKnowLator’s Human Disease Benchmark KG (Callahan et al.,

2024; Developers, 2024). This integration enabled the inclusion of

additional biologically meaningful relationships, e.g., gene-disease,

disease-disease, and gene-gene associations, thereby enhancing the

biomedical content of each view and making them suitable for

specific prediction tasks of biological relevance.

More specifically, some views focus on the representation

and inference of knowledge involving miRNA molecules,

genes, aberrant phenotypes, and diseases (miRNADisease and

miRNADiseaseSO views). Others, such as the GODisease view,

are designed to support the exploration of underlying disease

mechanisms. The piRNADisease and piRNADiseaseGO views aim

to uncover the emerging role of piRNA molecules in diseases by

relating them to molecular functions and biological processes. The

ChemicalDisease view is particularly relevant for investigating how

chemical exposures influence disease development, treatment, and

progression. Finally, the cellAnatomy view emphasizes the spatial

organization of biological entities, including proteins, genes, and

RNA molecules—across cellular and anatomical structures. This

enables the study of cell-specific gene expression, tissue-specific

regulatory patterns, and the prediction of anatomical contexts

for biomolecules. Further details of each view are reported in the

supplementary.

Figure 1 depicts the schema of the views, while in the

supplementary section ?? we provide the rationale and motivation

behind each view as well as detailed statistics describing their

topology, including node-type and edge-type distributions, as well

as Complementary Cumulative Distribution Function (CCDF)

plots for distinct node types within each view. These statistics

offer a comprehensive overview of the structure and content of the

views, highlighting their utility in addressing biologically relevant

classification tasks, such as miRNA-disease or piRNA-disease

prediction.

2.2. Homogeneous Graph Representation Learning

Given a graph G = (V,E), where V is the set of nodes and E

the set of edges, homogeneous GRL techniques learn a function

f : G → Rn that maps (embeds) each node v ∈ V to a vector

(alias, embedding) x ∈ Rn such that nodes that are “close” in

the graph G are also close in the vectorial space Rn, irrespective

of their type. In other words, the embedding representation x of

the node v preserves the topological characteristics of the node v

in the embedding space Rn. These embeddings are then used by

machine learning models to predict either the node/edge type or

the existence of an edge.

Homogeneous GRL methods may be classified into the

following three categories.

Random walk-based methods for homogeneous graphs like

DeepWalk (Perozzi et al., 2014), Walklets (Perozzi et al., 2016)

or node2vec (Grover and Leskovec, 2016) that use random walks

on the graph to generate sequences of nodes that reflect the local

and global connectivity patterns within the graph.

Sampling-based methods that try to preserve the proximity

between the nodes, like LINE (Tang et al., 2015) that uses

edge sampling methods to improve performance during the

optimization of the objective function, designed to preserve both

local and global graph structures.

Graph Neural Network-based methods like GraphSAGE

(Hamilton et al., 2017) or Graph Attention Networks (Abu-El-

Haija et al., 2018) can also be used to generate node embeddings.

Graph Neural Networks showed excellent performance in graph

prediction tasks, but require more complex and computationally

intensive models (Ma et al., 2022).

Although homogeneous GRL methods simplify the embedding

process by neglecting node and edge type information, they

have proven their effectiveness and efficiency in inferring

information from graph-structured data. In particular, by solely

relying on the network topology while ignoring node/edge types,

homogeneous GRL techniques are less computationally demanding

than heterogeneous methods, which generally process individual

types independently and then require an integration phase to

pool the obtained representations (Dong et al., 2017). This

makes homogeneous methods more suitable for large-scale graphs.

Moreover, they avoid issues such as type imbalance that can arise

in heterogeneous techniques, where the most represented types

dominate the embeddings.

In this work, we investigate whether simple embedding

methods can infer reliable knowledge from the RNA-KG or from

smaller, biologically relevant, subgraphs (views) extracted from

the overall graph. The two homogeneous embedding methods

used in this study, node2vec (a random-walk-based method)

and LINE (a sampling-based technique), were carefully selected

based on their computational efficiency, simplicity, and proven

performance. LINE was chosen for its speed, which allows for rapid

experimentation and testing, while node2vec was selected for its

demonstrated effectiveness in diverse graph-prediction tasks. The

embeddings by these methods are independent of the subsequent

classification task, which can be performed using the embeddings

as input to any supervised machine learning model, even as

relatively simple as those we tested in our study: DTs (Breiman

et al., 1984), RFs (Breiman, 2001)1.

3. Results

In this section, we describe the results obtained by embedding

the graph elements with LINE and node2vec (under the settings

defined in subsection 3.1), and then training DTs, and RFs on

such embeddings for three classification tasks:

1. Node-type prediction tasks (Subsection 3.2): this task is

applied to the entire RNA-KG. First, the graph nodes are

embedded by node2vec. Next, the resulting embeddings are

partitioned into five stratified train and test holdouts. Each

training set, composed of the embeddings for the training

nodes, is used to train DT or RF classifiers for the node

classification task, while the embeddings corresponding to the

test nodes are used to evaluate the performance of the trained

classifiers.

2. Generic edge prediction tasks (Subsection 3.4): this task is

applied to the entire RNA-KG. First, test edges are removed

from the graph by guaranteeing that the number of connected

1 Note that we also tested radial basis function support vector
machines (RBF-SVMs), which achieved results similar to RFs.

Due to the superior robustness of RFs w.r.t. their hyperparameter
settings and their fastest convergence, we preferred reporting

RF results. All the models were implemented using Python -
scikit-learn (Pedregosa et al., 2011) library.
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components in the training graph is unchanged (see Subsection

3.3); this results in training and test graphs that consist

solely of existing (i.e., positive) edges. Negative edges are then

sampled using node-degree aware sampling for both training

and test sets, ensuring that the degree distributions of positive

and negative edges remain comparable. After embedding the

nodes in the training graphs, edge embeddings are generated

for both positive (existent) and negative (non-existent) edges

by concatenating the embeddings of the nodes at each edge’s

vertices. These edge embeddings are then used to train DTs

and RFs on the training set, with performance evaluated on

the test set.

3. Specific edge prediction tasks (Subsection 3.5): this task

is applied individually to the RNA-KG views described in

Section 2.1 and detailed in Table ??. The training and test

graphs are constructed in a way that is similar to the one

used in the generic edge prediction task, ensuring that the

graph structure remains consistent and that connectivity is

preserved. However, in this case, only edges of a specific

type are used for training and evaluation of DTs and RFs.

Importantly, in this task, particular care should be devoted

to negative edges sampling to avoid information flow between

the training and the test edge sets (see Subsection 3.3)..

In all our experiments, we used balanced accuracy as the

performance evaluation measure, i.e., the average of recall across

all classes (see Supplementary Section ??). This metric was chosen

because it provides a fair evaluation across all classes regardless

of their imbalanced frequency, as is the case in the node-type

prediction task. When dealing with the specific-edge prediction

experiments we also provided the F1 and weighted F1 scores

(Supplementary Section ??).

3.1. Graph embedding methods

To embed the graph with LINE, we utilized both the first-

order and second-order proximity versions provided by the

GRAPE library (Cappelletti et al., 2023), using the default

hyperparameters.

For node2vec, we adopted the skip-gram model as the

shallow neural network architecture, with GRAPE default

hyperparameters.

To ensure a fair comparison, we generated random walk

samples across multiple experiments using the same setting,

defined by the same values for the return weight ( 1
p
)

and explore weight ( 1
q
) hyperparameters. More precisely we

compared values that emulate a depth-first visit (DFS -setting with
1
p

= 0.2, 1
q

= 5), a breadth-first visit (BFS -setting with 1
p

= 5,
1
q

= 0.2), or an unbiased first-order random walk according to

a DeepWalk-like strategy (Perozzi et al., 2014) (Balanced-setting

with 1
p
= 1, 1

q
= 1).

Figure 2 shows the t-SNE two-dimensional projections (van der

Maaten and Hinton, 2008) of the LINE and node2vec embeddings

for the most frequent types of nodes in RNA-KG (see also

the 2D tSNE embedding of less represented RNA types in

Supplementary figure ??). The main categories of biomolecules

and medical concepts are quite well separated, with some expected

superpositions, such as the intersection between gene and protein

embedded representations, since genes encode the information

necessary to synthesize proteins. Our preliminary results showed

that the BFS-like node2vec strategy performs slightly better in the

predictive tasks compared to DFS-like (Supplementary Section ??

and Supplementary Fig. ??). This strategy has been used in all

the experiments reported in section 3.

3.2. Node-type prediction: experimental settings and results

For node-type prediction we computed embeddings by using BFS-

like node2vec to project points into multiple embedding sizes:

10, 50 and 100, and we also experimented with 2-dimensional

projections of 100-dimensional embeddings through t-SNE. On

average, 10-D embeddings achieved the best balance between

predictive accuracy and efficiency (more details in Supplementary

section ??). The embeddings were input to DTs and RFs. To

perform an unbiased evaluation, we applied 5 stratified holdout

cross-validation (train:test ratio = 70:30, with fixed seed for

the random number generator to guarantee comparable results

across models) on the RNA-KG nodes (about 578K nodes).

Hyperparameter selection for the classifier models was performed

on the training set using a grid search strategy and internal

cross-validation.

Figure 3 shows the average balanced accuracy results obtained

from the 10-D embeddings. Overall results are surprisingly

positive. Using RFs, we achieve a balanced accuracy of 97.4%

when classifying the 7 most represented node types. Even when

considering the 20 main node types, the results remain well above

90%. When considering 81 different node types, the balanced

accuracy drops to 53.7%; however, it is important to note that a

random guess predictor would achieve a balanced accuracy of only

about 1.2%. Details about the considered node types are available

in the Supplementary Section S1.

3.3. Edge prediction: unbiased sampling of train and test sets

We experimented with generic and specific edge prediction tasks.

Fig. 4 depicts the main differences between these two types of edge

prediction.

When performing edge prediction tasks, a commonly

overlooked issue is the method used to create training and test

edge samples.

The first important observation is that, since test edges must

be removed from the input graph prior to graph embedding, their

removal should not alter the graph’s global connectivity structure;

specifically, we should not change the number of connected

components. To ensure this, for both generic and specific edge

prediction tasks, we generated training and test splits using

a Connected Monte-Carlo holdout scheme, which ensures that

removing test edges does not increase the number of disconnected

components compared to the original full RNA-KG (Cappelletti

et al., 2023).

In the context of specific edge prediction, particular attention

should be given to the generation of negative edges, to avoid false

negatives that can compromise the learning capabilities of the

models. Indeed, if the graph used to generate the negative training

edges is limited to the positive training graph, rather than the full

graph, positive examples that are not included in the training set

but that have been included in the test set could lead to false

negatives that can confuse the predictor being trained, degrading

its performance. This procedure, included in GRAPE, can be

acceptable when we consider generic edge prediction of the overall

graph since the expected number of false negatives is relatively low,

but with specific edges, the number of potential false negatives can

be large, as we will show in the following experiments.



RNA-KG analysis 5

First-order LINE Second-order LINE

Chemical
Protein

GO
Cell line

Disease
Gene

mRNA
Other(47)

First-order LINE Second-order LINE

Chemical

Protein

Go

Cell line

Disease

Gene

mRNA

Other (47)

(A)
DFS BFS Balanced

Chemical
Protein

GO
Cell line

Disease
Gene

mRNA
Other(47)

DFS BFS Balanced

(B)

Fig. 2: 2D t-SNE projections of node embeddings of the RNA-KG. (A) First (left) and second-order (right) LINE node embeddings; (B)

node2vec with DFS-like (left) and BFS-like (center) hyperparameters and DeepWalk-like (right) node embeddings.
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Fig. 3: Balanced accuracy results on RNA-KG node type

prediction using full 10-D BFS-like node2vec embeddings with

DTs (red bars) and RFs (blue bars), considering the 7, 20, 54,

68 and 81 most common node types. The color intensity of the

bars reflects their balanced accuracy value and evidence a drop

in performance as the number of node types increases (discussed

in Section 4). Error bars represent the standard deviation across

multiple holdouts.

For this reason, we designed and implemented the following

unbiased pipeline for specific edge prediction:

1. Generate the positive train G+
tr and positive test G+

te graph

from the full graph G, while guaranteeing the connectivity and

the same number of connected components in the positive train

graphG+
tr as in the original graphG. This can be accomplished

by using a spanning tree of G as G+
tr, and G+

te=G\G+
tr.

2. Generate the embeddings for the nodes of the graph by

applying an embedding method on the training graph G+
tr (the

embeddings are generated based on the train graph instead of

the full graph to avoid bias in the results).

3. Filter the positive train G+
tr and positive test graph G+

te edges

by keeping only the specific edge type to obtain a filtered

positive train Gf+
tr and test graph Gf+

te .

4. Generate the filtered negative graph Gf− from the

full graph G using node-degree aware edge sampling to

guarantee that the sampled negative edges have degree-

distribution comparable to the one characterizing positive

edges (Cappelletti et al., 2024). In GRAPE, the negative test

graph is generated from the filtered train graph Gf+
tr and this

can lead to a negative test graph that contains false negatives.

This alternative method solves the problem.

5. Split the filtered negative graph Gf− into negative train graph

Gf−
tr and negative test graph Gf−

te to avoid any intersection

between the two sets.

6. Train the edge prediction model using the filtered positive

training graph Gf+
tr and the filtered negative training graph

Gf−
tr .

7.

8.

9. Test the trained model with the filtered positive test graph

Gf+
te and the filtered negative test graph Gf−

te .

Details about the implementation of the unbiased train/test

sampling approach can be found in Supplementary Section ??.
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3.4. Generic Edge Prediction

Generic edge prediction experiments have been performed using

5 stratified holdout cross-validation, with a 70:30 train:test

ratio, and using the same random seed generator to guarantee

comparable results across models. Overall, the training set

contains about 4M edges, and the test set with about 1.7M edges.

Both DTs and RFs hyperparameters are optimized by using

grid-search on the training set (learning hyperparameters listed in

Supplementary section ??).

Experimental results with different embedding dimensions are

shown in Figure 5. The embedding size has a certain impact on the

Balanced Accuracy only with RFs. The best result is achieved with

RFs trained on 100-D embeddings. Again, results are encouraging

and confirm the predictive capability of homogeneous embedding

methods on RNA-KG.

3.5. Specific Edge Prediction

For the specific edge prediction tasks, we embedded each RNA-

KG view by three embedding approaches, i.e., BFS and DFS-like

node2vec Skip-Gram and first-order LINE, and trained RFs and

DTs to classify the computed embeddings (all the experiments

employed the same hyperparameter values, see Supplementary

section ??).

Generalization capabilities of the models were assessed using

5 random holdout cross-validation (train:test ratio = 70:30, with

random seed generator set to a fixed value) in all the following

experiments.

3.5.1. Specific edge prediction results with

biased/unbiased train/test sampling

We compared the biased and unbiased train/test sampling

approaches (Section 3.3) on a subset of RNA-KG views. The

embeddings were generated using first-order LINE with embedding

size set to 10 and the DT as classifier model.

Table 1 shows that the biased sampling can generate a

consistent percentage of false negative edges (FN% column)

in some specific edge prediction tasks (e.g. 21% and 23% in,

respectively, the miRNA-Disease and miRNA-Phenotype tasks).

The performance of the classifier models are therefore consequently

affected, as witnessed by the accuracy on the positive edges that

drops to 50%. This issue is solved when using the model trained

with the unbiased training pipeline; indeed, the accuracy on the

Edges: Train Test Unused

Fig. 4: Generic (left) and specific (right) edge prediction, where

the specific edges of interest are the green ones connecting blue

and pink nodes. Continuous lines represent positive training edges,

dashed ones positive test edges; dotted lines in the right panel

represent the edges not used for either training or testing in the

specific edge prediction.
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Fig. 5: Balanced accuracy results for DT (red bars) and RF (blue

bars) on the RNA-KG dataset for the generic edge prediction

task, utilizing full BFS-like node2vec embeddings of various sizes.

Vertical segments on each bar represent the standard deviation

across multiple holdouts; note that in some cases the standard

deviation is very low (< 0.1%) and the segment is not visible.

positive edges improves to more than 75% in both cases. On

the other hand, results on negative edges are not affected, thus

resulting in boosted balanced accuracy. As expected, when the

percentage of false negatives is low, the performance obtained

when using the biased and unbiased sampling approaches are

comparable (Table 1).

3.5.2. Specific edge prediction results with the unbiased

pipeline on different views of the RNA-KG

Finally, we conducted a thorough analysis of various views of the

RNA-KG, each extracted from the overall RNA-KG to focus on

specific types of nodes and edges relevant to a given edge prediction

task.

The balanced accuracy results for the main specific edge

prediction tasks are summarized in Fig. 6. These results were

obtained using a 10-D LINE embedding combined with DTs and

RFs.

Detailed results for specific edge prediction tasks across seven

RNA-KG views, along with performance metrics on a more

challenging test set containing ten times as many negative edges

as positive edges, are provided in Supplementary section ??.

miRNAdiseasev miRNA-Disease

miRNAdiseaseSOv miRNA-Disease

GOdiseasev lncRNA-GO

piRNAdiseasev piRNA-Disease

piRNAdiseaseGOv piRNA-Disease

chemicalDiseasev Chemical-Disease

cellAnatomyv lncRNA-Anatomy

81.5

81.4

80.5

93.1

93.2

82.5

86.3

Fig. 6: Mean balanced accuracy (and its standard deviation) across

5 holdouts, achieved by RFs on specific edge prediction tasks

performed over the RNA-KG views. The y-label reports the name

of the view and the specific-edge prediction task.
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Table 1. Comparison of the biased and unbiased pipeline on the miRNA-disease view of the RNA-

KG across six edge specific prediction tasks. FN stands for False Negatives and BA for Balanced

Accuracy.

Specific edge

prediction

Unbiased

Procedure
FN(%)

Accuracy

on pos.

Accuracy

on neg.

Overall

BA(%)

miRNA-Disease No 21.27 50.10 ± 0.21 75.31 ± 0.18 62.71 ± 0.11

miRNA-Disease Yes 0.00 75.98 ± 0.44 74.34 ± 0.42 75.16 ± 0.24

Disease-Disease No 0.17 48.34 ± 0.53 63.48 ± 0.29 55.91 ± 0.23

Disease-Disease Yes 0.00 47.34 ± 0.73 64.32 ± 0.57 55.83 ± 0.47

miRNA-Gene No 4.00 56.03 ± 0.12 59.14 ± 0.11 57.59 ± 0.08

miRNA-Gene Yes 0.00 59.36 ± 0.14 57.81 ± 0.11 58.59 ± 0.11

Gene-Disease No 0.51 52.39 ± 0.83 62.63 ± 0.75 57.51 ± 0.34

Gene-Disease Yes 0.00 51.30 ± 0.48 62.85 ± 1.38 57.07 ±0.82

Gene-Phenotype No 1.26 53.55 ± 0.59 54.57 ± 0.55 54.06 ± 0.35

Gene-Phenotype Yes 0.00 53.34 ± 0.53 53.59 ± 0.52 53.46 ± 0.31

miRNA-Phenotype No 23.15 50.25 ± 0.36 77.20 ± 0.32 63.73 ± 0.17

miRNA-Phenotype Yes 0.00 77.01 ± 0.40 75.36 ± 0.18 76.19 ± 0.16

4. Discussion

In this work, we conducted a systematic analysis of RNA-

KG, an ontology-based knowledge graph describing RNA

molecules, to assess its informativeness via thorough and unbiased

prediction experiments using relatively simple homogeneous graph

embedding techniques, such as node2vec and LINE. We obtained

surprisingly good results, confirming that even graph embedding

methods for homogeneous graphs can reasonably predict node

types and edges of the RNA-KG. These results open the way to the

application of more complex graph embedding methods aware of

the heterogeneity of the underlying RNA-KG (Soto-Gomez et al.,

2025), and to end-to-end classification methods based on GNNs to

further improve the prediction performance (Li et al., 2022).

Indeed, as shown in Fig. 3, the node-type prediction results

yield high balanced accuracy using relatively simple classifiers

(DTs or RFs). While RFs tend to achieve better results than

DTs, both the classifiers suffer from a drop in performance as

the number of considered node types increases. This decrease is

attributable to two factors: as the number of classes increases,

the less represented classes tend to overlap with the larger ones,

and the classification problem becomes significantly unbalanced,

presenting an additional challenge for any classifier. This is further

supported by the observation that when only the 7 or 20 most

represented classes are considered, the standard deviation across

the 5 holdouts is very low (less than 0.1%), highlighting that fewer

classes result in less challenging classification tasks and more stable

classifier performance. Of course, these results may be improved by

using more complex, eventually heterogeneous, graph embedding

strategies coupled with imbalance-aware classifiers (Schubach

et al., 2017).

Full embeddings lead to significantly better results (Wilcoxon

rank sum test, p-value < 10−5), which is expected since 2D

projections overly compress the data and result in a loss of

important features.

Additionally, for the generic edge prediction task, RFs trained

on embedded edges achieve accuracy greater than 80%, confirming

that embedding methods for homogeneous graphs can reasonably

predict the existence of an edge in RNA-KG.

Edge prediction tasks focusing on specific edges in RNA-KG,

using views tailored to the prediction task, show that we can obtain

accuracy larger than 80%. In several cases, such as piRNA-disease

prediction, accuracy exceeds 90% (Fig. 6). This performance is

achieved using relatively simple and fast embedding methods, such

as LINE, in combination with off-the-shelf classifiers like DTs and

RFs.

Overall, these results indicate that we can reasonably predict

nodes and edges in RNA-KG using relatively simple embedding

methods for homogeneous graphs, thereby demonstrating both

the effectiveness of these methods and the high quality of the

data available in RNA-KG. This is of paramount importance

for discovering novel interactions between different types of non-

coding RNA or other biomolecular entities, or for uncovering

relationships between RNAs and specific biomedical concepts.

Indeed, the rich representation of different RNA types in

RNA-KG enables the discovery of novel interactions between

RNA molecules, e.g. miRNA-mRNA, miRNA-miRNA, miRNA-

lncRNA, and siRNA-mRNA, as well as interactions between

RNA molecules and other biomolecules, such as aptamer-

protein, lncRNA-protein, and siRNA-gene. Moreover, RNA-KG

allows us to represent and uncover associations involving genes

and diseases (gene-disease), molecular functions and processes

(gene-GO), and various RNA–medical concept associations,

including miRNA-disease, lncRNA-GO, and miRNA-pathway.

Such new knowledge can be inferred by analyzing the embedded

representations of negative edges, i.e. edges not present in RNA-

KG, prioritizing those scoring high predicted probability. These

edges connect nodes for which no known association currently

exists; high-scoring predictions may indicate the presence of

yet unknown interactions. Importantly, the discovery of novel

RNA interactions and associations can support the development

of RNA-based therapeutics (Sparmann and Vogel, 2023). For

example, identifying a novel silencing interaction between a

miRNA and a cancer-associated mRNA could inform the design

of an RNA drug that targets and silences that gene.

Our findings represent the first systematic analysis of RNA-

KG using relatively simple embedding methods for homogeneous

graphs.

We estimate that the success of these methods partially relies

on the topological differences between node types. Indeed, as

shown in Table S1 in the supplementary information, all views

exhibit a substantial variability in the mean degree across node

types. This property could facilitate a characterization of node and
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edge types based on their neighborhoods, which can be exploited

by homogeneous methods. These differences are even more

pronounced when considering the semantic induced of node types.

Therefore, we anticipate substantial improvements in prediction

performance by employing methods that account for the rich

semantic heterogeneity of the graph (Bing et al., 2023), thereby

exploiting the available knowledge about the diverse types of nodes

and edges in RNA-KG (Soto-Gomez et al., 2024). Furthermore,

considering that RNA-KG is constructed by integrating ontologies

that hierarchically organize information, we plan to explore

hyperbolic embedding techniques, as hyperbolic spaces are known

to better model hierarchical information compared to Euclidean

spaces (Nickel and Kiela (2017); Sala et al. (2018)).

In summary, our results show that GRL methods can

accurately predict node types and edges in RNA-KG. The resulting

list of predicted interactions and relationships could serve as

an invaluable resource for guiding the experimental efforts of

biomedical researchers, thus paving the way for novel discoveries

and insights into the “RNA-world”.
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