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Abstract. Non-coding RNAs (ncRNAs) are central to regulating diverse cellular processes, yet
their complex interaction networks remain poorly characterized due to experimental and com-
putational challenges. We present ncRNA-CUPID (Computational Understanding of Pairwise
Interactions in ncRNA Data), a novel deep learning framework that predicts pairwise ncRNA
interactions solely from primary sequence information. By leveraging embeddings from a pre-
trained ncRNA language model and a dedicated feed-forward neural network classifier, ncRNA-
CUPID, differently from previous methods, can learn and predict virtually any type of ncRNA
interactions and represents the first attempt to predict ncRNA interactions directly from RNA
sequences using a transformer-based model.

1 Introduction

Understanding RNA-RNA interactions is critical for deciphering the regulatory circuits that
orchestrate gene expression, RNA processing, and signal transduction. Non-coding RNAs (ncR-
NAs), despite lacking protein-coding potential, play pivotal roles in these processes. However,
experimental mapping of ncRNA interactions remains challenging due to the limitations of
existing experimental and computational techniques [1].

Methods such as Minimum Free Energy (MFE) calculations and accessibility-based models
have been used to predict RNA-RNA interactions [2, 3], yet these approaches rely on predefined
parameters and simplified energy models. Moreover, experimental techniques such as RNA
Antisense Purification (RAP-RNA) offer validation but remain limited by their high cost and
labor intensity [4].

Recent advances in deep learning have enabled direct modeling of complex biological se-
quences. Methods such as Convolutional Neural Networks(CNNs) and deep forests [5, 6] have
been applied to RNA-protein interaction prediction, while graph-based approaches embed het-
erogeneous networks of ncRNAs and diseases using multigraph contrastive learning [7] or graph
representation learning techniques [8]. While effective, these methods often rely on predefined
feature extraction, graph structures, or supervised training, limiting their adaptability to novel
ncRNA sequences.

In contrast, Large Language Models (LLMs) can directly learn from large corpora of proteins
or RNA data [9, 10, 11, 12], capturing intricate interaction motifs beyond predefined energy
models or graph-based constraints. GenerRNA [10], for instance, learns long-range dependencies
via masked language modeling, processing full-length ncRNA sequences without truncation.
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In this work we introduce ncRNA-CUPID, a deep learning framework that predicts ncRNA
interactions using only sequence information. ncRNA-CUPID extracts embeddings from a
pre-trained ncRNA language model and feeds a Feed-Forward Neural Network (FFNN) to
automatically learn intricate sequence interaction features. This design circumvents the need for
explicit thermodynamic parameterization and manually engineered features, offering a scalable
and efficient alternative for uncovering novel regulatory interactions [13].

2 Methods

Dataset Our dataset comprises a subset of multispecies ncRNA interaction pairs from RNA-
KG [14]. Due to the constraints imposed by the ncRNA Language Model (LM) in our pipeline
(GenerRNA [10]), we filtered the dataset to retain only sequences that fit within the model’s token
limit (approximately 4096 nucleotides). After applying these filters, the dataset contains: 99841
interaction pairs (down from an initial 130310 pairs), and 10644 unique sequences (selected
from 19624 potential sequences) belonging to different RNA molecule types, including long
non-coding RNA (IncRNA), circular RNA (circRNA), microRNA (miRNA), small nuclear RNA
(snRNA), small nucleolar RNA (snoRNA), Small Cajal body-specific RNAs (scaRNAs), small
cytoplasmic RNAs (scRNA) and other types of ncRNAs.

Data Augmentation To address the issues due to the limited cardinality of the available
training data, especially for specific types of ncRNA interactions (e.g., snoORNA-IncRNA or
miRNA-circRNA), we employed a data augmentation strategy that effectively increases the
dataset size by a factor of 4. For each original training instance represented as a pair of interacting
ncRNA (s;, s;) we generate three additional augmented instances: 1) Molecule Order Reversal:
swap the order of the molecules: (s;, s;); 2) Sequence Flipping: reverse the nucleotide order in
both molecules (denoted by the superscript F): (s, s

i 55 ); 3) Combined Augmentation: reverse
both the molecule order and the nucleotide sequences (s, sI"). This augmentation introduces

70
invariance to both the order and orientation of sequences, thereby enabling the model to better

capture the underlying biological patterns and improving its robustness against input variability.

Generation of negative examples. Since only positive non-coding RNA-RNA interactions
are explicitly provided, we generated a set of negative examples N that is n times larger than
the positive examples (n = 20 in our experiments) to address the imbalance problem in actual
RNA interaction data. We corrupted a randomly sampled tuple (s;, s;) of each interacting pair
by substituting its second element, s;, with another randomly chosen ncRNA sequence, s;, that
has the same type of s;. After checking that neither (s;, s¢) or (s, s;) are existing in the positive
interaction set we add the tuple to the set of negative tuples; we generate a number of negatives
per interaction pair that matches the relative frequency distribution of the positive interaction
pair itself.

Model Architecture Our model follows a two-stage pipeline, as illustrated in Figure 1. It
first extracts ncRNA sequence embeddings using a pre-trained ncRNA Language Model (Gen-
erRNA [10]) and then processes these embeddings through a Feed-Forward Neural Network
(FFNN) to predict interaction probabilities.

The GenerRNA architecture mimics the GPT-2-medium model [15], and is composed of
24 stacked transformer-decoder layers, each incorporating a self-attention mechanism - that
models pairwise interactions among all positions in its input sequence. GenerRNA uses a context
window of 1024 tokens, corresponding to input sequences with a length of approximately 4096
nucleotides coded through byte pair encoding.
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Figure 1: High-level ncRNA-CUPID architecture schema.

Each transformer block is fed with an input of size H x I, where [ = 1024 is the length of
the input token and ' = 1024 is the dimension of their embedded representations, and outputs a
latent representation matrix X € R*”*! whose rows x; € R'%?* are latent representations of the
i" token.

To obtain a fixed-length embedding for the entire sequence, we tested two types of pooling
over the sequence (i.e., across the H tokens), as well as their concatenation:

* Average (AVG) Pooling: obtained as the mean of the embeddings of all the tokens:

_ANH
Cavg = Ezi:1 Xi.

* Max Pooling: Compute the element-wise maximum over all token embeddings: €p,x =
H

* Concatenation of [AVG, Max]: Combine both pooled representations into a single embed-
ding vector: € = [€,yg; €max] € R4,

To predict the interaction we concatenated the embedding pairs and used them as input to a
FFNN.

Due to the imbalance in our dataset we designed a training strategy to prevent the model
from learning predominantly from the negatives. To address this, we constructed mini-batches
that contain a controlled mix of positive and negative examples. Each mini-batch B of size
m is formed by randomly selecting m,, positive examples (using a uniform distribution with
replacement) and m,, negative examples (using a uniform distribution without replacement). The
ratio of negatives within each mini-batch is defined by » = =22, with - m,, +m;, = m.
Here, r can vary between 0 and 1. A value of » = 0.5 implies that 50% of the mini-batch consists
of negatives. In our experiments, we set m = 512 and r = 0.7. The choice of sampling positives
with replacement is driven by their limited number, ensuring sufficient representation even in
large batches, whereas sampling negatives without replacement allows for a broader coverage of
these more abundant examples.

2.1 Experimental Evaluation
Data preparation and model selection. 1In all our experiments the negative examples were
sampled according to the relative frequency of the interacting pair types with negative:positive
ratio equal to 20:1. The dataset was partitioned into stratified training and test sets (train:test ratio
=90:10). The training set was further split into a stratified set for training (80% of interaction
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pairs) and the remaining 20% for validation. The validation set was used for early stopping and
for model selection via maximization of the Matthews correlation coefficient [16].

Baseline for comparison. Besides the random classifie—whose expected performance are
AUROC = 0.5 (Area Under the Receiver Operating Characteristic Curve) and AUCPR = 0.047
(Area Under the Precision-Recall Curve)-we employed the IntaRNA method [2] as a baseline
for comparison. IntaRNA estimates the interaction energy between RNA molecules. While inter-
action energy can be thresholded to obtain binary predictions, we opted to limit the comparison
to threshold-independent metrics AUROC and AUCPR.

3 Results and discussion

Table 1: Comparison of AUROC and AUCPR across different pooling strategies and data
augmentation techniques. Random baseline refer to the expected performance of the random
classifiers. ncRNA-CUPID models are sorted in increasing order of both AUROC and AUCPR

Experiment AUROC AUCPR
Random baseline 0.5 0.047
Baseline-concat 0.658 0.078
Data-aug-Max 0.810 0.147

Data-aug-concat 0.862 0.222
Data-aug-AVG 0.919 0.364
IntaRNA 0.544 0.055

Table 1 summarizes the overall performance achieved by adopting different pooling strategies
and data augmentation techniques with our proposed model:

(1) no data-augmentation and computation of the molecule embeddings by concatenating the
AVG and Max pooling embedded representations (Baseline-concat setting in Table 1)

(2) data-augmentation using three different embedding strategies: (a) Max pooling (Data-aug-
Max), (b) Concatenation of AVG and Max pooling (Data-aug-concat) (c) Average pooling
(Data-aug-AVG).

The best model is the one using data-augmentation and the average pooling for molecule
embedding. This result was somehow expected. Data augmentation not only reduces the
problems due to a limited sample set, but importantly improves model generalization with
respect to the order of input molecules in the interacting pair, as well as to the order of the
nucleotide sequences.

IntaRNA seems to fail on this task, but its poor results could be due to the fact that IntaRNA
has been designed to detect interactions between small ncRNA and mRNA in bacteria, while our
dataset includes a larger set of ncRNA interactions, involving also eukaryotic ncRNA.

Detailed ncRNA-CUPID results for each of the different types of ncRNA interactions are
reported in Fig. 2.

In conclusion, results show that ncRNA-CUPID can successfully predict ncRNA interactions,
achieving for different types of ncRNA interactions AUROC larger than 0.9 (Fig. 2d). This
approach opens the way for the large scale in silico prediction of ncRNA interactions using
only their sequences. To our knowledge, this is the first transformer-based method to predict
ncRNA interactions directly for sequence and the first computational method able to predict
any type of ncRNA interactions. Future directions include evaluating other RNA-specific
representations, such as those provided by RNABERT [17]; and broadening the performance
comparison including deep learning methods for RNA interaction prediction.
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Figure 2: ncRNA-CUPID results for Augmented train and test Classification Experiments with
types-dependent sampling, and average pooling. (a) Precision Recall Curve (PRC) on the test set
including all the type of ncRNA interactions; (b) Confusion matrix on the test set; (c) Receiver
Operating Characteristic curve (ROC) on the test set including all the type of ncRNA interactions;
(d) ncRNA-CUPID results on the test set across different types on ncRNA interactions (rows) for
different types of metrics (columns).
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Availability of data and software code
The ncRNA-CUPID code, and the scripts to reproduce the experiments and tutorials are
available from GitHub (https://github.com/AnacletoLAB/ncRNA-CUPID).
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