An Empirical Study of Remote Homology
Detection using Protein Language Models

Abstract—Detecting remote homologs, proteins that share
evolutionary ancestry despite low sequence similarity, remains
a central challenge in computational biology. The Structural
Classification of Proteins extended (SCOPe) database organizes
protein domains into superfamilies based on structural and
functional evidence of common origin, making it a widely used
benchmark for remote homology detection. In this study, we
investigate the effectiveness of protein language model (PLM)
embeddings for predicting SCOPe superfamilies directly from
sequence. We introduce DOMCLASS, a deep learning framework
that combines supervised contrastive learning with a distance-
weighted /-NN classifier to learn and exploit an embedding space
aligned with SCOPe superfamily annotations. Our empirical
results show that general-purpose PLM embeddings already
outperform sequence similarity- and profile-based methods for
remote homology detection, and that contrastive learning can
further improve performance, even in challenging low sequence
identity settings.

Index Terms—protein sequence, remote homology, protein
language models, contrastive learning

I. INTRODUCTION

Many cellular functions are carried out by proteins. These
molecules are linear chains of varying lengths, built from
a set of 20 standard amino acids. The specific sequence
determines the protein’s unique three-dimensional structure
and, in turn, its function [2]. Large proteins often consist
of multiple domains, which are structural units that fold
relatively independently from the rest of the protein and can
be understood as a modular unit of function [6]. The same
domain, folded into the same three-dimensional structure, can
be found in different proteins.

The principle that sequence determines structure, and struc-
ture determines function, has long guided efforts to classify
protein domains into functional families based on their se-
quences [25], [28]. With the increasing availability of high-
resolution three-dimensional (3D) structural data, this classi-
fication has extended beyond families to superfamilies. Struc-
tural information often uncovers evolutionary or functional
relationships that cannot be discerned at the sequence level
alone [[19]. One such classification of protein domains is the
Structural Classification of Proteins extended (SCOPe) [25],
which organizes domains from experimentally determined
structures in the Protein Data Bank (PDB). SCOPe uses expert
curation to group domains that show strong structural and
functional evidence of common evolutionary origin (homol-
ogy) into superfamilies, despite having little or no detectable
sequence similarity. This classification has become a gold
standard for evaluating methods aimed at detecting such cases,
commonly referred to as remote homology [10], [24], [33].

Traditional methods for remote homology detection rely
on sequence similarity approaches, such as multiple sequence
alignments, to identify evolutionary relationships between
proteins. However, the sensitivity of these methods often
diminishes when detecting homologous proteins with low
sequence identity, often referred to as the twilight zone of
sequence similarity [30]. Although significant advances have
been made in structure-based comparisons for this problem,
their application at scale is still limited by computational
demands [26]], [33]. Recently, transfer learning — using nu-
merical vector representations (embeddings) derived from pre-
trained protein language models (PLM) — has emerged as an
alternative that could go beyond sequence-based comparisons
(13]], [19]

Among these, the Evolutionary Scale Modeling (ESM)
family of PLMs are transformer models trained on millions of
protein sequences, designed to capture a diversity of higher-
level features of proteins [23[], [29]. These models have shown
high proficiency in various downstream tasks, such as enzyme
commission number prediction [35]], protein-protein contact
prediction [34], and DNA-binding protein prediction [27].

In this work, we explore the application of ESM embeddings
to remote homology detection by predicting SCOPe super-
families for domain sequences. We propose a method called
Domain Contrastive Learning Annotation of SuperfamilieS
(DOMCLASS), a deep learning approach that refines an
embedding space optimized to reflect evolutionary ancestry
based on SCOPe superfamilies. A distance-weighted K-NN
classifier is then used to assign superfamilies to new domains.
Our results provide empirical evidence that general PLM
embeddings are already more effective at identifying remote
homology traditional sequence- and profile-based methods
[4]], [15]. We further show that contrastive learning enhances
the predictive performance of PLM embeddings, particularly
in challenging cases where sequence identity with annotated
domains is very low — the twilight zone of sequence similarity.

II. RELATED WORKS

Remote homology detection remains a foundational prob-
lem in computational biology, concerned with identifying
proteins that share common ancestry despite low sequence
identity [10]. Traditional methods like BLASTp rely on pair-
wise sequence alignment to infer homology, offering fast and
interpretable results but limited sensitivity in remote cases [4].
To improve in this scenario, profile-based methods based on
Hidden Markov Models (HMMs) have been widely adopted
[22]. These models transform multiple sequence alignments



into position-specific scoring systems, enabling probabilistic
comparisons between sequences and profiles [15]], [20]], [31].
More recently, structure-based tools such as Foldseek encoded
3D structures into discrete representations for efficient struc-
tural comparison, leveraging the fact that structure is often
more conserved than sequence to search for homologs [33]].
Although significant advances have been made in structure-
based comparisons, their application at scale is still limited by
computational demands [26]], [33]].

The emergence of PLMs, such as the ESM models, has
enabled the creation of efficient numerical representations
(embeddings) of protein sequences that capture diverse aspects
of protein structure and function [29]], [23]]. These embeddings
have shown significant success on tasks like protein subcellular
localization and prediction of disease variant effects. [16]], [7].

Building upon these initial representations, contrastive
learning provides a powerful framework to further refine
protein embeddings, optimizing an embedding space where
distances correspond to biologically meaningful relationships
[S[l. This approach explicitly trains a model to minimize the
distance between embeddings of protein sequences that belong
to the same category (label) while maximizing the distance
between embeddings of different ones [21]. This makes con-
trastive learning particularly suitable for biological datasets,
which are often characterized by limited and imbalanced data,
where traditional classification methods struggle due to a lack
of sufficient positive examples for many categories [12]. By
learning from both positive and negative examples, contrastive
learning can better handle underrepresented proteins, leading
to improved performance.

Contrastive learning approaches have been successfully ap-
plied to different tasks. One example is Contrastive learning-
enabled enzyme annotation (CLEAN), which uses a con-
trastive learning framework with input from PLMs like
ESM-1b to predict enzyme commission (EC) numbers [35].
CLEAN’s learned embedding space reflects functional simi-
larities, allowing it to achieve better accuracy, reliability, and
sensitivity in identifying promiscuous enzymes, outperform-
ing state-of-the-art tools based on traditional classification or
sequence similarity.

Similarly, ProtTucker applies contrastive learning to protein
embeddings to optimize a representation space aligned with
the hierarchical classification of protein 3D structures in CATH
(Class, Architecture, Topology, Homologous superfamily).
ProtTucker [19] trains a feed-forward neural network on PLM
embeddings using a contrastive loss based on protein triplets
sampled according to the CATH hierarchy. This process leads
to a learned embedding space where structural relationships
are better captured than by raw embeddings or traditional
sequence methods, including more distant homologies in the
zone of low sequence similarity. Following these successful
applications of contrastive learning to structural (CATH) and
functional (EC number) hierarchies, our work aims to explore
the use of PLM embeddings, specifically ESM-1b and ESM-
2, combined with contrastive learning, for remote homology
prediction using the SCOPe database [17].

III. METHODS
A. Dataset and Data representation

SCOPe is a widely used resource that provides a manually
curated hierarchical classification of protein domains based
on structural and evolutionary relationships [17]. The hier-
archy comprises several levels: Family groups domains with
high sequence similarity; Superfamily brings together families
inferred to share a common evolutionary ancestor, even in
the absence of detectable sequence similarity; Fold clusters
superfamilies with similar overall structural architecture but
without strong evidence of shared ancestry; and Class orga-
nizes folds according to broad secondary structure content. In
this study, we focus on the superfamily level as a proxy for
remote homology detection that considers domains within the
same superfamily to be remote homologs [10]], [24], [33].

We used SCOPe versions 2.07] and 2.08% as the main
resources for this study. Protein sequences were represented
using embeddings derived from two pre-trained protein lan-
guage models (Fig. Eh): ESM-1b [29] and ESM2-3B [23].
Each model produces a sequence of residue-level embeddings,
yielding an L x N matrix for a domain of length L, where
N = 1280 for ESM-1b and N = 2560 for ESM2-3B. To
obtain a fixed-size representation for each domain, we compute
the mean over the length dimension, resulting in a single
N-dimensional embedding vector. Both models were used
as static encoders, with no gradient updates or fine-tuning
performed during training.

B. Learning a refined embedding space

DOMCLASS uses a feedforward neural network to trans-
form the high-dimensional embeddings produced by the PLMs
into lower-dimensional embeddings. It employs a contrastive
learning framework [19], [21]] to learn an embedding space
where Euclidean distances reflect evolutionary similarity. The
network produces vectors z € R"™ for each domain, where
spatial proximity reflects shared evolutionary origin — i.e.,
domains from the same superfamily are embedded closer
together. The networks are trained using a Supervised Con-
trastive Loss [21]], defined as follows:
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Here, each anchor is represented z,4, corresponding to a
domain with superfamily label d € sf. The set P(d) consists
of one or more positive samples belonging to the same super-
family as the anchor. In cases where a superfamily contains
only a single domain, we follow the approach of Yu et al. [35]]
and generate positive samples by introducing mutations into
the original sequence. The set of negatives N(d) includes
embeddings from domains assigned to different superfamilies,
but located near the anchor in the learned embedding space,
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Fig. 1: Overview of the DOMCLASS workflow. (a) Protein domain sequences from SCOPe 2.07 and 2.08 are embedded using PLMs. (b) A feedforward
neural network is trained with a contrastive learning objective to refine the embedding space by pulling together domains from the same superfamily (positives)
and pushing apart domains from different superfamilies (negatives). The resulting representation space — depicted by output vectors in shades of blue — is
optimized to reflect evolutionary relationships. (¢) Superfamily annotation is performed using a distance-weighted K-NN classifier in the embedding space:
a query domain dpew is assigned to a superfamily sf based on its proximity to annotated domains in the embedding space.

thus providing a more challenging contrast [35]. The full
contrastive set is defined as A(d) = N(d) U P(d), and 7
denotes a temperature scaling factor (set to 0.1).

The learning objective is a contrastive loss function that
minimizes the distance between the anchor and the positives
while maximizing the distance between the anchor and the

negatives (Fig. [Ib).

C. Annotation of Superfamilies

Once the embedding space has been trained to reflect
evolutionary relationships, we annotate domains with super-
families using a K-Nearest-Neighbors (/K -NN) strategy to
make predictions (Fig. [Tk). This approach takes advantage of
the geometric structure of the learned space to infer the class
label of unseen domains without requiring additional training.
Instead of treating all neighbors equally, we adopt a distance-
weighted voting scheme [[14], in which closer — and thus more
similar — domains have a proportionally greater influence on
the final prediction

This distance-weighted strategy is essential for handling the
severe class imbalance in SCOPe: in version 2.07, roughly
40% of superfamilies have fewer than five representative
domains, and 16% are represented by only a single domain. A
uniform voting strategy would systematically bias predictions
toward large, well-populated superfamilies.

For example, consider the case of £ = 3, where two of the
nearest neighbors belong to a majority superfamily and one to
a minority superfamily represented by a single domain. Under
uniform voting, the majority label would be selected, even if
the two majority neighbors are farther from the query than
the closer minority neighbor. In contrast, distance-weighted
voting gives greater influence to the nearest neighbors, leading
to more refined decision boundaries in the embedding space.

Given a query embedding z,, the algorithm identifies the
K closest training embeddings using Euclidean distance. The
predicted superfamily label ¢ is then given by:

N 1
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Here, ) denotes the set of all possible superfamily labels, y;
represents the superfamily label of the i-th nearest neighbor,
and I(y; = y) is an indicator function that equals 1 if the i-th
neighbor belongs to class y, and 0 otherwise. The weight w;
of each of the k£ nearest neighbors z; is inversely proportional
to their Euclidean distance from the query embedding.

IV. EXPERIMENTAL SETUP

We frame the problem of identifying remote homology as a
multi-class classification problem where the goal is to predict
SCOPe superfamilies. To construct a challenging validation
set, we sample 10% of domains from each superfamily in the
training set, ensuring that no selected domain shares more than
40% sequence identity with any other domain in the dataset.
This approach promotes sequence diversity and is commonly
used to assess remote homology detection IEI], . Therefore,
we train our models with 90% of the domains in SCOPe 2.07,
and the remaining 10% are used to select model parameters.

We conduct our experiments in a prospective setting, using
the latest version of SCOPe 2.08. This strategy simulates a
real-world scenario where we can test whether a classification
method could have been effective in assigning superfamilies
to new domains when only SCOPe 2.07 was available. By
preserving the temporal structure of the data, the evaluation
mirrors the conditions under which domain annotation would
be made in practice, thereby providing a realistic assessment of
the models’ utility [8], [I8]. We constructed this prospective



test set by retrieving the new domains in SCOPe 2.08 that
belong to superfamilies already present in SCOPe 2.07.

We apply the same K-NN strategy (Eq. [2), with k& = 3,
directly on these embeddings to assign superfamilies.

BLASTp serves as a conventional baseline to evaluate
how well standard sequence-based similarity approaches
perform in remote homology detection [24], [35]]. In our
setup, we use the test set as the query and the training

To assess the applicability of protein embeddings to this *
task, we implemented and tested the following methods:

« DOMCLASS-1 is our contrastive learning approach with

K -NN classification, defined in the Methods section. The
input layer corresponds to the ESM-1b protein embed-
dings with a dimension of 1,280. This is followed by
two hidden layers of 2,048 neurons each and ReLU
activation, and a final output layer of 256 neurons.
Superfamilies are predicted using K-NN as defined in
Eq. 2l with k£ = 3.

DOMCLASS-2 is a variant of our approach that uses
the ESM2-3B protein embeddings. The input layer cor-
responds to the protein embeddings with a dimension of
2,560., followed by three hidden layers of 1,024 neurons
and ReLU activation, and a final output layer of 256
neurons. Similarly, superfamilies are predicted using K-
NN as defined in Eq. 2] with £ = 3.

ESM-1b-NN is a feedforward neural network trained
to directly predict SCOPe superfamilies as a multi-class
classification task. It takes the frozen protein embeddings
as input and outputs a probability distribution over all
superfamilies. This model serves as a straightforward

set as the subject database. For each query domain, we
assign the superfamily label of the top hit based on the
highest percent sequence identity.

HMMER provides a profile-based baseline to assess
how well probabilistic models of sequence superfamilies
capture remote homology [[15], [19]. In our setup, we
construct one HMM profile per superfamily in SCOPe
2.07. We then use the test set as the input sequences and
search them against the HMM database. Each test domain
is assigned the superfamily label of the top-scoring profile
based on the highest bit score.

To evaluate the effectiveness of the different methods in the
task of predicting SCOPe superfamily annotations, we employ
a set of robust performance metrics commonly used in the
multi-class scenario [3[], [19], [32]:

1Y)

Recall (weighted): This measures the proportion of
correctly predicted instances among all instances of a
given class.

baseline to evaluate how well the original embedding Recall — iw . TPy
space supports classification, without additional super- o P § TP, + FNg
vision on the embedding structure. It also provides a a TP, + FN; 3)

point of comparison for DOMCLASS, allowing us to
assess whether contrastive learning leads to better-aligned
embeddings for remote homology detection. This model
consists of an input layer of 1,280 neurons corresponding
ot the ESM-1b protein embeddings. This is followed by
two hidden layers of 1,500 neurons each and ReLU
activation, and a final output layer of 2,006 neurons and
softmax activation.

ESM2-3B-NN is a variation of ESM-1b-NN where the
main difference is that we use the ESM2-3B embeddings
as the input to the feedforward neural network. It consists

2)

- K
2 j=1 (TP + FN;)

where T' Py, and F' N}, denote the number of true positives
and false negatives for each class k, and the weight wy
ensures that more frequent classes contribute proportion-
ally to the overall score.

Matthews Correlation Coefficient (MCC): MCC is a
correlation coefficient between predicted and true labels.
It generalizes to multi-class classification by operating
over the entire confusion matrix. [1].

-5 — .t
of an input layer of 2, 560 neurons, followed by two hid- MCC = ; ¢’ QZ’“ Zk b = “)
den layers of 1,500 neurons each and ReLU activation, V(2 =2 00) (52 = 20 1)
and a final output layer of 2,006 neurons and softmax where ¢ = Y, Cy is the total number of correctly

activation.

ESM-1b-raw serves as a baseline to evaluate the predic-
tive signal present in the unmodified protein embeddings
generated by the general-purpose ESM-1b model. With-
out any task-specific fine-tuning or supervised training,
we apply the K -NN strategy (Eq.[2)), with k& = 3, directly
on these embeddings to assign superfamilies. Prior work
has shown that ESM-1b embeddings reflect a degree of
structural relatedness which can be informative of protein
homology [29]. This baseline allows us to assess whether
the pre-trained embedding space inherently supports re-
mote homology detection.

ESM2-3B-raw is equivalent to ESM-1b-raw but uses
embeddings generated by the larger ESM2-3B model.

classified instances (diagonal of the confusion matrix),
PE=>. j Cl; is the total number of predicted instances
for class k, t, = >, Cj is the total number of true
instances of class k, and s = Z” C;; is the total
number of instances.

All metrics were calculated treating the multi-class struc-

ture

to provide an overall view of model performance. This

allows a fair comparison between models in the presence of
highly unbalanced class distributions typical of superfamily
classification.

V. RESULTS

The results are organized into three main comparisons. First,
we evaluate whether ESM-1b-raw and ESM2-3B-raw can



outperform BLASTp and HMMER. Next, we assess whether
using ESM-1b-NN and ESM2-3B-NN improves predictive
accuracy over their raw alternatives. Finally, we examine
whether our contrastive learning methods DOMCLASS-1 and
DOMCLASS-2 lead to further gains over both the raw and
classification-based approaches.

To evaluate performance under varying levels of sequence
similarity, we report results on three test sets. The first,
referred to as “Full”, contains all domains in our test set
without filtering based on sequence identity (16.222 domains
from 782 superfamilies). The other two, “40%” and “30%”,
are subsets of “Full” that include only domains with less
than 40% and 30% sequence identity to any domain in the
training or test sets. These subsets contain 930 domains from
175 superfamilies and 61 domains from 22 superfamilies,
respectively. The “30%” set corresponds to the twilight zone
of sequence similarity [30], where detecting homology be-
comes particularly challenging. These subsets allow us to
assess model performance under increasingly difficult remote
homology scenarios.

Our experimental results are summarized in Figures 2] (a),
and (b), which report recall and MCC, respectively, for all
methods across the different test sets.

A. Protein embeddings can go beyond sequence

The results of our prospective evaluation indicate that the
PLM embeddings generated by ESM-1b and ESM2-3B are
informative of evolutionary relationships. The relative dis-
tances between domain embeddings already allow for effective
remote homology detection using a simple K-NN classifier,
without any supervised refinement (ESM-1b-raw and ESM2-
3B-raw in Fig. [2J). The superior performance compared to
BLASTp and HMMER, especially in the low sequence identity
subsets, suggests that the embedding distances in both ESM
spaces capture evolutionary features that go beyond what is
represented by sequence similarity alone.

Notably, ESM2-3b-raw performs consistently below ESM-
1b-raw across all test sets, with the performance gap increasing
in the 30% identity subset. This is consistent with the findings
of Rives et al. [29], who report that ESM-1b embeddings
organize sequences according to remote homology and reflect
structural features. The high performance observed in the
“Full” set is expected, as domains with similar sequences tend
to be embedded close together, given that the ESM models
were pre-trained on hundreds of millions of protein sequences.

B. Supervised classification using protein embeddings

We evaluated whether incorporating protein embeddings
into a supervised classification framework could improve
prediction accuracy over using raw embeddings directly. This
expectation holds for ESM2-3B-NN, which consistently out-
performs ESM2-3B-raw across all test sets.

However, this improvement is not consistent across models.
Both ESM2-3B-NN and ESM-1b-NN are generally less accu-
rate than ESM-1b-raw. This can be explained, in part, by the
fact that distances between ESM-1b domain embeddings are

more informative about evolutionary relationships than those
from ESM2-3B. As a result, it is more difficult for a supervised
model to outperform ESM-1b-raw than to outperform ESM2-
3B-raw.

C. Contrastive learning improves remote homology detection

Our proposed DOMCLASS models outperform all other
approaches, including ESM-1b-raw. This indicates that ESM-
1b domain embeddings also encode evolutionary features that
are not fully reflected in the raw embedding distances. Un-
like ESM-1b-NN, the contrastive learning strategy employed
by DOMCLASS-1 can effectively exploit these features by
obtaining a more refined embedding space specially suited for
domain superfamily prediction.

Interestingly, DOMCLASS-2 achieves the best overall per-
formance, despite ESM2-3B-raw performing worse than ESM-
1b-raw. This suggests that the poorer performance of ESM2-
3B-raw is not due to a lack of relevant information, but to the
distances in the embedding space being less well-aligned for
direct similarity-based classification. The contrastive learning
framework is able to refine this space to reflect evolution-
ary relationships more clearly. Thus, our contrastive learning
framework proves effective in transforming pre-trained PLM
embeddings into a representation space where evolutionary
relationships are more explicitly reflected in the distances.

VI. DISCUSSION

SCOPe relies on expert manual curation to group domains
with strong structural and functional evidence of common
evolutionary origin [25]]. Our aim is to analyze whether domain
embeddings, obtained from PLMs pretrained with millions of
sequences, can be used to make predictions about these SCOPe
superfamilies— i.e, whether they may encode the features that
experts would use to assess homology.

Our analysis reveals that the distances between domain
embeddings from ESM-1b and ESM2-3B can uncover remote
homologs that standard sequence identity measures and HMM-
based searches fail to detect, particularly in the twilight
zone of sequence identity [30]. Furthermore, we demonstrate
that improving prediction performance using a simple neural
network trained on these pre-trained embeddings (ESM-NN) is
not straightforward, highlighting the challenges of leveraging
the embeddings directly.

Furthermore, we proposed DOMCLASS, a contrastive
learning approach that can effectively exploit evolutionary fea-
tures present in the pre-trained ESM embeddings that are not
fully reflected in the embedding distances alone. DOMCLASS
models are trained in a supervised fashion to project domain
embeddings into a lower-dimensional space in which domains
from the same superfamily cluster together — improving ho-
mology prediction, as confirmed by our experiments.

We also note that using domain embeddings from different
PLMs, such as other models from the ESM family, to train new
DOMCLASS models can incorporate more nuanced features
that can improve predictive prowess. In particular, the main
ESM2 model, which has 15 billion parameters and has been
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Fig. 2: Performance comparison of different evaluation metrics across different sequence similarity thresholds: Recall (left) and MCC (right).

shown to outperform ESM2-3B on downstream tasks [23]],
could be a good candidate.

Besides training with more sophisticated PLMs embeddings,
for future work, we plan to improve the selection of negative
examples for our contrastive learning framework using the
SCOPe hierarchy itself. While SCOPe superfamilies reflect
evolutionary relationships, broader groupings such as Folds
represent domains with similar structural features but not
necessarily shared ancestry. We believe that selecting negatives
from the same Fold, but different superfamilies, could lead to
a more fine-grained and evolutionarily meaningful embedding

space.
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