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Abstract

We present Finenzyme, a Protein Language Model (PLM) that integrates transfer
learning from a decoder–based Transformer, conditional learning with functional
keywords, and fine–tuning to predict and generate functionally characterized en-
zymes. Our experiments show that Finenzyme significantly enhances generalist
PLMs like ProGen in the in silico prediction and generation of enzymes belonging
to specific Enzyme Commission (EC) categories. Despite low sequence identity,
Finenzyme generated proteins exhibit high structural similarity to natural enzymes.
In silico functional characterization using the CLEAN tool confirms that the gen-
erated enzymes maintain the same EC functions as natural enzymes. Clustering
analysis reveals that the generated enzymes form clusters that largely overlap with
those of natural enzymes, indicating that Finenzyme effectively captures the struc-
tural and functional properties of target enzymes, and can in perspective support
targeted enzyme engineering tasks.

1 Introduction

Deep Learning and Large Language Models(LLM) have revolutionized molecular design and model-
ing, ranging from drug repurposing [1, 2], to active deep learning for drug discovery [3], to protein
modeling and generation [4–7].
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In particular several studies showed that fine tuning “generalist” foundation models can improve
performance in several modelling and downstream tasks. For instance, parameter-efficient fine-tuning
of PLMs improved protein-protein interactions [8]. Lafita et al. [9] focused on fine-tuning ESM
family models, showing that fine-tuning PLMs with deep mutational scanning improves variant
effect prediction. Fine-tuning the ProtBert-BFD and Prot5-XL-Uniref50 Transformers [10] led to a
significant improvement in Gene Ontology and Enzyme Commission (EC) number predictions [11],
close to the top-model results of the CAFA3 challenge [12]. Our results on the fine-tuning of the
ProGen model on the lysozyme family of proteins achieved a statistically significant improvement in
terms of accuracy and perplexity [13], confirming previous results on a similar task [14].

Other studies have outlined the drawbacks and limitations of fine-tuning, demonstrating that this
approach sometimes fails to achieve the desired results. In the context of PLMs, Schmirler et al.
[15] demonstrated that fine-tuning ESM2 and ProstT5 [16] models boosts predictions in various
tasks, ranging from disorder and mutation effects prediction to sub-cellular location prediction, while
no statistically significant improvement can be achieved in other tasks, such as secondary structure
prediction.

In this work, we explore the specific conditions under which fine-tuning improves the performance
of pre-trained PLMs applied to enzyme prediction and generation. To this end we propose a new
model, Finenzyme, based on a multi-faceted strategy to learn EC (Enzyme Commission) categories
of enzymes, by combining PLM transfer learning, conditional learning and fine-tuning. We show that
fine-tuning boosts prediction and generation of specific EC categories, whereas for more general EC
categories the improvement is negligible. We characterize the enzymes generated by Finenzyme mod-
els by comparing the 3D representations of natural and generated enzymes using ESMfold [17]
and Foldseek [18], showing that the primary and tertiary structure of the enzymes generated by
Finenzyme models resemble those of natural ones. We further characterize the Finenzyme-generated
enzymes by clustering the 3D structure representations of natural and generated enzymes, revealing
that the resulting clusters are largely superposed. We provide source code to reproduce all experi-
ments, scripts, and tutorials to allow users to fine-tune Finenzyme on any EC category or groups of
functionally related EC categories.

2 Methods

2.1 Conditional Transformers for protein learning and generation

We used a pre-trained model, i.e. ProGen [14], that adopts the CTRL conditional Transformer
architecture [19], which employs keywords to guide the generation of texts. Given a training
instance, represented by a protein sequence x = {x1, x2, . . . , xm} and its related keywords t,
where xi, 1 ≤ i ≤ m, represents the amino acids, the model learns through back-propagation the
conditioned probability p(x|t), that can be factorized using the chain rule of probability:

p(x|t) =
m∏
i=1

p(xi|x<i, t) , (1)

where p(xi|x<i, t) denotes the conditional probability of xi given all preceding elements x1, . . . , xi−1

and the functional tags t.

This formulation breaks down protein language modeling into a next-amino acid prediction task.
Consequently, the pre-trained model with parameters θ can be trained to minimize the negative
log-likelihood over a dataset of sequences D = {(t, x)k=1, . . . , (t, x)k=|D|}:

L(D) = −
|D|∑
k=1

|xk|∑
i=1

log pθ(x
k
i |xk

<i, t
k) . (2)

Thus, by acquiring knowledge about the conditional probability distribution, the protein language
model can generate new sequences x̃ of length m by sequentially sampling its components: pθ(x0|t),
pθ(x1|x̃0, t), . . . , pθ(xm|x̃<m, t).
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2.2 Fine-tuning of conditional Transformers

The goal of fine-tuning is to leverage the knowledge acquired from millions of protein sequences and
transfer the “learned knowledge” encapsulated in the weights of the pre-trained ProGen model into a
new model fine-tuned to learn the language of a specific EC category of enzymes.

We specialized the models to learn the enzyme characteristics of specific EC classes through a dual
approach: a) Conditional decoder learning: generating enzymes conditioned to a specific EC tag; b)
Transfer learning and fine-tuning of a pre-trained model on specific EC classes.

For conditioning the models to learn and generate functionally characterized enzymes we prefixed
each enzyme sequence with a conditional tag representing the EC class to which the enzyme belongs
to. The EC tags for enzyme classes, which were absent in the pre-trained ProGen model, have been
encoded and added to the fine-tuned models.

We fine-tuned our models on different EC categories, considering both general top-level and very
specific low-level categories. For each EC category, we randomly split the data downloaded from
UniProtKB into 90% training and 10% test sets. In addition, for each EC category two test sets were
prepared: 1) a full test set that includes all available test data; and b) a filtered test set, with examples
having BLAST sequence similarity against the training set less than 70%.

During the prediction, top-k sampling with k = 1 was employed, i.e. the most probable next amino
acid is selected at each prediction step. In the training phase, the learning rate was set at 0.0001,
and the batch size of 2 was used, representing the number of training examples in one iteration.
Additionally, a warm-up period of 1000 iterations was implemented, during which the learning rate
was gradually increased. To prevent the “exploding gradient” issue common in deep neural networks,
gradient norm clipping with a norm of 0.25 was applied. The Adam (Adaptive Moment Estimation)
algorithm [20] was utilized to compute adaptive learning rates for each parameter, ensuring efficient
optimization. For training and testing the models, we used two multi–processor servers equipped
with 128 GB of RAM and an NVIDIA A100 GPU accelerator.

3 Results

We studied in which conditions fine–tuning can significantly enhance ProGen’s ability to predict and
generate sequences belonging to specific EC categories. The primary and tertiary structures of the
natural and generated Finenzyme enzymes were compared using ESMFold [17], and FoldSeek [18].
We also applied CLEAN [21] to study whether their functions were preserved. We finally clustered
natural and generated enzymes according to their predicted 3D structure to investigate whether and to
what extent their clusters overlap.

3.1 Fine tuning is effective only for low–level EC classes

We fine-tuned seven models on general top-level EC categories and seven on more specific low-level
EC categories, and we tested their performance at predicting the next amino acid in a sequence.
The general EC classes represent broad categories of enzyme functions, such as oxidoreductases
(EC1), transferases (EC2), hydrolases (EC 3), lyases (EC 4), isomerases (EC 5), ligases (EC 6), and
translocases (EC7). Specific EC classes denote particular enzyme catalysed reactions and in our
experiments we used alcohol dehydrogenase (EC 1.1.1.1), DNA methyltransferase (EC 2.1.1.37),
cellulase (EC 3.2.1.4), ribulose-bisphosphate carboxylase (EC 4.1.1.39), chorismate mutase (EC
5.4.99.5), biotin ligase (EC 6.3.4.15), and proton-translocating transhydrogenase (EC 7.2.1.1).

We measured the performance of our fine-tuned models at predicting the next amino acid in a sequence
in two scenarios : a) Teacher Forcing (TF) in which the LLM is “forced” to predict the next amino
acid xi given the correct previous amino acids, i.e. x<i; b) PreFixed testing (PF) in which the LLM
makes a prediction without teacher forcing, using a prefix string for the first n = 20 amino acids. In
both scenarios, the most probable amino acid is selected at each next amino acid prediction step. We
measured performance using three different metrics, namely mean accuracy per-token, mean soft
accuracy per-token based on BLOSUM62 [22] amino acid substitution matrix, and perplexity. Fig. 1
in the appendix shows that Finenzyme largely outperforms ProGen on the most specific EC categories,
while no significant improvements can be observed with the most general top-level EC categories.
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3.2 Finenzyme generated sequences preserve the function and the tertiary structure of
natural enzymes

For each specific low-level EC category, we generated 2,000 enzyme sequences using top-p filter-
ing [23], resulting in 14,000 total sequences. After filtering duplicates, 6,885 unique sequences
were identified. We compared the sequences generated by Finenzyme to natural enzymes in terms of
predicted function, primary sequence and tertiary structure.

The generated sequences were classified into EC categories using CLEAN [21], a state–of–the–art
tool for enzyme function prediction which compares sequence embeddings to clusters of known EC
numbers. CLEAN’s maximum separation method yielded consistent EC predictions for the generated
sequences (Fig. 2a in Appendix A). This shows that the generated sequences effectively captured
functional similarities with natural enzymes.

To evaluate tertiary structure, we predicted the 3D structures of Finenzyme–generated enzymes using
ESMFold [17] and compared them to natural enzymes from the PDB using Foldseek [18], based
on structural similarity scores. The TM–scores, which measure structural similarity, were centered
around 0.9 (Fig. 2b in Appendix A), indicating that the structures of the generated enzymes closely
resemble those of natural ones, despite differences in sequence similarity. Indeed, the sequence
identity of top–hit Foldseek pairs varied more widely, with a mode between 0.3 and 0.4, reflecting
the ability of Finenzyme to generate structurally accurate enzymes with divergent primary sequences
(Pearson correlation between TM–score and sequence identity ρ = 0.14).

Further analysis revealed a strong correlation between the confidence of ESMFold predictions
(quantified by pLDDT scores) and the TM–scores of the generated proteins, with a Pearson correlation
of ρ = 0.64 (Fig. 2c in Appendix A). This suggests that the structural predictions of Finenzyme are
robust, even for sequences with low primary similarity to natural proteins. We also examined
specific cases where Finenzyme–generated sequences with low sequence similarity still preserved
high structural similarity to natural enzymes. Fig. 2d,e in Appendix A highlights two such examples,
where Finenzyme–generated proteins (in green) closely matched the 3D structure of natural enzymes
(in yellow), including accurate predictions of binding sites, which were confirmed to provide sufficient
space for ligands (highlighted in violet).

3.3 Clustering of the 3D representation of natural and generated enzymes largely overlap

To further evaluate the relationship between the structure of the natural and Finenzyme generated
sequences we clustered natural and generated enzymes using Single-Linkage Hierarchical Clustering
focusing on EC 3.8.1 (hydrolases acting on halide bonds in C-halide compounds), a family of enzymes
of particular interest in the chemical industry and bioremediation fields [24]. The metric used to
construct the distance matrix was the E-value retrieved from two experiments that include both the
natural and Finenzyme sequences: 1) Protein BLAST all-vs-all, which accounts for primary structure
similarity; 2) Foldseek all-vs-all, which accounts for both primary and tertiary structure similarity.

In order to provide a more comprehensive database for structural analysis comparison, we predicted
the structures for the entire natural dataset using ESMFold. The heatmaps of the adjacency matrices
reordered according to [25] clustering are shown in Fig. 3 (see appendix). At the side of each heatmap,
kernel-density estimates allow to visually compare the relative distributions of Finenzyme sequences
and natural proteins. We can observe that each subclass contains sub-clusters, and clusters of natural
and Finenzyme enzymes largely overlap.

4 Discussion

Previous studies have demonstrated that fine–tuning can improve protein language model (PLM)
performance in specific tasks [8, 26, 10], though others have highlighted that it may not always
yield better results [27, 15]. In our work, we showed how fine–tuning a conditional Transformer
can significantly enhance enzyme generation when applied to specific EC categories. For broad,
high–level EC categories, however, the improvements are negligible, as general models like ProGen
already perform well on these overrepresented categories due to their extensive training on large
datasets. In contrast, fine–tuning shines in underrepresented, functionally specific EC categories,
where it allows models to focus on learning detailed and specialized features. Our analyses revealed
that the primary sequences generated by Finenzyme often diverge from natural enzymes, but crucially,
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the tertiary structures remain highly conserved. Additionally, in silico functional predictions using
CLEAN confirmed that Finenzyme–generated enzymes retain the same functions as their natural
counterparts, while clustering of the primary and tertiary structures of the Finenzyme-generated and
natural EC 3.8.1 enzymes largely overlap.

The correlation between the log–likelihood of Finenzyme–generated sequences and structural metrics
like TM–score, pLDDT, and sequence identity was significantly stronger than in ProGen, showing
that fine–tuning boosts the reliability and confidence of predictions (Fig. 4 in the Appendix).

One limitation of this work is the pure in silico validation of the results, without a full wet-laboratory
validation. Although wet-lab validation is planned as future work, we note that the ESMFold predicted
structures of Finenzyme–generated enzymes are very similar to the natural ones, as measured by the
TM-score, suggesting that Finenzyme captures essential structural features independently of sequence
similarity.

Fine–tuning conditional Transformers through Finenzyme can be used to in silico generate specific
functionally characterized enzymes, with relatively low computational resources (our models were
trained on a server equipped with only one NVIDIA A100 GPU), offering a powerful in-silico tool to
support the wet-lab design of specific enzymes.

The Finenzyme code, the scripts to reproduce the experiments and tutorials to fine–tune Finenzyme on
any EC category are available from GitHub (the link has been anonymized).
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A Appendix: figures
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Figure 1: Comparison of ProGen and Finenzyme on general and specific EC classes. (a) accuracy
(top), soft accuracy (center), perplexity (bottom) compared between general and specific EC classes.
“Filtered” denotes whether the test dataset was filtered using BLAST against the training set to retain
only sequences with less than 70% identity. (b) soft accuracy of the specific EC classes. “TF” denotes
teacher forcing, “PF” testing without teacher forcing with a prefixed chain of 20 amino acids. (c) soft
accuracy comparison of Finenzyme and ProGen on general (left) and specific (right) EC classes on
the full test set. The x-axis reports the position of the amino acid and the y-axis the corresponding
average soft-accuracy of the predicted enzymes in ProGen (red line) and Finenzyme (green) across
the enzymes of the EC category. Shadows represent the standard deviation.
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Figure 2: Analysis of the function and tertiary structure of Finenzyme generated enzymes. (a): Results
of CLEAN EC category predictions. Bar plots show the F1 scores for EC number predictions for
the generated enzymes, with blue bars representing results of enzymes generated with p = 0.50 and
orange bars with p = 0.75. “Global” represents the weighted average F1 score when considering
all EC numbers combined. (b) Correlation between structural similarity (TM–score) and sequence
identity (BLAST Max ID) between generated and natural enzymes retrieved from PDB across all low–
level EC classes. (c) Correlation between ESMFold prediction confidence (pLDDT) and structural
similarity to known proteins in the PDB (TM–score). Blue scatterplots (b, c) refer to top-p = 0.5
nucleus filtering. (d), (e): Comparison of the tertiary structure of Finenzyme–generated sequences
(green) and natural enzymes (yellow). Enzyme generated from (d) EC family 6.3.4.15 (biotin ligase).
The target found is “2e41”, a biotin protein ligase (UniProt accession O57883) from Pyrococcus
horikoshii: sequence similarity = 34.9%, TMscore = 0.94, pLDDT (ESMFold) = 0.95; the binding
site of the enzyme is predicted with high confidence and provides adequate space for the ligand
(highlighted in violet). (e) EC 3.2.1.4 (cellulase). The PDB target found is “8ihw”, an endoglucanase
from Eisenia fetida: similarity = 39.6%, TMscore = 0.95, pLDDT (ESMFold) = 0.92.
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Figure 3: Heatmaps of the clustered natural and Finenzyme generated “artificial” enzymes. Different
colors highlight different EC categories. Heatmaps are obtained from the adjacency matrix computed
through BLAST (left) and Foldseek (right) E-values. On the sides: kernel density estimation of the
distribution of natural and Finenzyme generated proteins.
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Figure 4: Pearson correlation between the log-likelihood scores of Finenzyme (blue) and ProGen
(orange) against pLDDT, TM-score, sequence identity and E-value. The metrics are computed
through ESMFold and Foldseek.

10


	Introduction
	Methods
	Conditional Transformers for protein learning and generation
	Fine-tuning of conditional Transformers

	Results 
	Fine tuning is effective only for low–level EC classes
	Finenzyme generated sequences preserve the function and the tertiary structure of natural enzymes
	Clustering of the 3D representation of natural and generated enzymes largely overlap

	Discussion
	Appendix: figures

