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ABSTRACT2

Non-coding RNAs (ncRNAs) govern a vast network of regulatory interactions within the cells, yet3
their pairwise relationships remain largely uncharted due to the complexity of RNA structure and the4
limits of current experimental methods. We present CUPID (Computational Understanding of Pairwise5
Interactions in ncRNA Data), a deep learning framework that predicts ncRNA-ncRNA interactions directly6
from primary sequence information. CUPID uses embeddings from a pre-trained RNA language model7
combined with a feed-forward classifier to identify patterns linked to molecular pairing. This approach8
avoids reliance on thermodynamic models or manual feature design and, unlike previously proposed9
models, is able to generalize across different types of ncRNAs, including long non-coding, circular, micro-,10
and small nuclear RNAs. By learning the hidden rules that govern RNA recognition, CUPID provides a11
scalable tool for exploring ncRNA interaction networks and advancing our understanding of RNA-based12
regulation.13

Keywords: ncRNA–ncRNA interaction, deep learning, fine-tuning, artificial intelligence, machine learning, non-coding RNA, large14
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1 INTRODUCTION

Understanding RNA-RNA interactions is critical for deciphering the regulatory circuits that16
orchestrate gene expression, RNA processing, and signal transduction. Non-coding RNAs (ncRNAs),17
despite lacking protein-coding potential, play pivotal roles in these processes (Ali et al., 2021).18
However, experimental mapping of ncRNA interactions remains challenging due to the limitations19
of existing experimental and computational techniques (Lorenzi et al., 2021).20

Methods such as Minimum Free Energy (MFE) calculations and accessibility-based models have21
been usually applied to predict RNA-RNA interactions. Tools like IntaRNA (Mann et al., 2017)22
estimate the interaction energy as ∆Gtotal = ∆Gduplex+∆Gaccessibility, where the first term quantifies23
the energy released upon hybridization, and the second accounts for the cost of rendering binding24
regions accessible. Benchmark studies have demonstrated that accessibility-based algorithms can25
effectively differentiate native interactions from background noise (Umu and Gardner, 2017), yet these26
approaches rely on predefined parameters and simplified energy models. In parallel, experimental27
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techniques such as RNA Antisense Purification (RAP-RNA) offer validation but remain limited by28
their high cost and labor intensity (Engreitz et al., 2014).29

Advances in machine learning and graph-based modeling for biological data, including recent work30
on explainability and diffusion-based attention mechanisms, have motivated a surge of learning-31
driven approaches for predicting interactions across diverse molecular systems (Gliozzo et al., 2025;32
Cetin and Sefer, 2025; Sefer, 2025).33

Machine learning methods, such as convolutional neural networks, deep forests and graph neural34
networks (Alipanahi et al., 2015; Tian et al., 2021; Wei et al., 2022) have been applied to RNA-protein35
interaction prediction, while graph-based approaches embed heterogeneous networks of ncRNAs and36
diseases using multigraph contrastive learning (Sun et al., 2025) or apply random-walk based graph37
representation learning techniques to predict non coding RNA interactions (Torgano et al., 2025).38

While effective, these methods often rely on predefined feature extraction, graph structures, or39
supervised training, limiting their adaptability to novel ncRNA sequences.40

In contrast, LLMs can directly learn from large corpora of proteins or RNA data (Valentini et al.,41
2023; Zhao et al., 2024; Shen et al., 2024; Nicolini et al., 2025a), capturing intricate interaction motifs42
beyond predefined energy models or graph-based constraints. Unlike thermodynamic models, which43
impose simplifying assumptions, LLMs infer interaction likelihoods from latent structural patterns,44
offering a flexible, data-driven approach. In particular, transformer-based foundation models can45
generate biologically meaningful representations directly from raw sequences, by exploiting large46
RNA sequence corpora (Sapoval et al., 2022; Chen et al., 2022; Yu et al., 2024). More in general47
several deep learning methods have been proposed to predict specific ncRNA interactions, using48
rna2vec pretraining and deep feature mining (Yu et al., 2022) or conditional random fields and49
graph convolutional networks (Wang et al., 2022), heterogeneous graph neural networks (Li et al.,50
2025) and convolutional neural networks combined with a Transformer Encoder (Yang et al., 2025)51
for the prediction of miRNA-lncRNA interactions.52

We also recently proposed a deep neural network trained on embedded representations of a subset53
of ncRNAs obtained from the RNA-FM language model (Shen et al., 2024), achieving state-of-the-art54
results for predicting miRNA interactions with other ncRNA molecules (Nicolini et al., 2025b).55
However, our proposed model, like other models recently proposed in the literature (Li et al.,56
2025; Yang et al., 2025), is only able to predict specific ncRNA interactions (e.g., interactions57
with miRNAs). Furthermore, due to limitations on the maximum allowed sequence length of the58
underlying RNA-FM transformer, it can only process sequences shorter than approximately 100059
nucleotides, thus limiting the model’s application to relatively long ncRNAs (e.g., lncRNAs).60

To overcome these limitations, we propose a novel Transformed-based deep learning model, that,61
differently from previous models proposed in literature, is able to predict a large range of ncRNA62
interactions, including long non-coding RNA (lncRNA), circular RNA (circRNA), microRNA63
(miRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Small Cajal body-specific64
RNAs (scaRNAs), small cytoplasmic RNAs (scRNA) and other types of ncRNAs. Moreover, by65
adopting GenerRNA (Zhao et al., 2024) to encode RNA sequences, our model can process full-length66
ncRNA sequences (up to 4096 nucleotides) without truncation, thus significantly enlarging the set67
of ncRNAs that can be processed by the model.68

We hypothesize that LLM-based contextual embeddings provide a rich representation for ncRNA69
interaction prediction, circumventing the limitations of manual feature engineering or predefined70
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structural graphs. We reasoned that GenerRNA (Zhao et al., 2024), pretrained on a large corpus of71
ncRNA sequences using a masked language modeling objective, can capture long-range interactions72
of ncRNA molecules, thus facilitating downstream tasks such as ncRNA interaction prediction.73

Our CUPID model (Computational Understanding of Pairwise Interactions in ncRNA Data),74
predicts ncRNA interactions using only sequence information. CUPID extracts embeddings from75
a pre-trained ncRNA language model and feeds a dense feed-forward neural network (FFNN) to76
automatically learn intricate sequence interaction features. This design circumvents the need for77
explicit thermodynamic parameterization and manually engineered features, offering a scalable and78
efficient alternative for uncovering novel regulatory interactions (Fabbri et al., 2019).79

2 METHODS

2.1 Dataset80

Our dataset comprises a subset of multispecies ncRNA interaction pairs from RNA-KG Cavalleri81
et al. (2024)1.82

The RNA-KG integrates physical and functional interactions between different types of ncRNAs,83
and their relationships with other biomolecules (genes and proteins) and chemicals, as well as with84
biomedical concepts coded in the Gene Ontology (Aleksander et al., 2023), the Human Phenotype85
Ontology (Gargano et al., 2023), Mondo (Vasilevsky et al., 2025) and other bio-medical ontologies86
related to the “RNA world”.87

In particular, we extracted RNA–RNA edges from RNA-KG by selecting only relations annotated88
as interacts-with. In RNA-KG, interacts-with denotes experimentally supported physical RNA–89
RNA interactions, and we therefore excluded other relation types encoding functional associations90
(e.g., regulatory links, co-expression, or disease associations). The interacts-with edges integrated91
in RNA-KG originate from multiple underlying curated interaction databases. Fig.1 presents an92
overview of the main RNA entities and their relationships available in the the RNA-KG. Readers93
may refer to the RNA-KG reference (Cavalleri et al., 2024) for the complete list of contributing94
sources and evidence provenance.95

We filtered the dataset to retain only sequences that fit within the GenerRNA (Zhao et al., 2024)’s96
token limit (approximately 4096 nucleotides), since Byte Pair Encoding (BPE) compresses raw97
nucleotide sequences, allowing longer sequences to fit within the model’s constraints. After applying98
this length filter, the dataset contains:99

• 101088 interaction pairs (down from an initial 130310 pairs).100

• 11212 unique sequences (selected from 19624 potential sequences) belonging to 9 different RNA101
molecule types: long non-coding RNA (lncRNA), circular RNA (circRNA), microRNA (miRNA),102
small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Small Cajal body-specific RNAs103
(scaRNAs), small cytoplasmic RNAs (scRNA), not (better) classified non coding RNA molecules104
(ncRNA) and pseudo RNA2.105

1 Retrieval of interacting pairs and corresponding sequences was performed using the scripts available from the RNA-KG web site:
https://github.com/AnacletoLAB/RNA-KG.
2 In RNAinter, the term “pseudo” specifically denotes RNA sequences transcribed from pseudogenes. In this context, these are transcripts
derived from genes that have lost their protein-coding capability due to accumulated mutations, yet they are still produced as RNA.
Similar to other ncRNAs, such pseudogene RNAs can sometimes participate in regulatory networks by, for example, acting as miRNA
decoys or sponges, despite not encoding functional proteins.
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Figure 1. Simplified representation of the RNA-KG meta-graph, focused on ncRNAs and their
interactions.

In the following, we denote the set of length-filtered molecules as106

S = {si}, i = 1, . . . , |S|,

where the type of each molecule s ∈ S is given by ϕ(s), i.e. ϕ : S → T represents a mapping of a107
ncRNA sequence s ∈ S to its ncRNA type T , e.g. miRNA, lncRNA or any other ncRNA type.108

The identity of an interaction pair is solely determined by its constituent molecules, regardless of109
order; that is,110

(si, sj) = (sj , si).

The type of an interaction (si, sj) with si ̸= sj and si, sj ∈ S is determined by the types of the111
ncRNA si and sj theirselves, regardless of their order:112

(ϕ(si), ϕ(sj)) = (ϕ(sj), ϕ(si))

For instance, possible types of ncRNA interactions are miRNA-lncRNA or miRNA-circRNA.113
Assuming that interacting ncRNA pairs of different types exhibit distinct specificities that the model114
should learn, we reasoned that types with negligible sample sizes might introduce noise rather than115
valuable information. Therefore, the set of interaction pairs used in this work is obtained by further116
filtering the dataset of interacting pairs to remove interacting pair types represented by fewer than117
100 samples, resulting in 10644 unique sequences composing 99841 interacting pairs. Fig 2 shows118
the distribution of the different types of ncRNA interactions.119
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lncRNA miRNA ncRNA pseudo scRNA scaRNA snRNA snoRNA

Con augmentation: 
circRNA - 1180 - - - - - -

lncRNA 5340 219092 504 1480 - - - 6140

miRNA - 7456 23256 67412 728 460 444 7112

ncRNA - - - - - - - 784

pseudo - - - - - - - 372

snRNA - - - - - - - 376

snoRNA - - - - - - - 17288

Senza augmentation: 
lncRNA miRNA ncRNA pseudo scRNA scaRNA snRNA snoRNA

circRNA - 295 - - - - - -

lncRNA 1335 54773 126 370 - - - 1535

miRNA - 1864 5814 16853 182 115 111 1778

ncRNA - - - - - - - 196

pseudo - - - - - - - 93

snRNA - - - - - - - 94

snoRNA - - - - - - 4322

Figure 2. Distribution of ncRNA interactions pairs in the filtered interaction set. Rows: first (left)
molecule type; Columns: right molecule type.

2.2 Data Augmentation120

To address the issues due to the limited cardinality of the available training data, especially for121
specific types of ncRNA interactions (e.g., snRNA-miRNA or miRNA-circRNA), we employ a data122
augmentation strategy that effectively increases the dataset size by a factor of 4. For each original123
training instance represented as a pair of interacting ncRNA (si, sj) we generate three additional124
augmented instances:125

1. Molecule Order Reversal: Swap the order of the molecules: (sj , si).126

2. Sequence Flipping: Reverse the nucleotide order in both molecules (denoted by the superscript127
F ): (sF

i , sF
j ).128

3. Combined Augmentation: Reverse both the molecule order and the nucleotide sequences:129
(sF

j , sF
i ).130

Thus, if the original dataset contains N instances, the augmented dataset becomes: Naug = 4N131
(Suppl. Fig. S1). This augmentation introduces invariance to both the order and orientation of132
sequences, thereby enabling the model to better capture the underlying biological patterns and133
improving its robustness against input variability.134

In order to avoid leakage between training and test sets, data augmentation is performed after135
splitting the dataset.136

2.3 Negative examples generation137

In our dataset, only positive non-coding RNA-RNA interactions are explicitly provided, and they138
occur with varying frequencies.139
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Algorithm 1 Negative Sampling Algorithm
Require: Set of unique ncRNA sequences S, positive augmented interaction set P, and negative

sampling parameter n
Ensure: Negative sample set N

1: Initialize N ← ∅
2: for each pair (s, s′) ∈ P do
3: for i = 1 to n do
4: Sample sneg ∈ S such that ϕ(sneg) = ϕ(s′)
5: if (s, sneg) /∈ P ∧ (s, sneg) /∈ N then
6: N ← N ∪ {(s, sneg)}
7: end if
8: end for
9: end for

10: return N

To effectively train CUPID, we generated negative examples for each interaction pair type by140
matching the frequency distribution of the positive interactions. Specifically, negative examples were141
generated under the assumption that any pair of ncRNA sequences drawn from the set of unique142
sequences that is not observed as a positive interaction constitutes a possible negative instance.143

Let S = {s1, s2, . . . , sN} be the set of unique ncRNA sequences present in the dataset. Denote by144

P = {(si, sj) | si, sj ∈ S interact}

the set of all positive ncRNA-ncRNA interactions. Then, the set of all possible ncRNA pairs is145
given by S × S (excluding self-interactions).146

The set of potential negatives is defined as:147

Npotential = {(si, sj) ∈ S × S | si ̸= sj} \ P .

Negative Sampling Procedure. To generate the negative samples for each interacting pair type, we148
corrupt its tuples. In other words, given a positive pair (si, sj) with type (ϕ(si), ϕ(sj)), we keep the149
first molecule si fixed and sample s′ ∈ S such that:150

s′ ̸= si, ϕ(s′) = ϕ(sj), (si, s′) /∈ P

In this way we avoid generating negatives between ncRNA types that never interact (e.g. scaRNA151
and lncRNA).152

Because we generate negatives for each positive pair (si, sj) by corrupting the right molecule153
while keeping the same type pair (ϕ(si), ϕ(sj)), the negative set preserves the interaction type-pair154
distribution of the positives in expectation (and approximately in practice, up to rejection of155
candidates already present as positives or previously sampled negatives).156

For each positive edge, we selected n negative edges, in order to control the imbalance between157
positive and negative edges in the testing phase (we set n = 20 in our experiments).158

Negative Sampling Algorithm. The negative sampling algorithm is detailed in Algorithm 1. In our159
implementation, we set n = 20. Note that, since the condition at line 5 of the algorithm cannot160
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be always guaranteed, it is likely that the number of negatives n ≤ 20. In our experiments we set161
n = 20.162

2.4 Model Architecture163

2.4.1 The overall CUPID Architecture164

Our model follows a two-stage pipeline, as illustrated in Figure 3. It first extracts ncRNA sequence165
embeddings using a pre-trained ncRNA Language Model (GenerRNA Zhao et al. (2024)) and then166
processes these embeddings through a Feed-Forward Neural Network (FFNN) to predict interaction167
probabilities.168

24/03/25, 09:15Untitled Diagram

Page 1 of 2https://app.diagrams.net/?src=about

ncRNA sequence 1 ncRNA sequence 2

GenerRNA

Classification
or probability

of the interaction

Feed Forward 
Neural Network

GenerRNA

GenerRNA

Max and/or Avg
pooling

Embeddings

Embedding 1 | Embedding 2

FFNN

Figure 3. High-level CUPID architecture schema.

The GenerRNA architecture mimics the GPT-2-medium model (Radford et al., 2019), and is169
composed of 24 stacked transformer-decoder layers, each incorporating a self-attention mechanism170
that models pairwise interactions among all positions in its input sequence. GenerRNA uses a171
context window of 1024 tokens, corresponding to input sequences with a length of approximately172
4096 nucleotides coded through byte pair encoding Sennrich et al. (2016). Note that this maximum173
length permits the encoding of large RNA molecules. This decoder-only Transformer architecture174
operates in an autoregressive manner, predicting the subsequent token given the previous ones. Both175
the input and output of the model are represented as tokens, which are encoded and decoded by176
a trained tokenizer using byte pair encoding. A special token (EOS) is used to delimit sequences,177
indicating the start and end of each sequence.178

Each transformer block is fed with a input of size L×H, thus allowing to process RNA sequences179
having up to L tokens, each one represented through a H-dimensional real vector, with L = H =180
1024, and outputs a latent representation with the same dimensionality for each input token. For181
each input sequence, the block employs a multi-head self-attention mechanism with 16 attention182
heads. This is followed by an “Add & Norm” sub-block, which applies residual addition and layer183
normalization. Subsequently, a feed-forward sub-layer expands the hidden states from 1024 to 4096184
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dimensions, applies a non-linear activation (ReLU), and then projects them back to 1024 dimensions.185
Another “Add & Norm” sub-block is applied after the feed-forward network, and finally, the block186
produces an output matrix X ∈ RL×H . A schematic diagram of this block is reported in the Fig 4.187

Input token
embeddings

(L × H)

Multi-Head
Self-Attention

(16 heads)

Add & Norm

Feed-Forward Network
with

ReLU Activation

Add & Norm

Output token
embeddings

(L × H)

Figure 4. High-level architecture of a GenerRNA block.

2.4.2 Pooling techniques188

The ith row of matrix X is a latent representation xi ∈ R1024 of the ith token. To obtain a189
fixed-length embedding for the entire sequence, we tested two types of pooling over the sequence190
(i.e., across the H tokens), as well as their concatenation:191

• Average (Avg) Pooling: obtained as the mean of the embeddings of all the tokens: eavg =192
1
L

∑L
i=1 xi.193

• Maximum (Max) Pooling: Compute the element-wise maximum over all token embeddings:194
emax = cmax

i∈1...L
[xi1, xi2, . . . xiH ], where cmax is the columnwise max operator, and xij are the195

elements of the X embedding matrix.196

• Concatenation of [Avg, Max]: Combine both pooled representations into a single embedding197
vector: e = [eavg; emax] ∈ R2048.198

These pooling strategies are schematically depicted in Fig. 5.199
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Input Sequence
∈ RL×H

Average Pooling
eavg = 1

L

∑L
i=1 xi

Max Pooling
emax = cmax

i∈1...L
[xi1, xi2, . . . xiH ]

Concatenation
[eavg; emax] ∈ R2H

Figure 5. Pooling Embedding Strategies.

The embedded representation of a candidate interacting ncRNA pair is composed by the200
concatenation of the embeddings of the two interacting molecules.201

2.4.3 The classification unit202

To predict the interaction we used the pooled embeddings of the RNA sequences as input to a203
dense Feed Forward Neural Network (FFNN), having the following architecture:204

• Input Layer Dimension: 1024 for Avg and Max-pooling embedding strategies, 2048 when205
the embedding of the input molecule is obtained by concatenating the embeddings obtained by206
AVG and Max pooling,207

• Hidden Layers: 4 hidden layers with 1024 neurons each and ReLU activation function,208

• Output Layer: 1 neuron with sigmoid activation function.209

To train the network we applied the following hyper-parameters:210
Learning Rate: η = 5 × 10−4 with a linear warm-up phase of 4 epochs, followed by cosine decay.211
Epochs: 50 epochs with early stopping (patience of 10 epochs). The model with the best validation212
loss is selected (e.g., if the lowest validation loss is observed at epoch 35, then early stopping is213
triggered at epoch 45, and the model from epoch 35 is used).214
Batch Size: 512. Dropout Rate: 0.2. Optimizer: Adam. Loss Function: Binary Cross-Entropy.215

Training and validation loss curves were monitored over epochs to assess model convergence and216
to avoid potential overfitting by early stopping.217

2.4.4 Mini-batch balancing218

Due to the imbalance in our dataset we adopted a training strategy designed to prevent the model219
from learning predominantly from the negatives. To address this, we constructed mini-batches220
that contain a controlled mix of positive and negative examples. Recall that our training set is221
composed of the set of positive interaction pairs, P , |P| = N+, and the set of negative interaction222
pairs N , with |N | = N− = nN+, as detailed in Section 2.3. Each mini-batch B of size m is formed223
by randomly selecting mp positive examples (using a uniform distribution with replacement) and224
mn negative examples (using a uniform distribution without replacement). The ratio of negatives225
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within each mini-batch is defined by226

r = mn

mn + mp
, with mn + mp = m.

Here, r can vary between 0 and 1. A value of r = 0.7 implies that 70% of the mini-batch consists of227
negatives. The choice to sample positives with replacement is driven by their limited number, ensuring228
sufficient representation even in large batches, whereas sampling negatives without replacement229
allows for a broader coverage of these more abundant examples.230

2.5 Experimental Evaluation231

2.5.1 Data preparation and splitting.232

In all our experiments the negative examples were sampled according to the relative frequency of the233
interacting pair types according to the procedure described in Section 2.3 using a negative:positive234
ratio equal to 20:1.235

The dataset was partitioned into stratified training and test sets (train:test ratio = 90:10). The236
training set was further split into a stratified set for training (80% of interaction pairs) and the237
remaining 20% for validation. The validation set was used for early stopping and for tuning the238
classification threshold via maximization of the Matthews correlation coefficient (MCC Matthews239
(1975)) on the validation data.240

2.5.2 Evaluation metrics.241

To comprehensively assess model’s performance, we computed a range of evaluation metrics,242
encompassing both threshold-dependent and threshold-independent measures. Specifically, we first243
evaluated standard binary classification metrics, including accuracy, balanced accuracy (to account244
for class imbalance), precision, recall, F1 score, AUROC (Area Under the Receiver Operating245
Characteristic Curve), and AUPRC (Area Under the Precision-Recall Curve). In addition to these246
overall metrics, we conducted a stratified analysis based on interacting pair types, computing the247
aforementioned measures separately for each pair type.248

Let yi ∈ {0, 1} be the ground-truth label and p̂i ∈ [0, 1] the predicted probability for sample i.249
Given a decision threshold t, we define ŷi = 1 ⇐⇒ [p̂i ≥ t] and the confusion matrix counts:250

TP =
∑

i

I[yi = 1 ∧ ŷi = 1],

TN =
∑

i

I[yi = 0 ∧ ŷi = 0],

FP =
∑

i

I[yi = 0 ∧ ŷi = 1],

FN =
∑

i

I[yi = 1 ∧ ŷi = 0].

Frontiers 10



Nicolini et al. CUPID

Threshold-dependent metrics are then computed as:251

Accuracy (rate of correctly predicted instances) = TP + TN
TP + TN + FP + FN ,

Recall (proportion of TP w.r.t. all positive samples) = TP
TP + FN ,

Specificity (proportion of TN w.r.t. all negative samples) = TN
TN + FP ,

Precision (proportion of TP among predicted positives) = TP
TP + FP ,

F1 (harmonic mean of precision and recall) = 2 · Precision · Recall
Precision + Recall ,

BalancedAcc (accuracy balanced by class proportion) = Recall + Specificity
2 .

(1)

In our work the threshold t is chosen on the validation set by maximizing the MCC coefficient,
which provides a balanced single-score summary that incorporates TP, TN, FP, and FN, and is
therefore less sensitive than accuracy to class imbalance:

MCC = TP · TN− FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

Threshold-independent metrics summarize performance across all thresholds. The ROC curve252
plots TPR(t) = Recall(t) versus FPR(t) = FP(t)/(FP(t) + TN(t)), and AUROC is the area under253
this curve. The precision–recall curve plots Precision(t) versus Recall(t), and AUPRC is its area;254
under strong class imbalance, AUPRC is often more informative than AUROC, with a random255
baseline equal to the positive prevalence π = N+

N++N−
.256

2.5.3 Training hyper-parameters and baselines for comparison.257

The hyper-parameters and configurations used for training the FFNN are reported in Section 2.4.3.258
Moreover, training and validation loss curves were monitored over epochs to assess model convergence259
and to avoid potential overfitting by early stopping.260

Hyperparameter selection was performed in preliminary experiments on a reduced subset of the261
training/validation interaction pairs using a grid-search strategy. We varied the number of hidden262
layers in {2, 4, 6}, the dropout rate in {0.1, 0.2}, and the batch size in {16, 512, 1024}. For each263
configuration, models were trained using the same optimization settings described in Section 2.4.3,264
and the final model was selected as the configuration that maximized validation AUPRC. No265
hyperparameters were tuned on the test set.266

Besides the random classifier, whose expected performance are AUROC = 0.5 and AUPRC267
= 0.047, we employed the IntaRNA method (Mann et al., 2017) as a baseline for comparison.268
IntaRNA estimates interaction energy. While interaction energy can be thresholded to obtain binary269
predictions, which enable the computation of accuracy, balanced accuracy, precision, recall, and F1270
scores, we opted to limit the comparison to AUROC and AUPRC. These metrics provide a more271
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robust and threshold-independent evaluation of predictive performance, ensuring a fair comparison272
across models.273

3 RESULTS

We assessed the contribution of the data-augmentation strategy and the pooling operation used274
to obtain molecule-level embeddings. Table 1 summarizes AUROC and AUPRC results across all275
configurations, including a baseline random classifier, IntaRNA and CUPID models. For CUPID we276
compared results obtained with (Data-aug) and without (No-Data-aug) data augmentation,277
considering different pooling techniques, i.e. concatenation (concat), maximum (Max) and average278
(Avg) pooling.279

Table 1. Comparison of AUROC and AUPRC across different experimental settings. Random
baseline refers to the expected performance of the random classifiers. CUPID models are sorted in
increasing order of both AUROC and AUPRC

Methods AUROC AUPRC
Random baseline 0.5 0.047

IntaRNA 0.544 0.055

CUPID :
No-Data-aug 0.658 0.078
Data-aug-Max 0.810 0.147
Data-aug-concat 0.862 0.222
Data-aug-Avg 0.919 0.364

3.1 Random baselines280

With a random classifier we can expect an AUROC = 0.5, while the estimated baseline AUPRC is:281

Baseline AUPRC = N+
N+ + N−

where N+ is the number of positive samples, and N− is the number of negative samples. Given the282
1:20 ratio of positive to negative samples, the AUPRC baseline in the performed experiments is:283

Baseline AUPRC = 1
1 + 20 ≈ 0.0476.

Our top-performing model achieves an AUPRC of 0.364, corresponding to a 7.65-fold improvement284
(0.364/0.0476). This margin quantifies the difficulty of the task: the extreme class imbalance285
renders precision–recall a stringent metric, and the observed gains indicate that the model extracts286
interaction-relevant information that is well above chance expectations.287
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3.2 IntaRNA results288

Figure 6 reports IntaRNA performance on the augmented test set. In this setting, IntaRNA289
shows limited predictive power. Its scoring function relies on thermodynamic and accessibility290
components (e.g., hybridization energy and site accessibility), and in our experiments we used the291
default parameterization. Given the heterogeneity of ncRNA classes and sequence lengths in our292
benchmark, improved performance would likely require careful, class-specific calibration of both293
energy- and accessibility-related settings. Moreover, while IntaRNA is a general thermodynamics-294
and accessibility-based framework and is not inherently tied to a specific organism, it was295
originally introduced and most extensively evaluated in bacterial sRNA–mRNA interaction settings;296
consequently, when applied to heterogeneous ncRNA–ncRNA interactions (including long lncRNAs297
and diverse eukaryotic classes), its default parameterization may be suboptimal without additional298
tuning.299
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Figure 6. Results for IntaRNA results with augmented test set. (a) Distribution of predicted
probabilities for negative and positive interactions; (b) AUPRC; (c) AUROC

3.3 CUPID results300

Table 1 compares all CUPID configurations. We first evaluated a CUPID model without301
augmentation, using concatenation of average and max pooling. Fig. 7 shows the results obtained302
without data augmentation and with concatenated average-max pooling. The overall AUPRC results303
on the test set are relatively low (Fig. 7c), even if a certain learning is witnessed by the AUROC304
largely above 0.5 (Fig. 7f), and by the distribution of the predicted interaction probabilities for305
negative and positive examples (Fig. 7c), with probabilities for positives relatively higher with306
respect to negatives. Nevertheless, the relatively flat trend of the training loss reveals a certain307
difficulty of the model to learn the data. This is reflected also in the confusion matrix where most308
of negative examples (70%) are misclassified ((Fig. 7e) and in the degradation of the AUPRC309
performance between validation (Fig. 7a) and test (Fig. 7d) data. By looking at specific ncRNA310
interactions, for certain interaction types (e.g.snRNA-snoRNA) we obtained good results across311
the different metrics, but for several ncRNA interactions (e.g. miRNA-lncRNA, miRNA-miRNA,312
lncRNA-snoRNA) we achieved poor results, with AUPRC below 0.1 (Fig. 7g). Summarizing Fig. 7,313
shows that with this setting CUPID can provide a certain discrimination between positive and314
negative interactions (Fig. 7c), but its precision–recall and ROC curves indicate a limited separation315
between positive and negative examples (Fig. 7d,f).316
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Introducing data augmentation consistently improves performance (Table 1). Fig. 8 shows the317
results obtained with data augmentation and average pooling. The AUPRC is more than 4 times318
larger than without data augmentation (Fig. 8d and Table 1). Enlarging the size of training data by319
data augmentation allows the model to better learn the training data, as witnessed by the training320
loss that continues to decrease across epochs (Fig. 8b). This results in a clear separation between321
the scores predicted for positive and negative examples – note that the probabilities predicted for322
negatives are compressed toward zero while for most positives are largely above 0.7 (even if with323
several outliers for both positive and negative examples, Fig. 8b). The confusion matrix also confirms324
that the model with augmented data can better predict negative examples (Fig. 8e); AUPRC325
(Fig. 8d) significantly improves, and AUROC is larger than 0.9 (Fig. 8f). Analyzing results for each326
specific ncRNA interaction, we can observe a significant improvement across all the considered327
metrics, with AUROC in most cases larger than 0.9, except for circRNA-miRNA, miRNA-scRNA,328
miRNA-snRNA and miRNA-scaRNA (even if for these two last ncRNA interactions values are close329
to 0.9 (Fig. 8g).330

These results confirm that data augmentation is crucial to improve results for two main reasons:331
at first the model has training data enough to better generalize; second, improves generalization332
leveraging molecule order and orientation, two symmetries that are not guaranteed to be learned333
from limited training data. Augmentation effectively enforces these invariances, reducing overfitting334
to sequence presentation and mitigating the scarcity of positive examples.335

Pooling strategy has a direct impact on the stability of the molecule-level embedding. Average336
pooling—yielding a smoothed representation over the full sequence—achieves the highest AUROC337
and AUPRC (Fig. 8) compared to max pooling (Suppl. Fig. S2) and concatenation pooling (Suppl.338
Fig. S3). This indicates that interaction-relevant information is not confined to a small set of token339
embeddings but arises from distributed features along the sequence. Max pooling, in contrast,340
appears sensitive to local outliers and overly compresses positional variability, while concatenation341
does not provide additional benefits once augmentation is introduced. The results suggest that,342
for ncRNA interaction prediction, the aggregate signal across nucleotides is more informative than343
isolated high-activation sites.344

4 DISCUSSION

The results shown in this work demonstrate that RNA sequence-only inference can recover interaction345
signals across diverse ncRNA classes. The best-performing configuration reaches AUROC values346
above 0.9 on the test set, despite operating without structural, evolutionary, or thermodynamic347
information. This suggests that pretrained RNA language models encode latent features associated348
with intermolecular recognition. These features may reflect statistical regularities of pairing349
propensities and local compositional biases captured during pretraining, even in the absence350
of explicit structural supervision.351

From a methodological standpoint, two contributions appear essential. First, the augmentation352
scheme addresses symmetries inherent to the problem. Because interacting RNAs can be presented in353
either order, and because sequence orientation can vary, enforcing invariance to these transformations354
is critical for robust generalization. Data augmentation also increases the number of examples355
available for training, thus improving the generalization performance of the model. Second, average356
pooling provides stable embeddings for ncRNA sequences. For molecules such as lncRNAs—–whose357
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Figure 7. CUPID results with concatenated pooling, and without using augmented data. (a)
Overall precision recall curve on the validation set including all the type of ncRNA interactions; (b)
Training and validation loss across epochs; (c) Distribution of the CUPID predicted probabilities
on negative and positive examples on the test set; (d) Overall precision recall curve on the test
set including all the type of ncRNA interactions; (e) Confusion matrix on the test set; (f) ROC
curve on the test set including all the type of ncRNA interactions; (g) CUPID results on the test
set across different types on ncRNA interactions (rows) for different types of metrics (columns).

Frontiers 15



Nicolini et al. CUPID

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

AUPRC = 0.601

0 5 10 15 20 25 30
Epoch

0.15

0.20

0.25

0.30

0.35

Lo
ss

Train Loss
Validation Loss

Negative Positive
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 P
ro

ba
bi

lit
y

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

AUPRC = 0.364

Negative Positive
Predicted

Ne
ga

tiv
e

Po
sit

iv
e

Ac
tu

al
90.91% 9.09%

30.77% 69.23%
0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AUROC = 0.919

(d) (e) (f)

Acc. Bal. Acc. Prec. Recall F1 AUROC AUPRC

lncRNA - miRNA

miRNA - pseudo

miRNA - ncRNA

snoRNA - snoRNA

miRNA - miRNA

miRNA - snoRNA

lncRNA - snoRNA

lncRNA - lncRNA

lncRNA - pseudo

circRNA - miRNA

miRNA - scRNA

miRNA - scaRNA

miRNA - snRNA

ncRNA - snoRNA

snRNA - snoRNA

lncRNA - ncRNA

pseudo - snoRNA

0.897 0.809 0.283 0.712 0.405 0.923 0.368

0.886 0.799 0.257 0.703 0.376 0.917 0.327

0.908 0.817 0.300 0.716 0.423 0.933 0.397

0.862 0.720 0.199 0.562 0.294 0.866 0.198

0.948 0.785 0.458 0.605 0.521 0.911 0.515

0.931 0.785 0.363 0.623 0.458 0.907 0.452

0.956 0.798 0.523 0.624 0.569 0.942 0.586

0.965 0.819 0.618 0.659 0.638 0.945 0.663

0.963 0.730 0.713 0.470 0.566 0.931 0.586

0.905 0.618 0.175 0.303 0.222 0.648 0.177

0.844 0.588 0.126 0.300 0.178 0.720 0.106

0.898 0.699 0.202 0.481 0.284 0.884 0.201

0.928 0.761 0.341 0.577 0.429 0.861 0.399

0.927 0.741 0.634 0.511 0.566 0.919 0.589

0.897 0.779 0.239 0.650 0.349 0.919 0.273

0.945 0.688 0.629 0.393 0.484 0.930 0.551

0.962 0.755 0.636 0.525 0.575 0.935 0.630

0.2

0.4

0.6

0.8

(g)

Figure 8. CUPID results with average pooling and using augmented data. (a) Overall precision
recall curve on the validation set including all the type of ncRNA interactions; (b) Training and
validation loss across epochs; (c) Distribution of the CUPID predicted probabilities on negative
and positive examples on the test set; (d) Overall precision recall curve on the test set including all
the type of ncRNA interactions; (e) Confusion matrix on the test set; (f) ROC curve on the test
set including all the type of ncRNA interactions; (g) CUPID results on the test set across different
types on ncRNA interactions (rows) for different types of metrics (columns).
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functional elements are dispersed and whose lengths vary over orders of magnitude—–summarizing358
the full sequence avoids overemphasis on isolated positions and instead captures global contextual359
tendencies. Moreover, to our knowledge, CUPID is the first model able to predict a large set of360
ncRNA interactions, and in principle can be applied to predict any ncRNA interaction.361

The limitations observed for IntaRNA highlight the difference between energy-based and362
representation-based approaches. Thermodynamic models rely on explicit structural motifs and363
accessibility assumptions, which may not generalize to long, structured, or poorly conserved ncRNAs.364
In contrast, CUPID does not attempt to reconstruct secondary structure but leverages contextual365
sequence statistics learned from large corpora. These complementary perspectives suggest potential366
synergies: coupling language-model embeddings with coarse structural predictions could refine the367
discrimination between spurious and functionally relevant pairing events.368

Despite these promising results, we note that the resources used to train CUPID are limited in size369
and exhibits a strong imbalance across interaction types. Although our type-constrained negative370
sampling preserves the empirical distribution of interaction types, rare types remain challenging; they371
can yield higher-variance estimates and may prevent the model from learning robust type-specific372
patterns. Accordingly, we emphasize AUPRC in our per-type analyses, as it is generally more373
informative than AUROC under severe class imbalance. Future work will benefit from larger and374
more balanced interaction resources, and could further improve stability on underrepresented classes375
via targeted strategies such as class-aware reweighting, resampling, or cost-sensitive objectives.376

As larger ncRNA catalogs become available through resources such as RNAcentral Sweeney377
et al. (2020), and as experimental protocols expand the coverage of ncRNA–ncRNA interactions,378
the training regime of models like CUPID can be scaled accordingly. Future developments may379
integrate longer receptive fields, explicit cross-attention between molecules, or joint fine-tuning on380
experimentally resolved interactomes. These extensions could help reveal constraints underlying381
ncRNA recognition and improve the resolution of regulatory maps in eukaryotic transcriptomes.382

In addition, while our study focuses on a resource-efficient paradigm that leverages pretrained383
RNA language models with a lightweight interaction-specific prediction head, it would be interesting384
to complement our analysis with baselines that train a long-context Transformer from scratch. We385
did not include such a baseline here because, under the current supervision regime (approximately386
105 interaction pairs after filtering), end-to-end training from random initialization may be difficult387
to optimize and may not yield generalizable representations. As larger and more diverse labeled388
interaction resources become available, systematic comparisons between pretrained and from-scratch389
Transformer encoders will become increasingly informative.390

A similar consideration holds when considering studies substituting RNA-LM models with several391
Transformer-based nucleotide language models. While these models could, in principle, be considered392
as alternative backbones for RNA sequence embeddings (e.g., models pretrained predominantly on393
DNA such as Nucleotide Transformer, which has been reported to transfer RNA-related signals (Dalla-394
Torre et al., 2025)), we selected GenerRNA because it is pretrained specifically on RNA sequences,395
provides a long-context representation and it is expected to better capture RNA-class-specific396
features. We therefore expect RNA-specialized pretraining to yield representations that are more397
directly tailored to RNA sequence regularities than more generic DNA-pretrained alternatives,398
even when the latter can capture some RNA features. In this work, we focused on characterizing399
the proposed interaction-prediction pipeline using a single RNA-specialized backbone, including400
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ablations on augmentation and pooling. As larger and more diverse interaction resources become401
available, it will be important to benchmark GenerRNA in a zero-shot setting against more general402
nucleotide Transformers, and to evaluate both backbones also after task-specific fine-tuning.403

In summary, the results show that CUPID provides a scalable sequence-based framework for404
ncRNA–ncRNA interaction prediction, achieving AUROC larger than 0.9 for several types on405
ncRNA interactions. Its performance, robustness to class heterogeneity, and limited dependence on406
domain-specific priors make it suitable for large-scale in silico screening and for guiding targeted407
experimental profiling of ncRNA regulatory networks.408
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