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ABSTRACT

Non-coding RNAs (ncRNAs) govern a vast network of regulatory interactions within the cells, yet
their pairwise relationships remain largely uncharted due to the complexity of RNA structure and the
limits of current experimental methods. We present CUPID (Computational Understanding of Pairwise
Interactions in ncRNA Data), a deep learning framework that predicts ncRNA-ncRNA interactions directly
from primary sequence information. CUPID uses embeddings from a pre-trained RNA language model
combined with a feed-forward classifier to identify patterns linked to molecular pairing. This approach
avoids reliance on thermodynamic models or manual feature design and, unlike previously proposed
models, is able to generalize across different types of ncRNAs, including long non-coding, circular, micro-,
and small nuclear RNAs. By learning the hidden rules that govern RNA recognition, CUPID provides a
scalable tool for exploring ncRNA interaction networks and advancing our understanding of RNA-based
regulation.

Keywords: ncRNA-ncRNA interaction, deep learning, fine-tuning, artificial intelligence, machine learning, non-coding RNA, large

language models

1 INTRODUCTION

Understanding RNA-RNA interactions is critical for deciphering the regulatory circuits that
orchestrate gene expression, RNA processing, and signal transduction. Non-coding RNAs (ncRNAs),
despite lacking protein-coding potential, play pivotal roles in these processes (Ali et al., [2021)).
However, experimental mapping of ncRNA interactions remains challenging due to the limitations
of existing experimental and computational techniques (Lorenzi et al., 2021)).

Methods such as Minimum Free Energy (MFE) calculations and accessibility-based models have
been usually applied to predict RNA-RNA interactions. Tools like IntaRNA (Mann et al., 2017)
estimate the interaction energy as AGiotal = AG quplex + AGaccessibility; Where the first term quantifies
the energy released upon hybridization, and the second accounts for the cost of rendering binding
regions accessible. Benchmark studies have demonstrated that accessibility-based algorithms can
effectively differentiate native interactions from background noise (Umu and Gardner, [2017)), yet these
approaches rely on predefined parameters and simplified energy models. In parallel, experimental
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techniques such as RNA Antisense Purification (RAP-RNA) offer validation but remain limited by
their high cost and labor intensity (Engreitz et al., [2014)).

Advances in machine learning and graph-based modeling for biological data, including recent work
on explainability and diffusion-based attention mechanisms, have motivated a surge of learning-
driven approaches for predicting interactions across diverse molecular systems (Gliozzo et al., [2025;
Cetin and Sefer|, 2025} [Sefer|, 2025]).

Machine learning methods, such as convolutional neural networks, deep forests and graph neural
networks (Alipanahi et al., 2015; [Tian et al.;|2021; Wei et al., [2022)) have been applied to RNA-protein
interaction prediction, while graph-based approaches embed heterogeneous networks of ncRNAs and
diseases using multigraph contrastive learning (Sun et al., 2025) or apply random-walk based graph
representation learning techniques to predict non coding RNA interactions (Torgano et al., [2025)).

While effective, these methods often rely on predefined feature extraction, graph structures, or
supervised training, limiting their adaptability to novel ncRNA sequences.

In contrast, LLMs can directly learn from large corpora of proteins or RNA data (Valentini et al.|
2023; |Zhao et al., 2024} Shen et al., 2024} |[Nicolini et al.| [2025a)), capturing intricate interaction motifs
beyond predefined energy models or graph-based constraints. Unlike thermodynamic models, which
impose simplifying assumptions, LLMs infer interaction likelihoods from latent structural patterns,
offering a flexible, data-driven approach. In particular, transformer-based foundation models can
generate biologically meaningful representations directly from raw sequences, by exploiting large
RNA sequence corpora (Sapoval et al., 2022; |Chen et al., 2022; |[Yu et al., 2024). More in general
several deep learning methods have been proposed to predict specific ncRNA interactions, using
rna2vec pretraining and deep feature mining (Yu et al., 2022) or conditional random fields and
graph convolutional networks (Wang et al.; 2022), heterogeneous graph neural networks (Li et al.,
2025) and convolutional neural networks combined with a Transformer Encoder (Yang et al., 2025)
for the prediction of miRNA-IncRNA interactions.

We also recently proposed a deep neural network trained on embedded representations of a subset
of ncRNAs obtained from the RNA-FM language model (Shen et al.| 2024), achieving state-of-the-art
results for predicting miRNA interactions with other ncRNA molecules (Nicolini et al., 2025b)).
However, our proposed model, like other models recently proposed in the literature (Li et al.
2025 Yang et al.l 2025)), is only able to predict specific ncRNA interactions (e.g., interactions
with miRNAs). Furthermore, due to limitations on the maximum allowed sequence length of the
underlying RNA-FM transformer, it can only process sequences shorter than approximately 1000
nucleotides, thus limiting the model’s application to relatively long ncRNAs (e.g., IncRNAs).

To overcome these limitations, we propose a novel Transformed-based deep learning model, that,
differently from previous models proposed in literature, is able to predict a large range of ncRNA
interactions, including long non-coding RNA (IncRNA), circular RNA (circRNA), microRNA
(miRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Small Cajal body-specific
RNAs (scaRNAs), small cytoplasmic RNAs (scRNA) and other types of ncRNAs. Moreover, by
adopting GenerRNA (Zhao et al.; 2024) to encode RNA sequences, our model can process full-length
ncRNA sequences (up to 4096 nucleotides) without truncation, thus significantly enlarging the set
of ncRNAs that can be processed by the model.

We hypothesize that LLM-based contextual embeddings provide a rich representation for ncRNA
interaction prediction, circumventing the limitations of manual feature engineering or predefined
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structural graphs. We reasoned that GenerRNA (Zhao et al, 2024)), pretrained on a large corpus of
ncRNA sequences using a masked language modeling objective, can capture long-range interactions
of ncRNA molecules, thus facilitating downstream tasks such as ncRNA interaction prediction.

Our CUPID model (Computational Understanding of Pairwise Interactions in ncRNA Data),
predicts ncRNA interactions using only sequence information. CUPID extracts embeddings from
a pre-trained ncRNA language model and feeds a dense feed-forward neural network (FFNN) to
automatically learn intricate sequence interaction features. This design circumvents the need for
explicit thermodynamic parameterization and manually engineered features, offering a scalable and
efficient alternative for uncovering novel regulatory interactions (Fabbri et al., 2019).

2 METHODS
2.1 Dataset

Our dataset comprises a subset of multispecies ncRNA interaction pairs from RNA-KG |Cavalleri
et al (20247

The RNA-KG integrates physical and functional interactions between different types of ncRNAs,
and their relationships with other biomolecules (genes and proteins) and chemicals, as well as with
biomedical concepts coded in the Gene Ontology (Aleksander et al., 2023), the Human Phenotype
Ontology (Gargano et al.l 2023), Mondo (Vasilevsky et al 2025) and other bio-medical ontologies
related to the “RNA world”.

In particular, we extracted RNA-RNA edges from RNA-KG by selecting only relations annotated
as interacts-with. In RNA-KG, interacts-with denotes experimentally supported physical RNA—
RNA interactions, and we therefore excluded other relation types encoding functional associations
(e.g., regulatory links, co-expression, or disease associations). The interacts-with edges integrated
in RNA-KG originate from multiple underlying curated interaction databases. Fig[l] presents an
overview of the main RNA entities and their relationships available in the the RNA-KG. Readers
may refer to the RNA-KG reference (Cavalleri et al., 2024) for the complete list of contributing
sources and evidence provenance.

We filtered the dataset to retain only sequences that fit within the GenerRNA (Zhao et al.| 2024)’s
token limit (approximately 4096 nucleotides), since Byte Pair Encoding (BPE) compresses raw
nucleotide sequences, allowing longer sequences to fit within the model’s constraints. After applying
this length filter, the dataset contains:

e 101088 interaction pairs (down from an initial 130310 pairs).

e 11212 unique sequences (selected from 19624 potential sequences) belonging to 9 different RNA
molecule types: long non-coding RNA (IncRNA), circular RNA (circRNA), microRNA (miRNA),
small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Small Cajal body-specific RNAs
(scaRNAs), small cytoplasmic RNAs (scRNA), not (better) classified non coding RNA molecules
(ncRNA) and pseudo RNAE|.

I Retrieval of interacting pairs and corresponding sequences was performed using the scripts available from the RNA-KG web site:
https://github.com/AnacletoLAB/RNA-KG.

2 In RNAinter, the term “pseudo” specifically denotes RNA sequences transcribed from pseudogenes. In this context, these are transcripts
derived from genes that have lost their protein-coding capability due to accumulated mutations, yet they are still produced as RNA.
Similar to other ncRNAs, such pseudogene RNAs can sometimes participate in regulatory networks by, for example, acting as miRNA
decoys or sponges, despite not encoding functional proteins.
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Figure 1. Simplified representation of the RNA-KG meta-graph, focused on ncRNAs and their
interactions.

106  In the following, we denote the set of length-filtered molecules as
SZ{SZ'}, iZl,...,‘S|,

107 where the type of each molecule s € S is given by ¢(s), i.e. ¢ : S — T represents a mapping of a
108 ncRNA sequence s € S to its ncRNA type T, e.g. miRNA, IncRNA or any other ncRNA type.

109  The identity of an interaction pair is solely determined by its constituent molecules, regardless of
110 order; that is,

(si585) = (85, 5i)-

111 The type of an interaction (s;,sj) with s; # s; and s;,s; € S is determined by the types of the
112 ncRNA s; and s; theirselves, regardless of their order:

(0(si), d(s5)) = ((s5), P(s1))

113 For instance, possible types of ncRNA interactions are miRNA-IncRNA or miRNA-circRNA.
114 Assuming that interacting ncRNA pairs of different types exhibit distinct specificities that the model
115 should learn, we reasoned that types with negligible sample sizes might introduce noise rather than
116 valuable information. Therefore, the set of interaction pairs used in this work is obtained by further
117 filtering the dataset of interacting pairs to remove interacting pair types represented by fewer than
118 100 samples, resulting in 10644 unique sequences composing 99841 interacting pairs. Fig [2[ shows
119 the distribution of the different types of ncRNA interactions.
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IncRNA miRNA ncRNA pseudo scRNA scaRNA snRNA snoRNA

circRNA - 295 - - - - - -
IncRNA = 1335 - 126 370 - - - 1535
miRNA - 1864 5814 16853 182 115 111 1778
ncRNA - - - - - - - 196
pseudo - - - - - - - 93
snRNA - - - - - - - 94
snoRNA - - - - - - 4322

Figure 2. Distribution of ncRNA interactions pairs in the filtered interaction set. Rows: first (left)
molecule type; Columns: right molecule type.

2.2 Data Augmentation

To address the issues due to the limited cardinality of the available training data, especially for
specific types of ncRNA interactions (e.g., snRNA-miRNA or miRNA-circRNA), we employ a data
augmentation strategy that effectively increases the dataset size by a factor of 4. For each original
training instance represented as a pair of interacting ncRNA (s;, s;) we generate three additional
augmented instances:

1. Molecule Order Reversal: Swap the order of the molecules: (sj, s;).

2. Sequence Flipping: Reverse the nucleotide order in both molecules (denoted by the superscript
F): (s, sf ).
3. Combined Augmentation: Reverse both the molecule order and the nucleotide sequences:
(sf ,sh).
Thus, if the original dataset contains N instances, the augmented dataset becomes: Nyyg = 4N
(Suppl. Fig. S1). This augmentation introduces invariance to both the order and orientation of
sequences, thereby enabling the model to better capture the underlying biological patterns and

improving its robustness against input variability.

In order to avoid leakage between training and test sets, data augmentation is performed after
splitting the dataset.

2.3 Negative examples generation

In our dataset, only positive non-coding RNA-RNA interactions are explicitly provided, and they
occur with varying frequencies.

Frontiers 5
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Algorithm 1 Negative Sampling Algorithm

Require: Set of unique ncRNA sequences S, positive augmented interaction set P, and negative
sampling parameter n
Ensure: Negative sample set N
1: Initialize N < ()
2: for each pair (s,s’) € P do
3: for i =1ton do

4: Sample Speg € S such that ¢(speg) = ¢(s')
5: if (s, 5neg) € P A (5, Sneg) ¢ N then

6: N <= N U{(s, Sneg) }

7: end if

8: end for

9. end for

10: return N

To effectively train CUPID, we generated negative examples for each interaction pair type by
matching the frequency distribution of the positive interactions. Specifically, negative examples were
generated under the assumption that any pair of ncRNA sequences drawn from the set of unique
sequences that is not observed as a positive interaction constitutes a possible negative instance.

Let S = {s1,s2,...,sn} be the set of unique ncRNA sequences present in the dataset. Denote by
P = {(si,sj) | si,s5 € S interact}

the set of all positive ncRNA-ncRNA interactions. Then, the set of all possible ncRNA pairs is
given by § x § (excluding self-interactions).

The set of potential negatives is defined as:

Npotential = {(Sivsj) €eSxS§ | Si 7é Sj} \P

Negative Sampling Procedure. To generate the negative samples for each interacting pair type, we
corrupt its tuples. In other words, given a positive pair (s;, s;) with type (¢(s;), ¢(s;)), we keep the
first molecule s; fixed and sample s’ € S such that:

s #siy o) =0(s5), (si,s) ¢ P

In this way we avoid generating negatives between ncRNA types that never interact (e.g. scaRNA
and IncRNA).

Because we generate negatives for each positive pair (s;,sj) by corrupting the right molecule
while keeping the same type pair (¢(s;), ¢(s;)), the negative set preserves the interaction type-pair
distribution of the positives in expectation (and approximately in practice, up to rejection of
candidates already present as positives or previously sampled negatives).

For each positive edge, we selected n negative edges, in order to control the imbalance between
positive and negative edges in the testing phase (we set n = 20 in our experiments).

Negative Sampling Algorithm. The negative sampling algorithm is detailed in Algorithm [I] In our
implementation, we set n = 20. Note that, since the condition at line 5 of the algorithm cannot
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be always guaranteed, it is likely that the number of negatives n < 20. In our experiments we set
n = 20.

2.4 Model Architecture
2.41 The overall CUPID Architecture

Our model follows a two-stage pipeline, as illustrated in Figure [3] It first extracts ncRNA sequence
embeddings using a pre-trained ncRNA Language Model (GenerRNA |Zhao et al.| (2024)) and then
processes these embeddings through a Feed-Forward Neural Network (FFNN) to predict interaction
probabilities.

ncRNA sequence 1 ncRNA sequence 2
l l e GenerRNA 3
GenerRNA GenerRNA | Embeﬁdings |
' [ Max and/or Avg
RS pooling

Y Y

Feed Forward
Neural Network

FFNN S
I Classification

or probability
of the interaction

Figure 3. High-level CUPID architecture schema.

The GenerRNA architecture mimics the GPT-2-medium model (Radford et al., 2019), and is
composed of 24 stacked transformer-decoder layers, each incorporating a self-attention mechanism
that models pairwise interactions among all positions in its input sequence. GenerRNA uses a
context window of 1024 tokens, corresponding to input sequences with a length of approximately
4096 nucleotides coded through byte pair encoding Sennrich et al. (2016). Note that this maximum
length permits the encoding of large RNA molecules. This decoder-only Transformer architecture
operates in an autoregressive manner, predicting the subsequent token given the previous ones. Both
the input and output of the model are represented as tokens, which are encoded and decoded by
a trained tokenizer using byte pair encoding. A special token (EOS) is used to delimit sequences,
indicating the start and end of each sequence.

Each transformer block is fed with a input of size L x H, thus allowing to process RNA sequences
having up to L tokens, each one represented through a H-dimensional real vector, with L = H =
1024, and outputs a latent representation with the same dimensionality for each input token. For
each input sequence, the block employs a multi-head self-attention mechanism with 16 attention
heads. This is followed by an “Add & Norm” sub-block, which applies residual addition and layer
normalization. Subsequently, a feed-forward sub-layer expands the hidden states from 1024 to 4096
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185 dimensions, applies a non-linear activation (ReLU), and then projects them back to 1024 dimensions.
186 Another “Add & Norm” sub-block is applied after the feed-forward network, and finally, the block
187 produces an output matrix X € REXH A schematic diagram of this block is reported in the Fig

Input token
embeddings
(L x H)

!
Multi-Head
Self-Attention
(16 heads)

Y

Add & Norm

Y

(Feed—Forward Network\
with
ReLU Activation

Y

Add & Norm

Output token
embeddings
(L x H)

- J

Figure 4. High-level architecture of a GenerRNA block.

188 2.4.2 Pooling techniques

189  The i*" row of matrix X is a latent representation x; € R1924 of the i*" token. To obtain a
190 fixed-length embedding for the entire sequence, we tested two types of pooling over the sequence
191 (i.e., across the H tokens), as well as their concatenation:

192 e Average (Avg) Pooling: obtained as the mean of the embeddings of all the tokens: ey, =
193 1L o
L =1
194 e Maximum (Maz) Pooling: Compute the element-wise maximum over all token embeddings:
195 €max = _cn%a%[a:ﬂ,xig, ... 2;f], where cmax is the columnwise max operator, and wx;; are the
1el...
196 elements of the X embedding matrix.

197 e Concatenation of [Avg, Maz]: Combine both pooled representations into a single embedding
198 vector: € = [€avg; €max] € [R2048,

199 These pooling strategies are schematically depicted in Fig. [5

Frontiers 8
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{Input Sequence}

c RLXH
Average Pooling Max Pooling
Cavg = + S H X Cmax = CMAL[Ti1, Tiz, - - TiH]

- ==

L Concatenation
[

. 2H
€Cavg; emax] e R

Figure 5. Pooling Embedding Strategies.

The embedded representation of a candidate interacting ncRNA pair is composed by the
concatenation of the embeddings of the two interacting molecules.

2.4.3 The classification unit

To predict the interaction we used the pooled embeddings of the RNA sequences as input to a
dense Feed Forward Neural Network (FFNN), having the following architecture:

e Input Layer Dimension: 1024 for Avg and Max-pooling embedding strategies, 2048 when
the embedding of the input molecule is obtained by concatenating the embeddings obtained by
AVG and Max pooling,

e Hidden Layers: 4 hidden layers with 1024 neurons each and ReLLU activation function,

e Output Layer: 1 neuron with sigmoid activation function.

To train the network we applied the following hyper-parameters:

Learning Rate: n =5 x 104 with a linear warm-up phase of 4 epochs, followed by cosine decay.
FEpochs: 50 epochs with early stopping (patience of 10 epochs). The model with the best validation
loss is selected (e.g., if the lowest validation loss is observed at epoch 35, then early stopping is
triggered at epoch 45, and the model from epoch 35 is used).

Batch Size: 512. Dropout Rate: 0.2. Optimizer: Adam. Loss Function: Binary Cross-Entropy.

Training and validation loss curves were monitored over epochs to assess model convergence and
to avoid potential overfitting by early stopping.

2.4.4 Mini-batch balancing

Due to the imbalance in our dataset we adopted a training strategy designed to prevent the model
from learning predominantly from the negatives. To address this, we constructed mini-batches
that contain a controlled mix of positive and negative examples. Recall that our training set is
composed of the set of positive interaction pairs, P, |P| = N4, and the set of negative interaction
pairs N, with |[N| = N_ = nN,, as detailed in Section . Each mini-batch B of size m is formed
by randomly selecting m,, positive examples (using a uniform distribution with replacement) and
my, negative examples (using a uniform distribution without replacement). The ratio of negatives

Frontiers 9
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within each mini-batch is defined by

mp, .
r=———, with my,+m,=m.
My + Myp

Here, r can vary between 0 and 1. A value of » = 0.7 implies that 70% of the mini-batch consists of
negatives. The choice to sample positives with replacement is driven by their limited number, ensuring
sufficient representation even in large batches, whereas sampling negatives without replacement
allows for a broader coverage of these more abundant examples.

2.5 Experimental Evaluation
2.5.1 Data preparation and splitting.

In all our experiments the negative examples were sampled according to the relative frequency of the
interacting pair types according to the procedure described in Section using a negative:positive
ratio equal to 20:1.

The dataset was partitioned into stratified training and test sets (train:test ratio = 90:10). The
training set was further split into a stratified set for training (80% of interaction pairs) and the
remaining 20% for validation. The validation set was used for early stopping and for tuning the
classification threshold via maximization of the Matthews correlation coefficient (MCC Matthews
(1975)) on the validation data.

2.5.2 Evaluation metrics.

To comprehensively assess model’s performance, we computed a range of evaluation metrics,
encompassing both threshold-dependent and threshold-independent measures. Specifically, we first
evaluated standard binary classification metrics, including accuracy, balanced accuracy (to account
for class imbalance), precision, recall, F1 score, AUROC (Area Under the Receiver Operating
Characteristic Curve), and AUPRC (Area Under the Precision-Recall Curve). In addition to these
overall metrics, we conducted a stratified analysis based on interacting pair types, computing the
aforementioned measures separately for each pair type.

Let y; € {0,1} be the ground-truth label and p; € [0, 1] the predicted probability for sample .
Given a decision threshold ¢, we define §; =1 <= [p; > t] and the confusion matrix counts:

TP = Iy, = 1A% = 1],
7

TN =) Ty; =0A g =0],
7

FP =S TI[y; = 0A g = 1],

i
FN:ZI[% =1A7g; =0].
1

Frontiers 10
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Threshold-dependent metrics are then computed as:

Accuracy (rate of correctly predicted instances) = TP + ?;i?; N
TP
Recall (proportion of TP w.r.t. all positive samples) = TP L FN’
Specificity (proportion of TN w.r.t. all negative samples) = &,
TN + FP
Precision (proportion of TP among predicted positives) = L,
TP + FP

Precision - Recall

F1 (harmoni f precision and recall) = 2-
(harmonic mean of precision and recall) Precision + Recall’

Recall 4+ Specificity
5 :

BalancedAcc (accuracy balanced by class proportion) =

(1)

In our work the threshold ¢ is chosen on the validation set by maximizing the MCC coefficient,
which provides a balanced single-score summary that incorporates TP, TN, FP, and FN, and is
therefore less sensitive than accuracy to class imbalance:

TP -TN —FP-FN

MCC = .
\/(TP + FP)(TP + FN)(IN + FP)(IN + FN)

Threshold-independent metrics summarize performance across all thresholds. The ROC curve
plots TPR(t) = Recall(t) versus FPR(t) = FP(¢)/(FP(t) + TN(t)), and AUROC is the area under
this curve. The precision—recall curve plots Precision(t) versus Recall(t), and AUPRC is its area;
under strong class imbalance, AUPRC is often more informative than AUROC, with a random

baseline equal to the positive prevalence 7w = ﬁ

2.5.3 Training hyper-parameters and baselines for comparison.

The hyper-parameters and configurations used for training the FENN are reported in Section [2.4.3]
Moreover, training and validation loss curves were monitored over epochs to assess model convergence
and to avoid potential overfitting by early stopping.

Hyperparameter selection was performed in preliminary experiments on a reduced subset of the
training/validation interaction pairs using a grid-search strategy. We varied the number of hidden
layers in {2,4,6}, the dropout rate in {0.1,0.2}, and the batch size in {16,512,1024}. For each
configuration, models were trained using the same optimization settings described in Section [2.4.3]
and the final model was selected as the configuration that maximized validation AUPRC. No
hyperparameters were tuned on the test set.

Besides the random classifier, whose expected performance are AUROC = 0.5 and AUPRC
= 0.047, we employed the IntaRNA method (Mann et al., |2017)) as a baseline for comparison.
IntaRNA estimates interaction energy. While interaction energy can be thresholded to obtain binary
predictions, which enable the computation of accuracy, balanced accuracy, precision, recall, and F1
scores, we opted to limit the comparison to AUROC and AUPRC. These metrics provide a more
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robust and threshold-independent evaluation of predictive performance, ensuring a fair comparison
across models.

3 RESULTS

We assessed the contribution of the data-augmentation strategy and the pooling operation used
to obtain molecule-level embeddings. Table [I| summarizes AUROC and AUPRC results across all
configurations, including a baseline random classifier, IntaRNA and CUPID models. For CUPID we
compared results obtained with (Data-aug) and without (No-Data-aug) data augmentation,
considering different pooling techniques, i.e. concatenation (concat), maximum (Max) and average
(Avg) pooling.

Table 1. Comparison of AUROC and AUPRC across different experimental settings. Random

baseline refers to the expected performance of the random classifiers. CUPID models are sorted in
increasing order of both AUROC and AUPRC

Methods AUROC AUPRC
Random baseline 0.5 0.047
IntaRNA 0.544 0.055
CUPID

No-Data-aug 0.658 0.078
Data-aug-Max 0.810 0.147
Data-aug-concat 0.862 0.222
Data-aug-Avg 0.919 0.364

3.1 Random baselines

With a random classifier we can expect an AUROC = 0.5, while the estimated baseline AUPRC is:

Ny

Baseline AUPRC = m

where N, is the number of positive samples, and N_ is the number of negative samples. Given the
1:20 ratio of positive to negative samples, the AUPRC baseline in the performed experiments is:

1
Baseline AUPRC = ——— =~ (0.0476.
1420

Our top-performing model achieves an AUPRC of 0.364, corresponding to a 7.65-fold improvement
(0.364/0.0476). This margin quantifies the difficulty of the task: the extreme class imbalance
renders precision—recall a stringent metric, and the observed gains indicate that the model extracts
interaction-relevant information that is well above chance expectations.
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3.2 IntaRNA results

Figure [6] reports IntaRNA performance on the augmented test set. In this setting, IntaRNA
shows limited predictive power. Its scoring function relies on thermodynamic and accessibility
components (e.g., hybridization energy and site accessibility), and in our experiments we used the
default parameterization. Given the heterogeneity of ncRNA classes and sequence lengths in our
benchmark, improved performance would likely require careful, class-specific calibration of both
energy- and accessibility-related settings. Moreover, while IntaRNA is a general thermodynamics-
and accessibility-based framework and is not inherently tied to a specific organism, it was
originally introduced and most extensively evaluated in bacterial SRNA-mRNA interaction settings;
consequently, when applied to heterogeneous ncRNA-ncRNA interactions (including long IncRNAs
and diverse eukaryotic classes), its default parameterization may be suboptimal without additional
tuning.
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Figure 6. Results for IntaRNA results with augmented test set. (a) Distribution of predicted
probabilities for negative and positive interactions; (b) AUPRC; (¢) AUROC

o
o

3.3 CUPID results

Table (1] compares all CUPID configurations. We first evaluated a CUPID model without
augmentation, using concatenation of average and max pooling. Fig. [7| shows the results obtained
without data augmentation and with concatenated average-max pooling. The overall AUPRC results
on the test set are relatively low (Fig. ), even if a certain learning is witnessed by the AUROC
largely above 0.5 (Fig. [7f), and by the distribution of the predicted interaction probabilities for
negative and positive examples (Fig. ), with probabilities for positives relatively higher with
respect to negatives. Nevertheless, the relatively flat trend of the training loss reveals a certain
difficulty of the model to learn the data. This is reflected also in the confusion matrix where most
of negative examples (70%) are misclassified ((Fig. [7e) and in the degradation of the AUPRC
performance between validation (Fig. [7h) and test (Fig. [7d) data. By looking at specific ncRNA
interactions, for certain interaction types (e.g.snRNA-snoRNA) we obtained good results across
the different metrics, but for several ncRNA interactions (e.g. miRNA-IncRNA, miRNA-miRNA,
IncRNA-snoRNA) we achieved poor results, with AUPRC below 0.1 (Fig. ) Summarizing Fig. m,
shows that with this setting CUPID can provide a certain discrimination between positive and
negative interactions (Fig. ), but its precision—recall and ROC curves indicate a limited separation
between positive and negative examples (Fig. ,f).
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Introducing data augmentation consistently improves performance (Table [1]). Fig. |8 shows the
results obtained with data augmentation and average pooling. The AUPRC is more than 4 times
larger than without data augmentation (Fig. |8d and Table . Enlarging the size of training data by
data augmentation allows the model to better learn the training data, as witnessed by the training
loss that continues to decrease across epochs (Fig. [8b). This results in a clear separation between
the scores predicted for positive and negative examples — note that the probabilities predicted for
negatives are compressed toward zero while for most positives are largely above 0.7 (even if with
several outliers for both positive and negative examples, Fig. ) The confusion matrix also confirms
that the model with augmented data can better predict negative examples (Fig. ); AUPRC
(Fig. [8) significantly improves, and AUROC is larger than 0.9 (Fig. [8f). Analyzing results for each
specific ncRNA interaction, we can observe a significant improvement across all the considered
metrics, with AUROC in most cases larger than 0.9, except for circRNA-miRNA, miRNA-scRNA,
miRNA-snRNA and miRNA-scaRNA (even if for these two last ncRNA interactions values are close

to 0.9 (Fig. [8k).

These results confirm that data augmentation is crucial to improve results for two main reasons:
at first the model has training data enough to better generalize; second, improves generalization
leveraging molecule order and orientation, two symmetries that are not guaranteed to be learned
from limited training data. Augmentation effectively enforces these invariances, reducing overfitting
to sequence presentation and mitigating the scarcity of positive examples.

Pooling strategy has a direct impact on the stability of the molecule-level embedding. Average
pooling—yielding a smoothed representation over the full sequence—achieves the highest AUROC
and AUPRC (Fig. [8) compared to max pooling (Suppl. Fig. S2) and concatenation pooling (Suppl.
Fig. S3). This indicates that interaction-relevant information is not confined to a small set of token
embeddings but arises from distributed features along the sequence. Max pooling, in contrast,
appears sensitive to local outliers and overly compresses positional variability, while concatenation
does not provide additional benefits once augmentation is introduced. The results suggest that,
for ncRNA interaction prediction, the aggregate signal across nucleotides is more informative than
isolated high-activation sites.

4 DISCUSSION

The results shown in this work demonstrate that RNA sequence-only inference can recover interaction
signals across diverse ncRNA classes. The best-performing configuration reaches AUROC values
above 0.9 on the test set, despite operating without structural, evolutionary, or thermodynamic
information. This suggests that pretrained RNA language models encode latent features associated
with intermolecular recognition. These features may reflect statistical regularities of pairing
propensities and local compositional biases captured during pretraining, even in the absence
of explicit structural supervision.

From a methodological standpoint, two contributions appear essential. First, the augmentation
scheme addresses symmetries inherent to the problem. Because interacting RNAs can be presented in
either order, and because sequence orientation can vary, enforcing invariance to these transformations
is critical for robust generalization. Data augmentation also increases the number of examples
available for training, thus improving the generalization performance of the model. Second, average
pooling provides stable embeddings for ncRNA sequences. For molecules such as IncRNAs——whose
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Figure 7. CUPID results with concatenated pooling, and without using augmented data. (a
Overall precision recall curve on the validation set including all the type of ncRNA interactions; (b
Training and validation loss across epochs; (¢) Distribution of the CUPID predicted probabilities
on negative and positive examples on the test set; (d) Overall precision recall curve on the test
set including all the type of ncRNA interactions; (e) Confusion matrix on the test set; (f) ROC
curve on the test set including all the type of ncRNA interactions; (g) CUPID results on the test
set across different types on ncRNA interactions (rows) for different types of metrics (columns).
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Figure 8. CUPID results with average pooling and using augmented data. (a) Overall precision
recall curve on the validation set including all the type of ncRNA interactions; (b) Training and
validation loss across epochs; (c¢) Distribution of the CUPID predicted probabilities on negative
and positive examples on the test set; (d) Overall precision recall curve on the test set including all
the type of ncRNA interactions; (e) Confusion matrix on the test set; (f) ROC curve on the test
set including all the type of ncRNA interactions; (g) CUPID results on the test set across different
types on ncRNA interactions (rows) for different types of metrics (columns).
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functional elements are dispersed and whose lengths vary over orders of magnitude—summarizing
the full sequence avoids overemphasis on isolated positions and instead captures global contextual
tendencies. Moreover, to our knowledge, CUPID is the first model able to predict a large set of
ncRNA interactions, and in principle can be applied to predict any ncRNA interaction.

The limitations observed for IntaRNA highlight the difference between energy-based and
representation-based approaches. Thermodynamic models rely on explicit structural motifs and
accessibility assumptions, which may not generalize to long, structured, or poorly conserved ncRNAs.
In contrast, CUPID does not attempt to reconstruct secondary structure but leverages contextual
sequence statistics learned from large corpora. These complementary perspectives suggest potential
synergies: coupling language-model embeddings with coarse structural predictions could refine the
discrimination between spurious and functionally relevant pairing events.

Despite these promising results, we note that the resources used to train CUPID are limited in size
and exhibits a strong imbalance across interaction types. Although our type-constrained negative
sampling preserves the empirical distribution of interaction types, rare types remain challenging; they
can yield higher-variance estimates and may prevent the model from learning robust type-specific
patterns. Accordingly, we emphasize AUPRC in our per-type analyses, as it is generally more
informative than AUROC under severe class imbalance. Future work will benefit from larger and
more balanced interaction resources, and could further improve stability on underrepresented classes
via targeted strategies such as class-aware reweighting, resampling, or cost-sensitive objectives.

As larger ncRNA catalogs become available through resources such as RNAcentral Sweeney
et al.| (2020)), and as experimental protocols expand the coverage of ncRNA-ncRNA interactions,
the training regime of models like CUPID can be scaled accordingly. Future developments may
integrate longer receptive fields, explicit cross-attention between molecules, or joint fine-tuning on
experimentally resolved interactomes. These extensions could help reveal constraints underlying
ncRNA recognition and improve the resolution of regulatory maps in eukaryotic transcriptomes.

In addition, while our study focuses on a resource-efficient paradigm that leverages pretrained
RNA language models with a lightweight interaction-specific prediction head, it would be interesting
to complement our analysis with baselines that train a long-context Transformer from scratch. We
did not include such a baseline here because, under the current supervision regime (approximately
10° interaction pairs after filtering), end-to-end training from random initialization may be difficult
to optimize and may not yield generalizable representations. As larger and more diverse labeled
interaction resources become available, systematic comparisons between pretrained and from-scratch
Transformer encoders will become increasingly informative.

A similar consideration holds when considering studies substituting RNA-LM models with several
Transformer-based nucleotide language models. While these models could, in principle, be considered
as alternative backbones for RNA sequence embeddings (e.g., models pretrained predominantly on
DNA such as Nucleotide Transformer, which has been reported to transfer RN A-related signals (Dalla+
Torre et al., [2025))), we selected GenerRNA because it is pretrained specifically on RNA sequences,
provides a long-context representation and it is expected to better capture RNA-class-specific
features. We therefore expect RNA-specialized pretraining to yield representations that are more
directly tailored to RNA sequence regularities than more generic DNA-pretrained alternatives,
even when the latter can capture some RNA features. In this work, we focused on characterizing
the proposed interaction-prediction pipeline using a single RNA-specialized backbone, including
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ablations on augmentation and pooling. As larger and more diverse interaction resources become
available, it will be important to benchmark GenerRNA in a zero-shot setting against more general
nucleotide Transformers, and to evaluate both backbones also after task-specific fine-tuning.

In summary, the results show that CUPID provides a scalable sequence-based framework for
ncRNA-ncRNA interaction prediction, achieving AUROC larger than 0.9 for several types on
ncRNA interactions. Its performance, robustness to class heterogeneity, and limited dependence on
domain-specific priors make it suitable for large-scale in silico screening and for guiding targeted
experimental profiling of ncRNA regulatory networks.
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