

Computational Understanding of non-coding RNA Pairwise Interactions

Marco Nicolini¹, Federico Stacchetti¹, Elena Casiraghi^{1,2,3,4} and Giorgio Valentini,^{1,2,*}

¹ AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Italy

² ELLIS - European Lab for Learning and Intelligent Systems, Milan Unit

³ Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States

⁴ Department of Computer Science, Aalto University, Espoo, Finland

Correspondence*:

Giorgio Valentini

valentini@di.unimi.it

2 ABSTRACT

3 Non-coding RNAs (ncRNAs) govern a vast network of regulatory interactions within the cells, yet
4 their pairwise relationships remain largely uncharted due to the complexity of RNA structure and the
5 limits of current experimental methods. We present *CUPID* (Computational Understanding of Pairwise
6 Interactions in ncRNA Data), a deep learning framework that predicts ncRNA-ncRNA interactions directly
7 from primary sequence information. *CUPID* uses embeddings from a pre-trained RNA language model
8 combined with a feed-forward classifier to identify patterns linked to molecular pairing. This approach
9 avoids reliance on thermodynamic models or manual feature design and, unlike previously proposed
10 models, is able to generalize across different types of ncRNAs, including long non-coding, circular, micro-,
11 and small nuclear RNAs. By learning the hidden rules that govern RNA recognition, *CUPID* provides a
12 scalable tool for exploring ncRNA interaction networks and advancing our understanding of RNA-based
13 regulation.

14 **Keywords:** ncRNA–ncRNA interaction, deep learning, fine-tuning, artificial intelligence, machine learning, non-coding RNA, large
15 language models

1 INTRODUCTION

16 Understanding RNA-RNA interactions is critical for deciphering the regulatory circuits that
17 orchestrate gene expression, RNA processing, and signal transduction. Non-coding RNAs (ncRNAs),
18 despite lacking protein-coding potential, play pivotal roles in these processes (Ali et al., 2021).
19 However, experimental mapping of ncRNA interactions remains challenging due to the limitations
20 of existing experimental and computational techniques (Lorenzi et al., 2021).

21 Methods such as Minimum Free Energy (MFE) calculations and accessibility-based models have
22 been usually applied to predict RNA-RNA interactions. Tools like IntaRNA (Mann et al., 2017)
23 estimate the interaction energy as $\Delta G_{\text{total}} = \Delta G_{\text{duplex}} + \Delta G_{\text{accessibility}}$, where the first term quantifies
24 the energy released upon hybridization, and the second accounts for the cost of rendering binding
25 regions accessible. Benchmark studies have demonstrated that accessibility-based algorithms can
26 effectively differentiate native interactions from background noise (Umu and Gardner, 2017), yet these
27 approaches rely on predefined parameters and simplified energy models. In parallel, experimental

28 techniques such as RNA Antisense Purification (RAP-RNA) offer validation but remain limited by
29 their high cost and labor intensity (Engreitz et al., 2014).

30 Advances in machine learning and graph-based modeling for biological data, including recent work
31 on explainability and diffusion-based attention mechanisms, have motivated a surge of learning-
32 driven approaches for predicting interactions across diverse molecular systems (Gliozzo et al., 2025;
33 Cetin and Sefer, 2025; Sefer, 2025).

34 Machine learning methods, such as convolutional neural networks, deep forests and graph neural
35 networks (Alipanahi et al., 2015; Tian et al., 2021; Wei et al., 2022) have been applied to RNA-protein
36 interaction prediction, while graph-based approaches embed heterogeneous networks of ncRNAs and
37 diseases using multigraph contrastive learning (Sun et al., 2025) or apply random-walk based graph
38 representation learning techniques to predict non coding RNA interactions (Torgano et al., 2025).

39 While effective, these methods often rely on predefined feature extraction, graph structures, or
40 supervised training, limiting their adaptability to novel ncRNA sequences.

41 In contrast, LLMs can directly learn from large corpora of proteins or RNA data (Valentini et al.,
42 2023; Zhao et al., 2024; Shen et al., 2024; Nicolini et al., 2025a), capturing intricate interaction motifs
43 beyond predefined energy models or graph-based constraints. Unlike thermodynamic models, which
44 impose simplifying assumptions, LLMs infer interaction likelihoods from latent structural patterns,
45 offering a flexible, data-driven approach. In particular, transformer-based foundation models can
46 generate biologically meaningful representations directly from raw sequences, by exploiting large
47 RNA sequence corpora (Sapoval et al., 2022; Chen et al., 2022; Yu et al., 2024). More in general
48 several deep learning methods have been proposed to predict specific ncRNA interactions, using
49 rna2vec pretraining and deep feature mining (Yu et al., 2022) or conditional random fields and
50 graph convolutional networks (Wang et al., 2022), heterogeneous graph neural networks (Li et al.,
51 2025) and convolutional neural networks combined with a Transformer Encoder (Yang et al., 2025)
52 for the prediction of miRNA-lncRNA interactions.

53 We also recently proposed a deep neural network trained on embedded representations of a subset
54 of ncRNAs obtained from the RNA-FM language model (Shen et al., 2024), achieving state-of-the-art
55 results for predicting miRNA interactions with other ncRNA molecules (Nicolini et al., 2025b).
56 However, our proposed model, like other models recently proposed in the literature (Li et al.,
57 2025; Yang et al., 2025), is only able to predict specific ncRNA interactions (e.g., interactions
58 with miRNAs). Furthermore, due to limitations on the maximum allowed sequence length of the
59 underlying RNA-FM transformer, it can only process sequences shorter than approximately 1000
60 nucleotides, thus limiting the model's application to relatively long ncRNAs (e.g., lncRNAs).

61 To overcome these limitations, we propose a novel Transformed-based deep learning model, that,
62 differently from previous models proposed in literature, is able to predict a large range of ncRNA
63 interactions, including long non-coding RNA (lncRNA), circular RNA (circRNA), microRNA
64 (miRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Small Cajal body-specific
65 RNAs (scaRNAs), small cytoplasmic RNAs (scRNA) and other types of ncRNAs. Moreover, by
66 adopting GenerRNA (Zhao et al., 2024) to encode RNA sequences, our model can process full-length
67 ncRNA sequences (up to 4096 nucleotides) without truncation, thus significantly enlarging the set
68 of ncRNAs that can be processed by the model.

69 We hypothesize that LLM-based contextual embeddings provide a rich representation for ncRNA
70 interaction prediction, circumventing the limitations of manual feature engineering or predefined

71 structural graphs. We reasoned that GenerRNA (Zhao et al., 2024), pretrained on a large corpus of
72 ncRNA sequences using a masked language modeling objective, can capture long-range interactions
73 of ncRNA molecules, thus facilitating downstream tasks such as ncRNA interaction prediction.

74 Our *CUPID* model (Computational Understanding of Pairwise Interactions in ncRNA Data),
75 predicts ncRNA interactions using only sequence information. *CUPID* extracts embeddings from
76 a pre-trained ncRNA language model and feeds a dense feed-forward neural network (FFNN) to
77 automatically learn intricate sequence interaction features. This design circumvents the need for
78 explicit thermodynamic parameterization and manually engineered features, offering a scalable and
79 efficient alternative for uncovering novel regulatory interactions (Fabbri et al., 2019).

2 METHODS

80 2.1 Dataset

81 Our dataset comprises a subset of multispecies ncRNA interaction pairs from RNA-KG Cavalleri
82 et al. (2024)¹.

83 The RNA-KG integrates physical and functional interactions between different types of ncRNAs,
84 and their relationships with other biomolecules (genes and proteins) and chemicals, as well as with
85 biomedical concepts coded in the Gene Ontology (Aleksander et al., 2023), the Human Phenotype
86 Ontology (Gargano et al., 2023), Mondo (Vasilevsky et al., 2025) and other bio-medical ontologies
87 related to the “RNA world”.

88 In particular, we extracted RNA–RNA edges from RNA-KG by selecting only relations annotated
89 as *interacts-with*. In RNA-KG, *interacts-with* denotes experimentally supported *physical* RNA–
90 RNA interactions, and we therefore excluded other relation types encoding functional associations
91 (e.g., regulatory links, co-expression, or disease associations). The *interacts-with* edges integrated
92 in RNA-KG originate from multiple underlying curated interaction databases. Fig.1 presents an
93 overview of the main RNA entities and their relationships available in the the RNA-KG. Readers
94 may refer to the RNA-KG reference (Cavalleri et al., 2024) for the complete list of contributing
95 sources and evidence provenance.

96 We filtered the dataset to retain only sequences that fit within the GenerRNA (Zhao et al., 2024)’s
97 token limit (approximately 4096 nucleotides), since Byte Pair Encoding (BPE) compresses raw
98 nucleotide sequences, allowing longer sequences to fit within the model’s constraints. After applying
99 this length filter, the dataset contains:

100 • 101088 interaction pairs (down from an initial 130310 pairs).
101 • 11212 unique sequences (selected from 19624 potential sequences) belonging to 9 different RNA
102 molecule types: long non-coding RNA (lncRNA), circular RNA (circRNA), microRNA (miRNA),
103 small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Small Cajal body-specific RNAs
104 (scaRNAs), small cytoplasmic RNAs (scRNA), not (better) classified non coding RNA molecules
105 (ncRNA) and pseudo RNA².

¹ Retrieval of interacting pairs and corresponding sequences was performed using the scripts available from the RNA-KG web site: <https://github.com/AnacletoLAB/RNA-KG>.

² In RNAinter, the term “pseudo” specifically denotes RNA sequences transcribed from pseudogenes. In this context, these are transcripts derived from genes that have lost their protein-coding capability due to accumulated mutations, yet they are still produced as RNA. Similar to other ncRNAs, such pseudogene RNAs can sometimes participate in regulatory networks by, for example, acting as miRNA decoys or sponges, despite not encoding functional proteins.

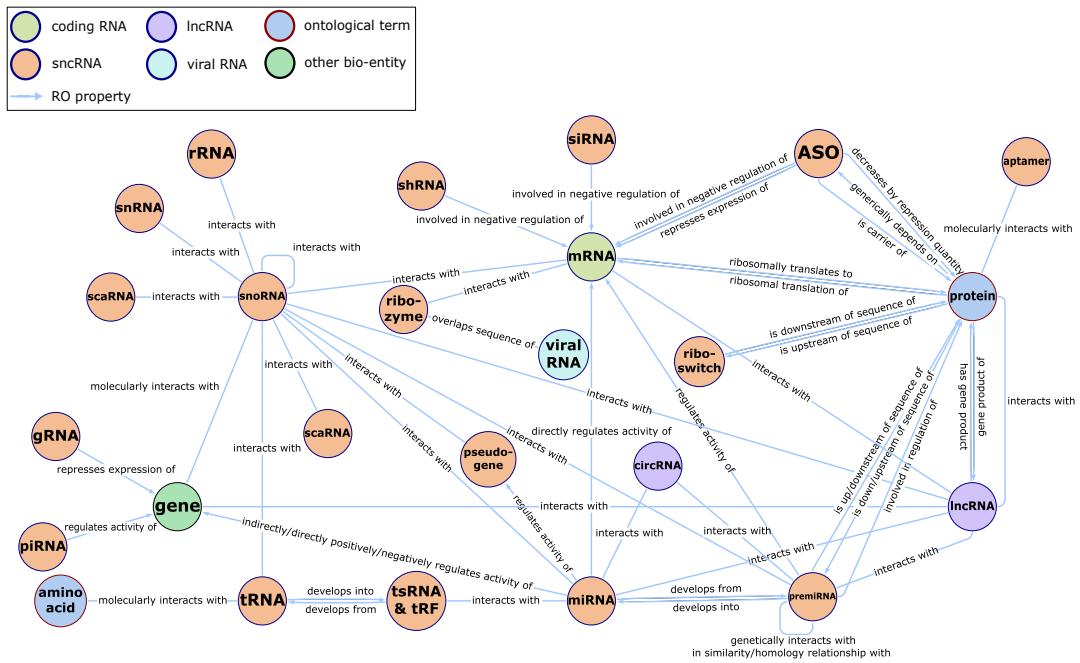


Figure 1. Simplified representation of the RNA-KG meta-graph, focused on ncRNAs and their interactions.

106 In the following, we denote the set of length-filtered molecules as

$$\mathcal{S} = \{s_i\}, \quad i = 1, \dots, |\mathcal{S}|,$$

107 where the type of each molecule $s \in \mathcal{S}$ is given by $\phi(s)$, i.e. $\phi : \mathcal{S} \rightarrow \mathcal{T}$ represents a mapping of a
 108 ncRNA sequence $s \in \mathcal{S}$ to its ncRNA type \mathcal{T} , e.g. miRNA, lncRNA or any other ncRNA type.

109 The identity of an interaction pair is solely determined by its constituent molecules, regardless of
110 order; that is,

$$(s_i, s_j) = (s_j, s_i).$$

111 The type of an interaction (s_i, s_j) with $s_i \neq s_j$ and $s_i, s_j \in \mathcal{S}$ is determined by the types of the
 112 ncRNA s_i and s_j themselves, regardless of their order:

$$(\phi(s_i), \phi(s_j)) = (\phi(s_j), \phi(s_i))$$

113 For instance, possible types of ncRNA interactions are miRNA-lncRNA or miRNA-circRNA.
114 Assuming that interacting ncRNA pairs of different types exhibit distinct specificities that the model
115 should learn, we reasoned that types with negligible sample sizes might introduce noise rather than
116 valuable information. Therefore, the set of interaction pairs used in this work is obtained by further
117 filtering the dataset of interacting pairs to remove interacting pair types represented by fewer than
118 100 samples, resulting in 10644 unique sequences composing 99841 interacting pairs. Fig 2 shows
119 the distribution of the different types of ncRNA interactions.

	lncRNA	miRNA	ncRNA	pseudo	scRNA	scaRNA	snRNA	snoRNA
circRNA	-	295	-	-	-	-	-	-
lncRNA	1335	54773	126	370	-	-	-	1535
miRNA	-	1864	5814	16853	182	115	111	1778
ncRNA	-	-	-	-	-	-	-	196
pseudo	-	-	-	-	-	-	-	93
snRNA	-	-	-	-	-	-	-	94
snoRNA	-	-	-	-	-	-	-	4322

Figure 2. Distribution of ncRNA interactions pairs in the filtered interaction set. Rows: first (left) molecule type; Columns: right molecule type.

120 2.2 Data Augmentation

121 To address the issues due to the limited cardinality of the available training data, especially for
 122 specific types of ncRNA interactions (e.g., snRNA-miRNA or miRNA-circRNA), we employ a data
 123 augmentation strategy that effectively increases the dataset size by a factor of 4. For each original
 124 training instance represented as a pair of interacting ncRNA (s_i, s_j) we generate three additional
 125 augmented instances:

126 1. Molecule Order Reversal: Swap the order of the molecules: (s_j, s_i) .
 127 2. Sequence Flipping: Reverse the nucleotide order in both molecules (denoted by the superscript
 128 F): (s_i^F, s_j^F) .
 129 3. Combined Augmentation: Reverse both the molecule order and the nucleotide sequences:
 130 (s_j^F, s_i^F) .

131 Thus, if the original dataset contains N instances, the augmented dataset becomes: $N_{\text{aug}} = 4N$
 132 (Suppl. Fig. S1). This augmentation introduces invariance to both the order and orientation of
 133 sequences, thereby enabling the model to better capture the underlying biological patterns and
 134 improving its robustness against input variability.

135 In order to avoid leakage between training and test sets, data augmentation is performed after
 136 splitting the dataset.

137 2.3 Negative examples generation

138 In our dataset, only positive non-coding RNA-RNA interactions are explicitly provided, and they
 139 occur with varying frequencies.

Algorithm 1 Negative Sampling Algorithm

Require: Set of unique ncRNA sequences \mathcal{S} , positive augmented interaction set \mathcal{P} , and negative sampling parameter n

Ensure: Negative sample set \mathcal{N}

```

1: Initialize  $\mathcal{N} \leftarrow \emptyset$ 
2: for each pair  $(s, s') \in \mathcal{P}$  do
3:   for  $i = 1$  to  $n$  do
4:     Sample  $s_{\text{neg}} \in \mathcal{S}$  such that  $\phi(s_{\text{neg}}) = \phi(s')$ 
5:     if  $(s, s_{\text{neg}}) \notin \mathcal{P} \wedge (s, s_{\text{neg}}) \notin \mathcal{N}$  then
6:        $\mathcal{N} \leftarrow \mathcal{N} \cup \{(s, s_{\text{neg}})\}$ 
7:     end if
8:   end for
9: end for
10: return  $\mathcal{N}$ 
```

140 To effectively train *CUPID*, we generated negative examples for each interaction pair type by
141 matching the frequency distribution of the positive interactions. Specifically, negative examples were
142 generated under the assumption that any pair of ncRNA sequences drawn from the set of unique
143 sequences that is not observed as a positive interaction constitutes a possible negative instance.

144 Let $\mathcal{S} = \{s_1, s_2, \dots, s_N\}$ be the set of unique ncRNA sequences present in the dataset. Denote by

$$\mathcal{P} = \{(s_i, s_j) \mid s_i, s_j \in \mathcal{S} \text{ interact}\}$$

145 the set of all positive ncRNA-ncRNA interactions. Then, the set of all possible ncRNA pairs is
146 given by $\mathcal{S} \times \mathcal{S}$ (excluding self-interactions).

147 The set of *potential negatives* is defined as:

$$\mathcal{N}_{\text{potential}} = \{(s_i, s_j) \in \mathcal{S} \times \mathcal{S} \mid s_i \neq s_j\} \setminus \mathcal{P}.$$

148 *Negative Sampling Procedure.* To generate the negative samples for each interacting pair type, we
149 corrupt its tuples. In other words, given a positive pair (s_i, s_j) with type $(\phi(s_i), \phi(s_j))$, we keep the
150 first molecule s_i fixed and sample $s' \in \mathcal{S}$ such that:

$$s' \neq s_i, \quad \phi(s') = \phi(s_j), \quad (s_i, s') \notin \mathcal{P}$$

151 In this way we avoid generating negatives between ncRNA types that never interact (e.g. scaRNA
152 and lncRNA).

153 Because we generate negatives for each positive pair (s_i, s_j) by corrupting the right molecule
154 while keeping the same type pair $(\phi(s_i), \phi(s_j))$, the negative set preserves the interaction *type-pair*
155 distribution of the positives in expectation (and approximately in practice, up to rejection of
156 candidates already present as positives or previously sampled negatives).

157 For each positive edge, we selected n negative edges, in order to control the imbalance between
158 positive and negative edges in the testing phase (we set $n = 20$ in our experiments).

159 *Negative Sampling Algorithm.* The negative sampling algorithm is detailed in Algorithm 1. In our
160 implementation, we set $n = 20$. Note that, since the condition at line 5 of the algorithm cannot

161 be always guaranteed, it is likely that the number of negatives $n \leq 20$. In our experiments we set
 162 $n = 20$.

163 2.4 Model Architecture

164 2.4.1 The overall CUPID Architecture

165 Our model follows a two-stage pipeline, as illustrated in Figure 3. It first extracts ncRNA sequence
 166 embeddings using a pre-trained ncRNA Language Model (GenerRNA Zhao et al. (2024)) and then
 167 processes these embeddings through a Feed-Forward Neural Network (FFNN) to predict interaction
 168 probabilities.

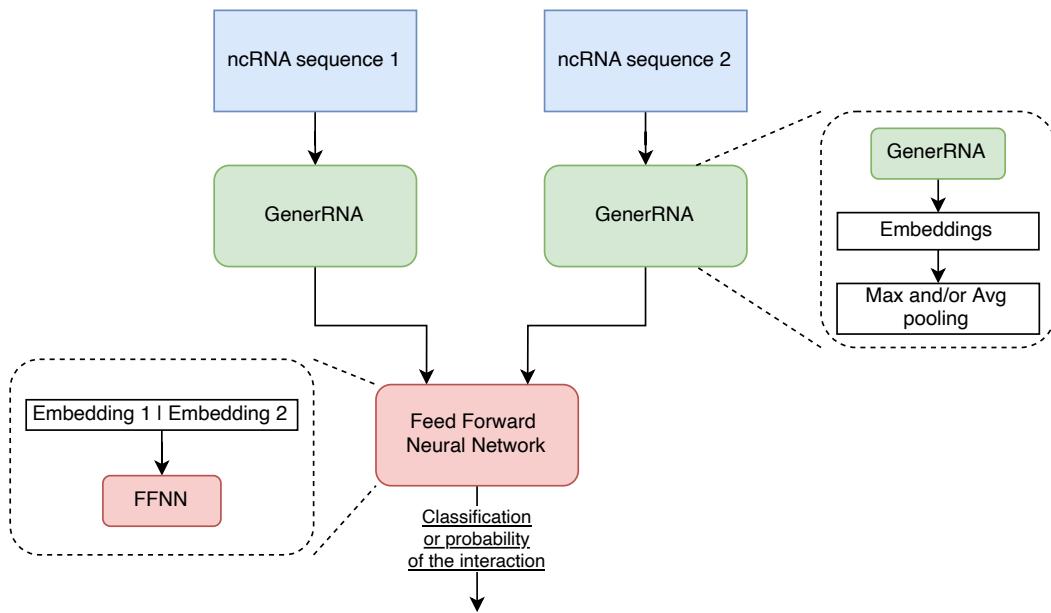


Figure 3. High-level CUPID architecture schema.

169 The GenerRNA architecture mimics the GPT-2-medium model (Radford et al., 2019), and is
 170 composed of 24 stacked transformer-decoder layers, each incorporating a self-attention mechanism
 171 that models pairwise interactions among all positions in its input sequence. GenerRNA uses a
 172 context window of 1024 tokens, corresponding to input sequences with a length of approximately
 173 4096 nucleotides coded through byte pair encoding Sennrich et al. (2016). Note that this maximum
 174 length permits the encoding of large RNA molecules. This decoder-only Transformer architecture
 175 operates in an autoregressive manner, predicting the subsequent token given the previous ones. Both
 176 the input and output of the model are represented as tokens, which are encoded and decoded by
 177 a trained tokenizer using byte pair encoding. A special token (EOS) is used to delimit sequences,
 178 indicating the start and end of each sequence.

179 Each transformer block is fed with a input of size $L \times H$, thus allowing to process RNA sequences
 180 having up to L tokens, each one represented through a H -dimensional real vector, with $L = H =$
 181 1024, and outputs a latent representation with the same dimensionality for each input token. For
 182 each input sequence, the block employs a multi-head self-attention mechanism with 16 attention
 183 heads. This is followed by an “Add & Norm” sub-block, which applies residual addition and layer
 184 normalization. Subsequently, a feed-forward sub-layer expands the hidden states from 1024 to 4096

185 dimensions, applies a non-linear activation (ReLU), and then projects them back to 1024 dimensions.
 186 Another “Add & Norm” sub-block is applied after the feed-forward network, and finally, the block
 187 produces an output matrix $\mathbf{X} \in \mathbb{R}^{L \times H}$. A schematic diagram of this block is reported in the Fig 4.

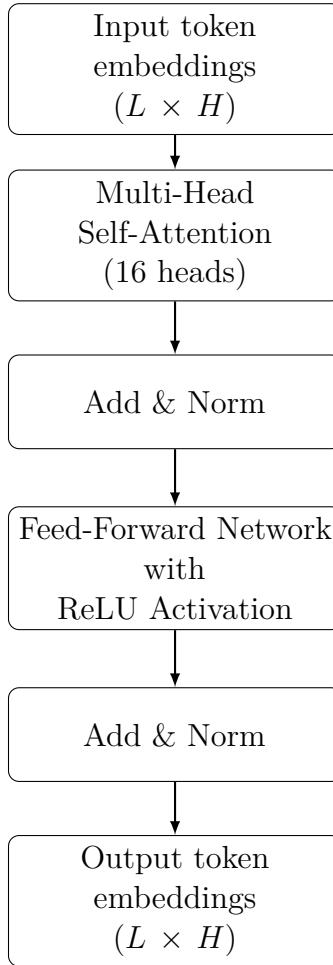


Figure 4. High-level architecture of a GenerRNA block.

188 **2.4.2 Pooling techniques**

189 The i^{th} row of matrix \mathbf{X} is a latent representation $\mathbf{x}_i \in \mathbb{R}^{1024}$ of the i^{th} token. To obtain a
 190 fixed-length embedding for the entire sequence, we tested two types of pooling over the sequence
 191 (i.e., across the H tokens), as well as their concatenation:

192 • Average (*Avg*) Pooling: obtained as the mean of the embeddings of all the tokens: $\mathbf{e}_{\text{avg}} =$
 193 $\frac{1}{L} \sum_{i=1}^L \mathbf{x}_i$.

194 • Maximum (*Max*) Pooling: Compute the element-wise maximum over all token embeddings:
 195 $\mathbf{e}_{\text{max}} = \underset{i \in 1 \dots L}{\text{cmax}}[x_{i1}, x_{i2}, \dots x_{iH}]$, where *cmax* is the columnwise *max* operator, and x_{ij} are the
 196 elements of the \mathbf{X} embedding matrix.

197 • Concatenation of [*Avg*, *Max*]: Combine both pooled representations into a single embedding
 198 vector: $\mathbf{e} = [\mathbf{e}_{\text{avg}}; \mathbf{e}_{\text{max}}] \in \mathbb{R}^{2048}$.

199 These pooling strategies are schematically depicted in Fig. 5.

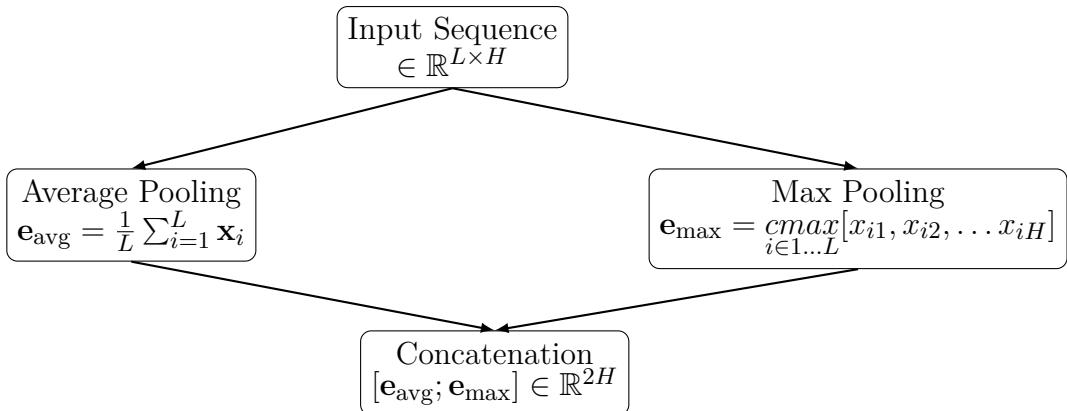


Figure 5. Pooling Embedding Strategies.

200 The embedded representation of a candidate interacting ncRNA pair is composed by the
 201 concatenation of the embeddings of the two interacting molecules.

202 **2.4.3 The classification unit**

203 To predict the interaction we used the pooled embeddings of the RNA sequences as input to a
 204 dense Feed Forward Neural Network (FFNN), having the following architecture:

205 • **Input Layer Dimension:** 1024 for Avg and Max-pooling embedding strategies, 2048 when
 206 the embedding of the input molecule is obtained by concatenating the embeddings obtained by
 207 AVG and Max pooling,
 208 • **Hidden Layers:** 4 hidden layers with 1024 neurons each and ReLU activation function,
 209 • **Output Layer:** 1 neuron with sigmoid activation function.

210 To train the network we applied the following hyper-parameters:

211 *Learning Rate*: $\eta = 5 \times 10^{-4}$ with a linear warm-up phase of 4 epochs, followed by cosine decay.
 212 *Epochs*: 50 epochs with early stopping (patience of 10 epochs). The model with the best validation
 213 loss is selected (e.g., if the lowest validation loss is observed at epoch 35, then early stopping is
 214 triggered at epoch 45, and the model from epoch 35 is used).

215 *Batch Size*: 512. *Dropout Rate*: 0.2. *Optimizer*: Adam. *Loss Function*: Binary Cross-Entropy.

216 Training and validation loss curves were monitored over epochs to assess model convergence and
 217 to avoid potential overfitting by early stopping.

218 **2.4.4 Mini-batch balancing**

219 Due to the imbalance in our dataset we adopted a training strategy designed to prevent the model
 220 from learning predominantly from the negatives. To address this, we constructed mini-batches
 221 that contain a controlled mix of positive and negative examples. Recall that our training set is
 222 composed of the set of positive interaction pairs, \mathcal{P} , $|\mathcal{P}| = N_+$, and the set of negative interaction
 223 pairs \mathcal{N} , with $|\mathcal{N}| = N_- = nN_+$, as detailed in Section 2.3. Each mini-batch B of size m is formed
 224 by randomly selecting m_p positive examples (using a uniform distribution with replacement) and
 225 m_n negative examples (using a uniform distribution without replacement). The ratio of negatives

226 within each mini-batch is defined by

$$r = \frac{m_n}{m_n + m_p}, \quad \text{with} \quad m_n + m_p = m.$$

227 Here, r can vary between 0 and 1. A value of $r = 0.7$ implies that 70% of the mini-batch consists of
 228 negatives. The choice to sample positives with replacement is driven by their limited number, ensuring
 229 sufficient representation even in large batches, whereas sampling negatives without replacement
 230 allows for a broader coverage of these more abundant examples.

231 **2.5 Experimental Evaluation**

232 **2.5.1 Data preparation and splitting.**

233 In all our experiments the negative examples were sampled according to the relative frequency of the
 234 interacting pair types according to the procedure described in Section 2.3 using a negative:positive
 235 ratio equal to 20:1.

236 The dataset was partitioned into stratified training and test sets (train:test ratio = 90:10). The
 237 training set was further split into a stratified set for training (80% of interaction pairs) and the
 238 remaining 20% for validation. The validation set was used for early stopping and for tuning the
 239 classification threshold via maximization of the Matthews correlation coefficient (MCC Matthews
 240 (1975)) on the validation data.

241 **2.5.2 Evaluation metrics.**

242 To comprehensively assess model’s performance, we computed a range of evaluation metrics,
 243 encompassing both threshold-dependent and threshold-independent measures. Specifically, we first
 244 evaluated standard binary classification metrics, including accuracy, balanced accuracy (to account
 245 for class imbalance), precision, recall, F1 score, AUROC (Area Under the Receiver Operating
 246 Characteristic Curve), and AUPRC (Area Under the Precision-Recall Curve). In addition to these
 247 overall metrics, we conducted a stratified analysis based on interacting pair types, computing the
 248 aforementioned measures separately for each pair type.

249 Let $y_i \in \{0, 1\}$ be the ground-truth label and $\hat{p}_i \in [0, 1]$ the predicted probability for sample i .
 250 Given a decision threshold t , we define $\hat{y}_i = 1 \iff [\hat{p}_i \geq t]$ and the confusion matrix counts:

$$\begin{aligned} \text{TP} &= \sum_i \mathbf{I}[y_i = 1 \wedge \hat{y}_i = 1], \\ \text{TN} &= \sum_i \mathbf{I}[y_i = 0 \wedge \hat{y}_i = 0], \\ \text{FP} &= \sum_i \mathbf{I}[y_i = 0 \wedge \hat{y}_i = 1], \\ \text{FN} &= \sum_i \mathbf{I}[y_i = 1 \wedge \hat{y}_i = 0]. \end{aligned}$$

251 Threshold-dependent metrics are then computed as:

$$\begin{aligned}
 \text{Accuracy (rate of correctly predicted instances)} &= \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}, \\
 \text{Recall (proportion of TP w.r.t. all positive samples)} &= \frac{\text{TP}}{\text{TP} + \text{FN}}, \\
 \text{Specificity (proportion of TN w.r.t. all negative samples)} &= \frac{\text{TN}}{\text{TN} + \text{FP}}, \\
 \text{Precision (proportion of TP among predicted positives)} &= \frac{\text{TP}}{\text{TP} + \text{FP}}, \\
 \text{F1 (harmonic mean of precision and recall)} &= 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}, \\
 \text{BalancedAcc (accuracy balanced by class proportion)} &= \frac{\text{Recall} + \text{Specificity}}{2}.
 \end{aligned} \tag{1}$$

In our work the threshold t is chosen on the validation set by maximizing the MCC coefficient, which provides a balanced single-score summary that incorporates TP, TN, FP, and FN, and is therefore less sensitive than accuracy to class imbalance:

$$\text{MCC} = \frac{\text{TP} \cdot \text{TN} - \text{FP} \cdot \text{FN}}{\sqrt{(\text{TP} + \text{FP})(\text{TP} + \text{FN})(\text{TN} + \text{FP})(\text{TN} + \text{FN})}}.$$

252 Threshold-independent metrics summarize performance across all thresholds. The ROC curve
 253 plots $\text{TPR}(t) = \text{Recall}(t)$ versus $\text{FPR}(t) = \text{FP}(t)/(\text{FP}(t) + \text{TN}(t))$, and AUROC is the area under
 254 this curve. The precision–recall curve plots $\text{Precision}(t)$ versus $\text{Recall}(t)$, and AUPRC is its area;
 255 under strong class imbalance, AUPRC is often more informative than AUROC, with a random
 256 baseline equal to the positive prevalence $\pi = \frac{N_+}{N_+ + N_-}$.

257 2.5.3 Training hyper-parameters and baselines for comparison.

258 The hyper-parameters and configurations used for training the FFNN are reported in Section 2.4.3.
 259 Moreover, training and validation loss curves were monitored over epochs to assess model convergence
 260 and to avoid potential overfitting by early stopping.

261 Hyperparameter selection was performed in preliminary experiments on a reduced subset of the
 262 training/validation interaction pairs using a grid-search strategy. We varied the number of hidden
 263 layers in $\{2, 4, 6\}$, the dropout rate in $\{0.1, 0.2\}$, and the batch size in $\{16, 512, 1024\}$. For each
 264 configuration, models were trained using the same optimization settings described in Section 2.4.3,
 265 and the final model was selected as the configuration that maximized validation AUPRC. No
 266 hyperparameters were tuned on the test set.

267 Besides the random classifier, whose expected performance are AUROC = 0.5 and AUPRC
 268 = 0.047, we employed the IntaRNA method (Mann et al., 2017) as a baseline for comparison.
 269 IntaRNA estimates interaction energy. While interaction energy can be thresholded to obtain binary
 270 predictions, which enable the computation of accuracy, balanced accuracy, precision, recall, and F1
 271 scores, we opted to limit the comparison to AUROC and AUPRC. These metrics provide a more

272 robust and threshold-independent evaluation of predictive performance, ensuring a fair comparison
 273 across models.

3 RESULTS

274 We assessed the contribution of the data-augmentation strategy and the pooling operation used
 275 to obtain molecule-level embeddings. Table 1 summarizes AUROC and AUPRC results across all
 276 configurations, including a baseline random classifier, IntaRNA and *CUPID* models. For *CUPID* we
 277 compared results obtained with (Data-aug) and without (No-Data-aug) data augmentation,
 278 considering different pooling techniques, i.e. concatenation (concat), maximum (Max) and average
 279 (Avg) pooling.

Table 1. Comparison of AUROC and AUPRC across different experimental settings. Random baseline refers to the expected performance of the random classifiers. *CUPID* models are sorted in increasing order of both AUROC and AUPRC

Methods	AUROC	AUPRC
Random baseline	0.5	0.047
IntaRNA	0.544	0.055
<i>CUPID</i> :		
No-Data-aug	0.658	0.078
Data-aug-Max	0.810	0.147
Data-aug-concat	0.862	0.222
Data-aug-Avg	0.919	0.364

280 **3.1 Random baselines**

281 With a random classifier we can expect an AUROC = 0.5, while the estimated baseline AUPRC is:

$$\text{Baseline AUPRC} = \frac{N_+}{N_+ + N_-}$$

282 where N_+ is the number of positive samples, and N_- is the number of negative samples. Given the
 283 1:20 ratio of positive to negative samples, the AUPRC baseline in the performed experiments is:

$$\text{Baseline AUPRC} = \frac{1}{1 + 20} \approx 0.0476.$$

284 Our top-performing model achieves an AUPRC of 0.364, corresponding to a *7.65-fold improvement*
 285 (0.364/0.0476). This margin quantifies the difficulty of the task: the extreme class imbalance
 286 renders precision-recall a stringent metric, and the observed gains indicate that the model extracts
 287 interaction-relevant information that is well above chance expectations.

288 **3.2 IntaRNA results**

289 Figure 6 reports IntaRNA performance on the augmented test set. In this setting, IntaRNA
 290 shows limited predictive power. Its scoring function relies on thermodynamic and accessibility
 291 components (e.g., hybridization energy and site accessibility), and in our experiments we used the
 292 default parameterization. Given the heterogeneity of ncRNA classes and sequence lengths in our
 293 benchmark, improved performance would likely require careful, class-specific calibration of both
 294 energy- and accessibility-related settings. Moreover, while IntaRNA is a general thermodynamics-
 295 and accessibility-based framework and is not inherently tied to a specific organism, it was
 296 originally introduced and most extensively evaluated in bacterial sRNA–mRNA interaction settings;
 297 consequently, when applied to heterogeneous ncRNA–ncRNA interactions (including long lncRNAs
 298 and diverse eukaryotic classes), its default parameterization may be suboptimal without additional
 299 tuning.

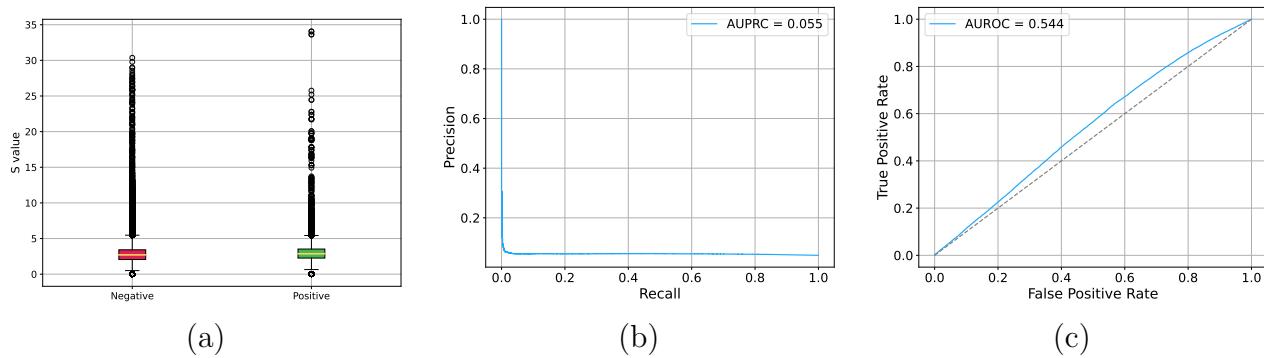


Figure 6. Results for IntaRNA results with augmented test set. (a) Distribution of predicted probabilities for negative and positive interactions; (b) AUPRC; (c) AUROC

300 **3.3 CUPID results**

301 Table 1 compares all *CUPID* configurations. We first evaluated a *CUPID* model without
 302 augmentation, using concatenation of average and max pooling. Fig. 7 shows the results obtained
 303 without data augmentation and with concatenated average-max pooling. The overall AUPRC results
 304 on the test set are relatively low (Fig. 7c), even if a certain learning is witnessed by the AUROC
 305 largely above 0.5 (Fig. 7f), and by the distribution of the predicted interaction probabilities for
 306 negative and positive examples (Fig. 7c), with probabilities for positives relatively higher with
 307 respect to negatives. Nevertheless, the relatively flat trend of the training loss reveals a certain
 308 difficulty of the model to learn the data. This is reflected also in the confusion matrix where most
 309 of negative examples (70%) are misclassified ((Fig. 7e) and in the degradation of the AUPRC
 310 performance between validation (Fig. 7a) and test (Fig. 7d) data. By looking at specific ncRNA
 311 interactions, for certain interaction types (e.g. snRNA-snoRNA) we obtained good results across
 312 the different metrics, but for several ncRNA interactions (e.g. miRNA-lncRNA, miRNA-miRNA,
 313 lncRNA-snoRNA) we achieved poor results, with AUPRC below 0.1 (Fig. 7g). Summarizing Fig. 7,
 314 shows that with this setting *CUPID* can provide a certain discrimination between positive and
 315 negative interactions (Fig. 7c), but its precision–recall and ROC curves indicate a limited separation
 316 between positive and negative examples (Fig. 7d,f).

317 Introducing data augmentation consistently improves performance (Table 1). Fig. 8 shows the
318 results obtained with data augmentation and average pooling. The AUPRC is more than 4 times
319 larger than without data augmentation (Fig. 8d and Table 1). Enlarging the size of training data by
320 data augmentation allows the model to better learn the training data, as witnessed by the training
321 loss that continues to decrease across epochs (Fig. 8b). This results in a clear separation between
322 the scores predicted for positive and negative examples – note that the probabilities predicted for
323 negatives are compressed toward zero while for most positives are largely above 0.7 (even if with
324 several outliers for both positive and negative examples, Fig. 8b). The confusion matrix also confirms
325 that the model with augmented data can better predict negative examples (Fig. 8e); AUPRC
326 (Fig. 8d) significantly improves, and AUROC is larger than 0.9 (Fig. 8f). Analyzing results for each
327 specific ncRNA interaction, we can observe a significant improvement across all the considered
328 metrics, with AUROC in most cases larger than 0.9, except for circRNA-miRNA, miRNA-scRNA,
329 miRNA-snRNA and miRNA-scaRNA (even if for these two last ncRNA interactions values are close
330 to 0.9 (Fig. 8g).

331 These results confirm that data augmentation is crucial to improve results for two main reasons:
332 at first the model has training data enough to better generalize; second, improves generalization
333 leveraging molecule order and orientation, two symmetries that are not guaranteed to be learned
334 from limited training data. Augmentation effectively enforces these invariances, reducing overfitting
335 to sequence presentation and mitigating the scarcity of positive examples.

336 Pooling strategy has a direct impact on the stability of the molecule-level embedding. Average
337 pooling—yielding a smoothed representation over the full sequence—achieves the highest AUROC
338 and AUPRC (Fig. 8) compared to max pooling (Suppl. Fig. S2) and concatenation pooling (Suppl.
339 Fig. S3). This indicates that interaction-relevant information is not confined to a small set of token
340 embeddings but arises from distributed features along the sequence. Max pooling, in contrast,
341 appears sensitive to local outliers and overly compresses positional variability, while concatenation
342 does not provide additional benefits once augmentation is introduced. The results suggest that,
343 for ncRNA interaction prediction, the aggregate signal across nucleotides is more informative than
344 isolated high-activation sites.

4 DISCUSSION

345 The results shown in this work demonstrate that RNA sequence-only inference can recover interaction
346 signals across diverse ncRNA classes. The best-performing configuration reaches AUROC values
347 above 0.9 on the test set, despite operating without structural, evolutionary, or thermodynamic
348 information. This suggests that pretrained RNA language models encode latent features associated
349 with intermolecular recognition. These features may reflect statistical regularities of pairing
350 propensities and local compositional biases captured during pretraining, even in the absence
351 of explicit structural supervision.

352 From a methodological standpoint, two contributions appear essential. First, the augmentation
353 scheme addresses symmetries inherent to the problem. Because interacting RNAs can be presented in
354 either order, and because sequence orientation can vary, enforcing invariance to these transformations
355 is critical for robust generalization. Data augmentation also increases the number of examples
356 available for training, thus improving the generalization performance of the model. Second, average
357 pooling provides stable embeddings for ncRNA sequences. For molecules such as lncRNAs—whose

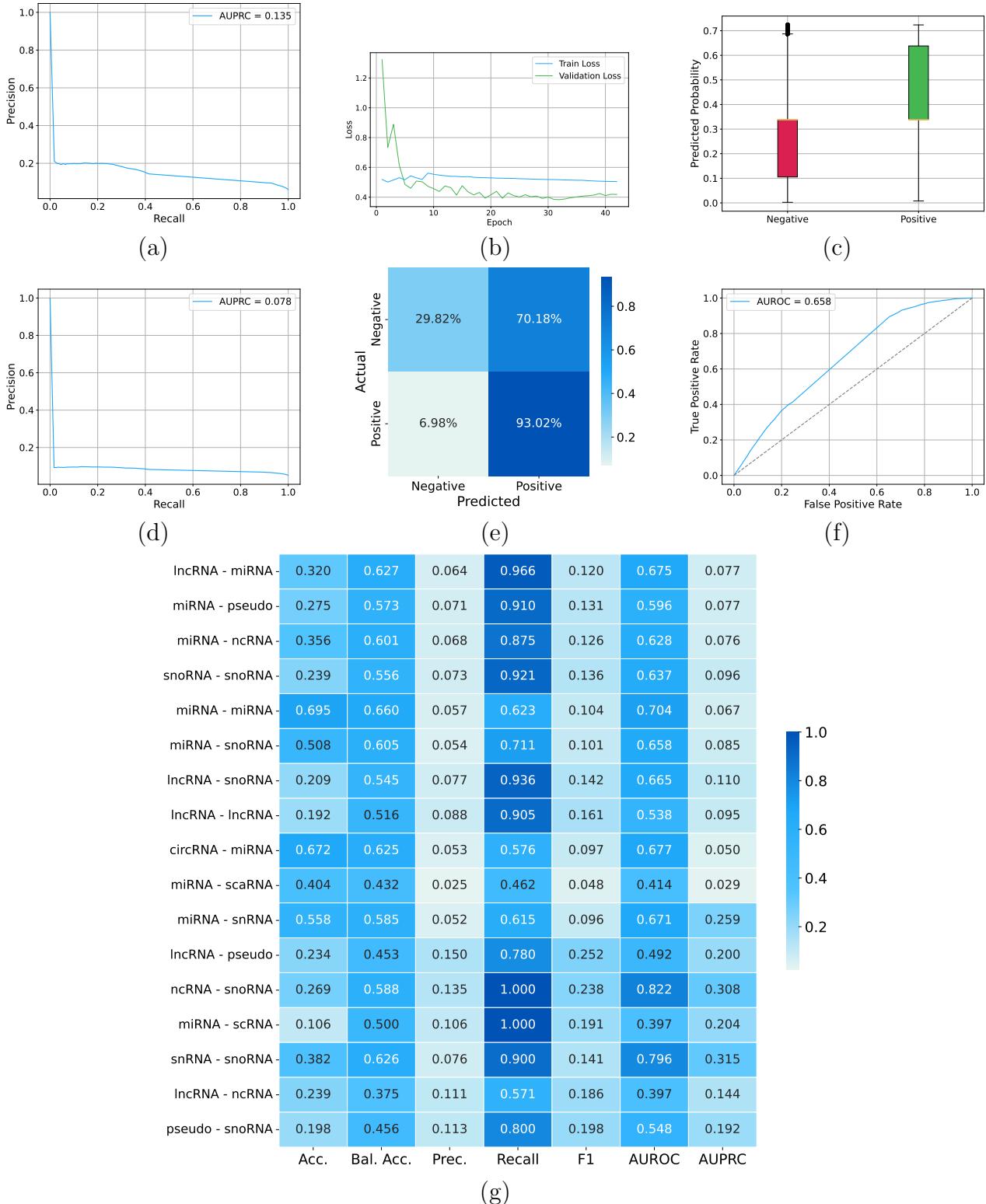


Figure 7. CUPID results with concatenated pooling, and without using augmented data. (a) Overall precision recall curve on the validation set including all the type of ncRNA interactions; (b) Training and validation loss across epochs; (c) Distribution of the CUPID predicted probabilities on negative and positive examples on the test set; (d) Overall precision recall curve on the test set including all the type of ncRNA interactions; (e) Confusion matrix on the test set; (f) ROC curve on the test set including all the type of ncRNA interactions; (g) CUPID results on the test set across different types on ncRNA interactions (rows) for different types of metrics (columns).

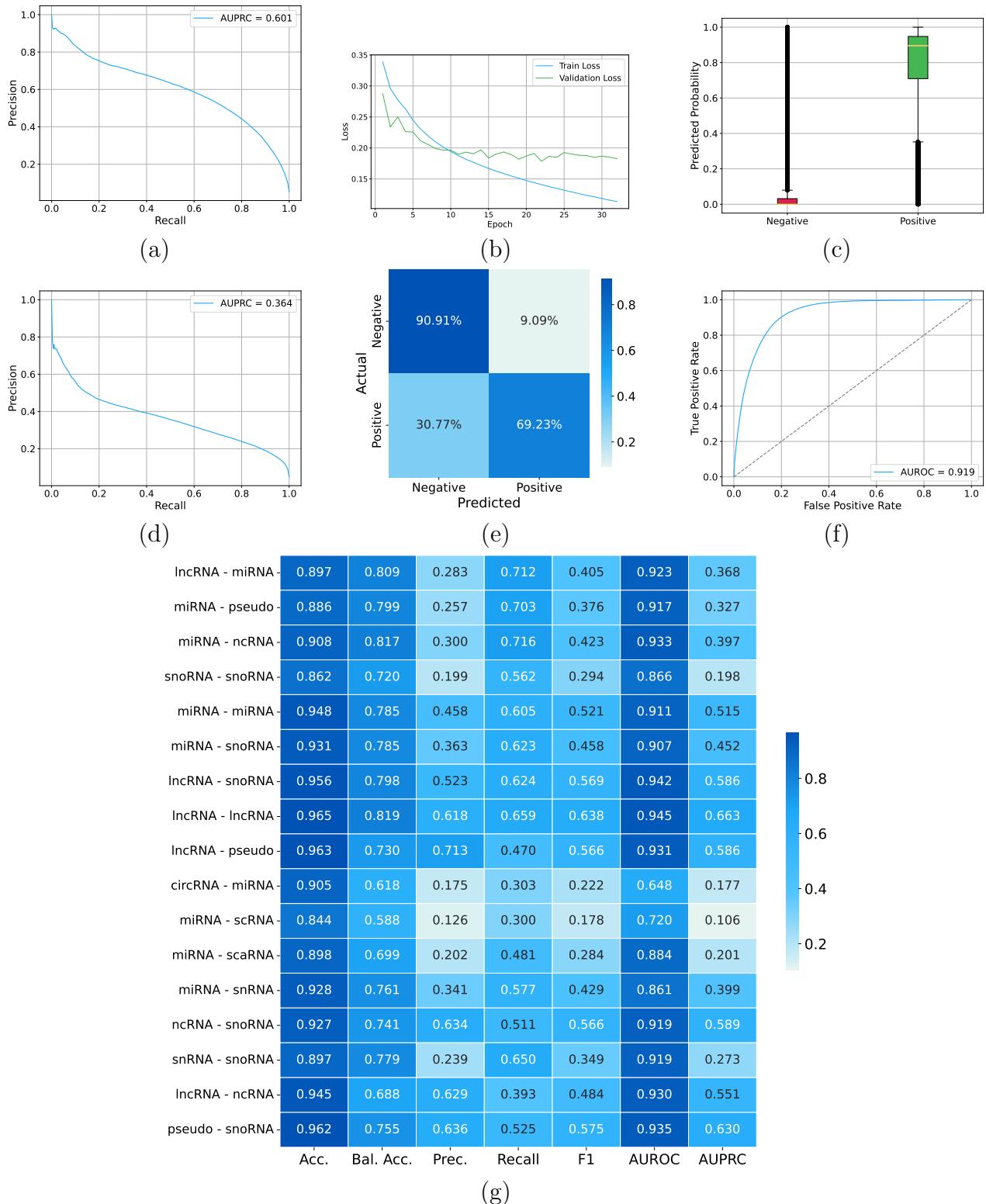


Figure 8. CUPID results with average pooling and using augmented data. (a) Overall precision recall curve on the validation set including all the type of ncRNA interactions; (b) Training and validation loss across epochs; (c) Distribution of the CUPID predicted probabilities on negative and positive examples on the test set; (d) Overall precision recall curve on the test set including all the type of ncRNA interactions; (e) Confusion matrix on the test set; (f) ROC curve on the test set including all the type of ncRNA interactions; (g) CUPID results on the test set across different types on ncRNA interactions (rows) for different metrics (columns).

358 functional elements are dispersed and whose lengths vary over orders of magnitude—summarizing
359 the full sequence avoids overemphasis on isolated positions and instead captures global contextual
360 tendencies. Moreover, to our knowledge, *CUPID* is the first model able to predict a large set of
361 ncRNA interactions, and in principle can be applied to predict any ncRNA interaction.

362 The limitations observed for IntaRNA highlight the difference between energy-based and
363 representation-based approaches. Thermodynamic models rely on explicit structural motifs and
364 accessibility assumptions, which may not generalize to long, structured, or poorly conserved ncRNAs.
365 In contrast, *CUPID* does not attempt to reconstruct secondary structure but leverages contextual
366 sequence statistics learned from large corpora. These complementary perspectives suggest potential
367 synergies: coupling language-model embeddings with coarse structural predictions could refine the
368 discrimination between spurious and functionally relevant pairing events.

369 Despite these promising results, we note that the resources used to train *CUPID* are limited in size
370 and exhibits a strong imbalance across interaction types. Although our type-constrained negative
371 sampling preserves the empirical distribution of interaction types, rare types remain challenging; they
372 can yield higher-variance estimates and may prevent the model from learning robust type-specific
373 patterns. Accordingly, we emphasize AUPRC in our per-type analyses, as it is generally more
374 informative than AUROC under severe class imbalance. Future work will benefit from larger and
375 more balanced interaction resources, and could further improve stability on underrepresented classes
376 via targeted strategies such as class-aware reweighting, resampling, or cost-sensitive objectives.

377 As larger ncRNA catalogs become available through resources such as RNACentral Sweeney
378 et al. (2020), and as experimental protocols expand the coverage of ncRNA–ncRNA interactions,
379 the training regime of models like *CUPID* can be scaled accordingly. Future developments may
380 integrate longer receptive fields, explicit cross-attention between molecules, or joint fine-tuning on
381 experimentally resolved interactomes. These extensions could help reveal constraints underlying
382 ncRNA recognition and improve the resolution of regulatory maps in eukaryotic transcriptomes.

383 In addition, while our study focuses on a resource-efficient paradigm that leverages pretrained
384 RNA language models with a lightweight interaction-specific prediction head, it would be interesting
385 to complement our analysis with baselines that train a long-context Transformer from scratch. We
386 did not include such a baseline here because, under the current supervision regime (approximately
387 10^5 interaction pairs after filtering), end-to-end training from random initialization may be difficult
388 to optimize and may not yield generalizable representations. As larger and more diverse labeled
389 interaction resources become available, systematic comparisons between pretrained and from-scratch
390 Transformer encoders will become increasingly informative.

391 A similar consideration holds when considering studies substituting RNA-LM models with several
392 Transformer-based nucleotide language models. While these models could, in principle, be considered
393 as alternative backbones for RNA sequence embeddings (e.g., models pretrained predominantly on
394 DNA such as Nucleotide Transformer, which has been reported to transfer RNA-related signals (Dalla-
395 Torre et al., 2025)), we selected GenerRNA because it is pretrained specifically on RNA sequences,
396 provides a long-context representation and it is expected to better capture RNA-class-specific
397 features. We therefore expect RNA-specialized pretraining to yield representations that are more
398 directly tailored to RNA sequence regularities than more generic DNA-pretrained alternatives,
399 even when the latter can capture some RNA features. In this work, we focused on characterizing
400 the proposed interaction-prediction pipeline using a single RNA-specialized backbone, including

401 ablations on augmentation and pooling. As larger and more diverse interaction resources become
402 available, it will be important to benchmark GenerRNA in a zero-shot setting against more general
403 nucleotide Transformers, and to evaluate both backbones also after task-specific fine-tuning.

404 In summary, the results show that *CUPID* provides a scalable sequence-based framework for
405 ncRNA–ncRNA interaction prediction, achieving AUROC larger than 0.9 for several types on
406 ncRNA interactions. Its performance, robustness to class heterogeneity, and limited dependence on
407 domain-specific priors make it suitable for large-scale in silico screening and for guiding targeted
408 experimental profiling of ncRNA regulatory networks.

CONFLICT OF INTEREST STATEMENT

409 The authors declare that the research was conducted in the absence of any commercial or financial
410 relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

411 M.N. E.C. and G.V. designed the overall work; M.N. and F.S. developed and implemented the
412 AI and computational methods; M.N. conceived and executed the experiments; M.N. F.S. E.C.
413 and G.V. analyzed the results; G.V. M.N. and E.C. drafted and wrote the paper; G.V. and E.C.
414 supervised the overall work; all the authors revised and approved the final manuscript.

FUNDING

415 This work was supported by National Center for Gene Therapy and Drugs Based on RNA
416 Technology—MUR (Project no. CN_00000041) funded by NextGeneration EU program and by
417 the National Plan for NRRP Complementary Investments (PNC) in the call for the funding
418 of research initiatives for technologies and innovative trajectories in the health—project n.
419 PNC0000003—AdvaNced Technologies for Human-centrEd Medicine (project acronym: ANTHEM).

420 Computational resources at CINECA for this work have been funded by UNITECH INDACO,
421 which is an HPC project at the state University of Milan.

DATA AVAILABILITY STATEMENT

422 The data, the *CUPID* code, and the scripts to reproduce the experiments and tutorials are available
423 from GitHub: <https://github.com/AnacletoLAB/ncRNA-CUPID>.

REFERENCES

424 Aleksander, S., Balhoff, J., Carbon, S., et al. (2023). The gene ontology knowledgebase in 2023.
425 *Genetics* 224, iyad031. doi:10.1093/genetics/iyad031

426 Ali, S., Peffers, M., Ormseth, M., et al. (2021). The non-coding RNA interactome in joint health
427 and disease. *Nat Rev Rheumatol* 17, 692–705. doi:10.1038/s41584-021-00687-y

428 Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. (2015). Predicting the sequence
429 specificities of dna-and rna-binding proteins by deep learning. *Nature Biotechnology* 33, 831–838

430 Cavalleri, E., Cabri, A., Soto-Gomez, M., Bonfitto, S., Perlasca, P., Gliozzo, J., et al. (2024). An
431 ontology-based knowledge graph for representing interactions involving rna molecules. *Scientific
432 Data* 11, 906

433 Cetin, S. and Sefer, E. (2025). A graphlet-based explanation generator for graph neural networks
434 over biological datasets. *Current Bioinformatics* 20, 840–851

435 Chen, J., Hu, Z., Sun, S., Tan, Q., Wang, Y., Yu, Q., et al. (2022). Interpretable rna foundation
436 model from unannotated data for highly accurate rna structure and function predictions. *arXiv
437 preprint arXiv:2204.00300*

438 Dalla-Torre, H., Gonzalez, L., Mendoza-Revilla, J., et al. (2025). Nucleotide Transformer: building
439 and evaluating robust foundation models for human genomics. *Nat Methods* 22, 287–297. doi:10.
440 1038/s41592-024-02523-z

441 Engreitz, J. M., Sirokman, K., McDonel, P., Shishkin, A. A., Surka, C., Russell, P., et al. (2014). Rna-
442 rna interactions enable specific targeting of noncoding rnas to nascent pre-mrnas and chromatin
443 sites. *Cell* 159, 188–199

444 Fabbri, M., Girnita, L., Varani, G., and Calin, G. A. (2019). Decrypting noncoding rna interactions,
445 structures, and functional networks. *Genome research* 29, 1377–1388

446 Gargano, M., Matentzoglu, N., Coleman, B., et al. (2023). The Human Phenotype Ontology in
447 2024: phenotypes around the world. *Nucleic Acids Research* 52, D1333–D1346. doi:10.1093/nar/
448 gkad1005

449 Gliozzo, J., Soto Gomez, M. A., Bonometti, A., et al. (2025). miss-SNF: a multimodal patient
450 similarity network integration approach to handle completely missing data sources. *Bioinformatics*
451 41, btaf150. doi:10.1093/bioinformatics/btaf150

452 Li, Z., Li, K., Lian, X., and Li, J. (2025). Lncrna-mirna interaction prediction based on multi-source
453 heterogeneous graph neural network and multi-level attention mechanism. *International Journal
454 of Biological Macromolecules* 319, 145614. doi:<https://doi.org/10.1016/j.ijbiomac.2025.145614>

455 Lorenzi, L., Chiu, H.-S., Cobos, A., et al. (2021). The rna atlas expands the catalog of
456 human non-coding rnas. *Nature Biotechnology* 39, 1453–1465. doi:<https://doi.org/10.1038/s41587-021-00936-1>

458 Mann, M., Wright, P. R., and Backofen, R. (2017). Intarna 2.0: enhanced and customizable
459 prediction of rna–rna interactions. *Nucleic acids research* 45, W435–W439

460 Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of t4 phage
461 lysozyme. *Biochimica et Biophysica Acta (BBA)-Protein Structure* 405, 442–451

462 Nicolini, M., Saitto, E., Jimenez-Franco, R., et al. (2025a). Fine-tuning of conditional Transformers
463 improves in silico enzyme prediction and generation. *Computational and Structural Biotechnology
464 Journal* 27, 1318–1334. doi:10.1016/j.csbj.2025.03.037

465 Nicolini, M., Stacchietti, F., Cano, C., Casiraghi, E., and G, V. (2025b). A transformer-based
466 model to predict micro rna interactions. In *18th International Work-Conference on Artificial
467 Neural Networks, IWANN 2025*. vol. 16008 of *Lecture Notes in Computer Science*. doi:10.1007/
468 978-3-032-02725-2_8

469 Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language models
470 are unsupervised multitask learners. *OpenAI blog* 1, 9

471 Sapoval, N., Aghazadeh, A., Nute, M., et al. (2022). Current progress and open challenges for
472 applying deep learning across the biosciences. *Nat Commun* 13. doi:<http://doi.org/10.1038/s41467-022-29268-7>

474 Sefer, E. (2025). Drgat: Predicting drug responses via diffusion-based graph attention network.
475 *Journal of Computational Biology* 32, 330–350

476 Sennrich, R., Haddow, B., and Birch, A. (2016). Neural Machine Translation of Rare Words with
477 Subword Units. In *Proceedings of the 54th Annual Meeting of the Association for Computational
478 Linguistics (Volume 1: Long Papers)*, eds. K. Erk and N. A. Smith (Berlin, Germany: Association
479 for Computational Linguistics), 1715–1725. doi:10.18653/v1/P16-1162

480 Shen, T., Hu, Z., Sun, S., Liu, D., Wong, F., Wang, J., et al. (2024). Accurate RNA 3D structure
481 prediction using a language model-based deep learning approach. *Nature Methods* , 1–12

482 Sun, S.-L., Jiang, Y.-Y., Yang, J.-P., Xiu, Y.-H., Bilal, A., and Long, H.-X. (2025). Predicting
483 noncoding rna and disease associations using multigraph contrastive learning. *Scientific Reports*
484 15, 230

485 Sweeney, B., Petrov, A., Ribas, C., et al. (2020). RNACentral 2021: secondary structure integration,
486 improved sequence search and new member databases. *Nucleic Acids Research* 49, D212–D220.
487 doi:<http://dx.doi.org/10.1093/nar/gkaa921>

488 Tian, X., Shen, L., Wang, Z., Zhou, L., and Peng, L. (2021). A novel lncrna–protein interaction
489 prediction method based on deep forest with cascade forest structure. *Scientific reports* 11, 18881

490 Torgano, F., Soto-Gomez, M., Zignani, M., Gliozzo, J., Cavalleri, E., Mesiti, M., et al. (2025). Rna
491 knowledge-graph analysis through homogeneous embedding methods. *Bioinformatics Advances* 5,
492 vbaf109. doi:10.1093/bioadv/vbaf109

493 Umu, S. U. and Gardner, P. P. (2017). A comprehensive benchmark of rna–rna interaction prediction
494 tools for all domains of life. *Bioinformatics* 33, 988–996

495 Valentini, G., Malchiodi, D., Gliozzo, J., Mesiti, M., Soto-Gomez, M., Cabri, A., et al. (2023). The
496 promises of large language models for protein design and modeling. *Frontiers in Bioinformatics* 3

497 Vasilevsky, N., Toro, S., Matentzoglu, N., et al. (2025). Mondo: Integrating Disease Terminology
498 Across Communities. *Genetics* , iyaf215doi:10.1093/genetics/iyaf215

499 Wang, W., Zhang, L., Sun, J., Zhao, Q., and Shuai, J. (2022). Predicting the potential human
500 lncrna–mirna interactions based on graph convolution network with conditional random field.
501 *Briefings in Bioinformatics* 23, bbac463. doi:10.1093/bib/bbac463

502 Wei, J., Chen, S., Zong, L., Gao, X., and Li, Y. (2022). Protein–rna interaction prediction with deep
503 learning: structure matters. *Briefings in Bioinformatics* 23, bbab540. doi:10.1093/bib/bbab540

504 Yang, T., He, Y., and Wang, Y. (2025). Introducing tec-lncmir for prediction of lncrna-mirna
505 interactions through deep learning of rna sequences. *Briefings in Bioinformatics* 26, bbaf046.
506 doi:10.1093/bib/bbaf046

507 Yu, H., Yang, H., Sun, W., et al. (2024). An interpretable rna foundation model for exploring
508 functional rna motifs in plants. *Nat Mach Intell* 6, 1616–1625. doi:10.1038/s42256-024-00946-z

509 Yu, X., Jiang, L., Jin, S., Zeng, X., and Liu, X. (2022). preml: a pre-trained method to uncover
510 microrna–lncrna potential interactions. *Briefings in Bioinformatics* 23, bbab470. doi:10.1093/
511 bib/bbab470

512 Zhao, Y., Oono, K., Takizawa, H., and Kotera, M. (2024). GenerRNA: A generative pre-trained
513 language model for de novo RNA design. *PLoS One* 19, e0310814