
Multi-species Protein Function Prediction:
Towards Web-based Visual Analytics

[Position Paper]

Paolo Perlasca, Giorgio Valentini, Marco Frasca, Marco Mesiti
Dipartimento di Informatica – Università di Milano

Via Comelico, 39 – Milano, Italy
{mesiti,valentini,perlasca,frasca}@di.unimi.it

ABSTRACT
The visualization and analysis of big bio-molecular networks
is a key feature for the investigation and prediction of pro-
tein functions in a multi-species context. In this paper we
present the design of a system that integrates data manage-
ment, machine learning and visualization facilities to make
effective the visual analysis of big networks by means of web-
based interfaces.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]; C.2.4 [Distributed
Systems]: Distributed applications; I.2.6 [Computing Method-
ologies]: Artificial Intelligence—learning

General Terms
Algorithms

Keywords
Protein Function Prediction, Heterogeneous networks, graph
visualization, visual analytics

1. INTRODUCTION
Many efforts have been devoted in the last decade to de-

velop automated tools for large scale network-based auto-
mated function prediction of proteins (AFP) [7, 8]. These
tools usually represent the available datasets through undi-
rected graphs G = (V,E), where nodes υ ∈ V correspond to
proteins, and edges e ∈ E are weighted according to the ev-
idence of co-functionality implied by data sources [29]. The
AFP problem consists in the identification of the class A of
unlabeled proteins relying on their (direct or indirect) co-
functionality with proteins known to belong to class A. A
recent international challenge for the critical assessment of
automated function prediction [11], highlighted that scala-
bility and heterogeneity of the available data, and interpre-
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tation of the obtained results represent three of the main
challenges posed by AFP.

The number of nodes and edges of the graphs that need to
be processed can be very big. This requires the implementa-
tion of AFP algorithms that exploit: a) the memorization of
the graphs in secondary memory (like GraphChi [14], Neo4J
[31]) and the partial loading in main memory of the parts
of the graphs needed for the computation; or, b) the use
of NoSQL technologies (like GraphLab [17], Spark [12]) in
which the map-reduce paradigm is used for the computation
in a cluster of machines. Despite the use of these implemen-
tation strategies, the complexity of the available approaches
poses serious obstacles for their scalability.

Datasets are usually made available from different pub-
lic web sites, such as Entrez Gene, Ensembl, and UniProt,
containing the annotations of the available organisms that
exploit different conventions for identifying the proteins and
their interactions. Specifically, they exploit different IDs for
the presentation of the same molecule, most times without
providing a matching with those of the other web sites. The
continuously changed structure, organization and content
of the data sources make the integration of their datasets
particularly difficult. Many efforts are nowadays available
to face their heterogeneity [22, 27] both from the perspec-
tive of the organization of the data and the perspective of
their preparation for the application of machine learning al-
gorithms to infer new biological knowledge from the data.
Once these issues are faced, however, other problems may
raise from a learning perspective. For instance, the coverage
of functional annotations is different in different organisms
and this make very difficult the effective transfer of the avail-
able functional knowledge from one organism to another.

A last, but not least, issue is the possibility to visually
interpret the results of the AFP algorithms by means of vi-
sual tools. The size of the networks containing the prediction
can be really big and their simple visualization, with off-the-
shelf graphical visualization tools (like GraphViz, GeneMa-
nia, Neo4J) produces a cloud of points that is really hard to
interpret and difficult to handle within a browser because of
the consumption/saturation of the main memory. There is
therefore the need of approximate views of the graph that
allow an aggregate visualization of the graph and this rep-
resentation should be navigable. This corresponds also to
the intrinsic structure of protein networks, where multiple
levels of structural and functional organization require mul-
tiple views, at different resolution levels, of the network it-
self. The user can decide the part of the graph that wishes



Figure 1: Steps required for the visual analysis of the AFP results

to explore and by clicking on the corresponding part obtain-
ing a new enhanced visualization. Even if many approaches
currently under development [3] move to this direction, none
of them is specifically tailored for the AFP problem.

In this paper we propose a comprehensive Web-based so-
lution that can be adopted to effectively tackle the scala-
bility, heterogeneity, and interpretation challenges posed by
AFP and so far discussed. The proposed solution combines
data management, machine learning and visualization ap-
proaches for obtaining a system that can be used by domain
experts for the acquisition and preparation of the compo-
nent networks from available data banks, their integration
and normalization in a multi-species network, the efficient
application of AFP algorithms that can provide predictions
in a reasonable amount of time, and the visual analysis of
the results by means of different views calculated on the re-
sult of the AFP algorithms. The proposed solution has been
sketched in Figure 1 and each component will be described
in the remainder of the paper by pointing out their rele-
vance w.r.t. the state of the art. Specifically, in Section 2
we advocate the use of the MergeGraphs system [21] for the
preparation of the data to be integrated. By means of its
Web-based interface it is possible to design the acquisition
and integration processes and to prepare the datasets for
the application of the AFP algorithms. Section 3 discusses
the problem of the efficient design and implementation of
network-based algorithms for AFP, introducing the main
algorithmic and technological issues underlying the multi-
species protein function prediction problem. Finally, Sec-
tion 4 deals with the requirements and approaches for the
visual analysis of AFP results. Our position is that a sys-
tem that includes the aforementioned characteristics could
be profitable exploited by biologists and bio-informaticians
to investigate the functional role of the proteins.

2. NETWORK ACQUISITION AND INTE-
GRATION

The construction of the networks that need to be inte-
grated requires to download from the available public databases
of the functional annotations of the considered organisms

and the application of machine learning approaches for iden-
tifying the level of co-functionalities among the different pro-
teins. This task poses several challenges due to the high fre-
quency at which the public databases evolve both in terms
of content and structures.

To address this issue we wish to adopt the recently pro-
posed MergeGraphs system [21]. MergeGraphs is a web-
based system for merging heterogeneous graphs that lever-
ages the peculiarities of the single data sources in order to
offer to the user a simple, yet powerful, environment for the
specification and application of aggregation and integration
operations to collect graph sources of different types. Sin-
gle data sources are accessed by means of REST interfaces
that expose services organized around the concepts of ver-
tices and edges of the network. In this way, it is possible to
obtain structures, sampling, and data of vertices and edges
contained in the source independently from the format in
which they are stored. Moreover, different operations can
be applied on property graphs for extracting graph portions
from data sources, for cleaning, integrating, and merging
graphs and for solving mismatch among the adopted iden-
tifiers. Finally, MergeGraphs offers a Web interface where
users can drag and drop different data sources and visually
apply on them a set of operations that will lead to the spec-
ification and application of the execution plan.

In the context of the AFP problem, this system could be
particularly helpful because web services can be developed
for accessing single public databases by providing a common
interface that can be easily customized to new requirements
by changing configuration parameters expressed by means
of JSON files. Moreover, the system could be integrated
with new operations specifically tailored for extracting and
integrating annotations from the public databases.

Figure 2 provides the general architecture of the Merge-
Graphs system that exploits a cluster of machines for making
scalable the acquisition and integration of the required net-
works. Moreover, the right part of Figure 2 shows an execu-
tion plan for the acquisition of proteins of different organisms
from UniProt and for the construction of their interspecies
functional relationships from the Ensembl database.



Figure 2: Architecture and GUI of the MergeGraphs system

3. EFFICIENT AFP ALGORITHMS
The large scale network-based prediction of multi-species

protein function poses significant algorithmic and technolog-
ical challenges, due to the scalability of existing algorithms
and the limitations of available memory in off-the-shelf desk-
top computers. Indeed most state-of-the-art network-based
algorithms for AFP show a quadratic or cubic computational
complexity [29], thus making infeasible their practical appli-
cation to large multi-species networks. These approaches,
indeed, usually rely on an in-memory adjacency matrix rep-
resentation of the graph network, scale poorly with the size
of the graph [15], and may have time complexity that be-
comes quickly prohibitive. Performance optimization is usu-
ally realized by adopting an adjacency-list representation of
the graph to take its sparsity into account, or by using par-
allel strategies for matrix multiplication [4].

However problems arise when we cannot maintain entirely
in primary memory the graph representing the biological
network. In this case we can use two different technological
strategies. The first one relies on distributed computation [9,
16, 18], by which the graph is spread on different machines
and the results are finally collected. As a second strategy we
can adopt secondary memory-based computation [31, 10], by
efficiently using the secondary memory through appropriate
techniques and engines well-suited for graph-based compu-
tation, such as GraphChi, a disk-based system that requires
only a limited amount of primary memory to contain the
edges and their associated values of only a relatively small
subset of vertices at a time, while the rest of the graph is
efficiently stored on disk [14].

Both these technological approaches require a rethinking
of existing network-based algorithms, since most of them
rely on the fact that the graph representing the protein net-
work is entirely stored in main memory of a single computer.
Unfortunately this in not true both when the graph is spread
across different computers in a distributed environment, and
when only a very small part of the graph can be available in
primary memory and the secondary memory based compu-
tation paradigm is adopted.

A solution to this problem is the “local” implementation
of existing network-based algorithms. That is, a “vertex-
centric” (or symmetrically an “edge-centric”) programming
model [18] is adopted, by which only one vertex and its in-

cident edges are iteratively processed at a time. It is worth
noting that the most effective network-based algorithms for
AFP learn by exploiting the overall topology of the net-
works [24, 13, 28], and their implementation usually requires
to process in primary memory a large part or the overall
underlying graph. The local “vertex-centric” implementa-
tion, by working iteratively across all the network, do not
reject to think “globally” by exploiting the overall topology
of the network, but “decomposes” global learning algorithms
through local learning strategies that involve at each itera-
tion a small local part of the graph [16]. Of course this is
not always feasible for any network-based algorithms, but
we showed that it is easy to obtain a vertex centric im-
plementation for the popular random-walk algorithm [23].
The local implementation strategy can be applied to other
network-based learning algorithms, ranging e.g. from simple
guilt-by-association methods (that are inherently local) [19,
20] to more complex label propagation methods [32, 2], the
recently proposed parametrized Hopfield networks [5, 6] and
kernelized score functions [30].

4. AFP VISUAL ANALYTICS
The result of the application of the AFP algorithms dis-

cussed in the previous section is a network in which the pro-
teins are annotated with their predicted classes and with the
confidence of their membership. In a multi-species frame-
work, the obtained networks can be quite big and their
straightforward visualization in a browser poses issues from
different points of view. The interpretation of the result
is hard to grasp because a cloud of points is shown in the
canvas and current visualization tools are not able to easily
points out the occurrence of clusters of points. Moreover,
the size of the network requires long time for its transfer
from the server to the client and for the rendering in the
canvas. Finally, the main memory of the machine where the
browser is running is used for maintaining the network and
the interaction with the browser can be really slow. Different
approaches are thus required for improving the visualization
of the network and the user experience with the tool. Several
topology and energy-based approaches have been proposed
for the visualization of both small and big graphs [3] . In our
work we wish to adopt these standard approaches to provide
different views of the data that allow to better grasp the re-



Figure 3: a) result of the prediction, b) vertex centered visualization, c) circle vertex centered visualization

sult of the AFP approach and to allow the user to navigate
in a multi-resolution representation of the graph [26, 25], in
order to access to the portions that are more significant for
his own analysis.

In order to reach this goal, we adopt a “vertex-centric”
approach for the exploration of the network that could be
exact or approximate. With “vertex-centric” visualization
approach we mean that the user can specify a vertex, named
target, from which he wishes to explore the result of the pre-
diction, and the size of the subnetwork he wishes to extract
(in terms of nodes whose distance from the target is lower
than a given threshold). Starting from these parameters,
the system can produce the subgraph centered in the tar-
get. When this subgraph is small, a standard clustering
algorithm can be used for aggregating together similar ver-
tices (according to a given similarity measure) as shown in
Figure 3.b. In this case three clusters are obtained from
a subgraphs with threshold 3. Moreover, we can adopt a
circle vertex centered visualization in which the vertices at
distance one, two and three from the target are drawn in dif-
ferent concentric circles as shown in Figure 3.c. This render-
ing allows one to better understand the connectivity of the
target with its neighborhood and how the co-functionality
confidence degree has been propagated from the proteins al-
ready known belonging to a given class to those that have
been predicted to belong to that class.

The aforementioned rendering techniques can be adopted
when the size of the generated subgraph is still small and the
available canvas is big enough for its visualization. When
this is not possible, approximate visualization techniques
can be adopted. For example the target node can be con-
nected with bubbles of different sizes that distribute the
nodes of the subgraph relying on the weight of their edges
and the distance from the target. For example, in the left
part of Figure 4 a target is shown in the center and then
four bubbles are drawn representing the vertices at distance
one that can be reached with a weight between [0.0, 0.25),
[0.25, 0.50), [0.50, 0.75), and , [0.75, 1]. This representation
points out how much the co-functionality confidence degree
has been propagated (or not) from the target node. More-
over, by clicking on one of the bubbles, the visualization
can be expanded by showing other bubbles or single nodes
(when the bubble only contains a singleton). Finally, the
user can ask to show the bubbles representing nodes that
can be reached with two steps from the target node.

Producing the exact and approximate rendering of the
graph requires to apply algorithms for the computation of

the clustering and aggregation of the data that need to be
executed quickly on the server side. For this purpose noSQL
solutions can be adopted in order to obtain efficient and
scalable approaches.

5. CONCLUSIONS
The investigation of the functions of proteins in a multi-

species framework requires the integration of data manage-
ment, machine learning, visualization and web-based tools to
allow biologists an interactive inspection of complex protein
networks. In this way biologists can dispose of an easy-to-use
interactive environment to discover novel functions of pro-
teins with the support of underlying efficient and accurate
machine learning methods for their functional characteriza-
tion. We individuated MergeGraphs as a flexible web-based
system that enables the specification and application of op-
erations to combine different graph-based sources of infor-
mation and for the visual application of operations to pro-
cess biomolecular networks. This system, empowered with
state-of-the-art network-based scalable graph-processing al-
gorithms for AFP, makes feasible visual analytics proce-
dures that can support the research activity of biologists,
also through the proper multi-level visualization of complex
biomolecular networks, constructed from data downloaded
from public repositories. The same overall framework could
be in principle adapted to other contexts characterized by
the integration of different network-based source of informa-
tion, such as the prioritization of disease genes or the predic-
tion of abnormal phenotype - gene associations, and other
relevant applications in the context of the so called“Network
Medicine” [1].
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