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S1 Consistency of the hierarchical predictions
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Fig. S1. Flat and hierarchical predictions for the Mouse protein ENSMUSP00000095029. The numbers close to each GO term represent flat and hierarchically
corrected scores, respectively magenta and green boxes. It is easy to see how the predictions of the hierarchical approach (green boxes) always obey to the True-Path-
Rule, (i.e. the scores of the parent nodes are always larger or equal than those of their children nodes), while the flat predictions (magenta boxes) are inconsistent

for 6 GO terms (yellow colored boxes.)
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S2 Pseudocode and complexity of the ISO-TPR algorithm
Fig. S2 shows the high level pseudo-code of ISO-TPR.

Input:

-G=<V,E>

-V =A{12,...,|V|}

-y =< 91,92, -, Gv| >, 9 €[0,1]

w =< Wi, w2, ..., Wy| >, Wi € [0,1]

begin algorithm

01:  A.dist :=Vi € V ComputeMaxDist (G, root(G))
02: B. Per-level bottom-up visit of G:

03: for eachd from max(dist) to 0 do
04: Ny = {i|dist(i) = d}

05: for eachi € Ny do

06: Select the set ¢; of “positive” children
07: Yi = m@z + Zqubi 9j)
08: end for

09: end for

10: C. GPAV algorithm

11: Yy:=9

12V ={1,2,...,|V]|} topologically ordered;
13: H:=V

14: ViGVSetBl‘:{i}; B: =i, U; = 95, Wi = ws;
15: for eachkfrom1to|V]|do

16: while existsi € By such that U; > U do

17: findj € By such that U; :=maz{U; :i € B, }
18: H:=H\{j}

19: B, = BJ._UBk_\{j}

20: Uy, .= Wi Uy + W;U)/ (Wi, + Wj)

21: By := Bp U Bj

22: Wi = Wi + W;

23: Vi € ByandVk € Hsety := Uy,

24: end while

25: y:=UgVi € ByandVk € H

26: end for

end algorithm
Output:

Y =<Y1,Y2,--, Y| >

\

Fig. S2. ISOtonic True-Path-Rule for DAG (ISO-TPR) pseudo-code.

The computational complexity of block A is O(|V| + | E|) (topological sort), whereas the complexity of block B is O(|V'|) when graphs are sparse.
Finally, block C has a complexity O(|V|2), thus resulting in an overall complexity of O(|V'|2). Nevertheless, if we use the HTD algorithm in lieu of
GPAV, the complexity of block C'is O(|V| + | E|), and it follows that the overall computational complexity is nearby linear in the number of nodes,
since the GO DAG is sparse.
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S3 HEMDAG family

Table S1 summarizes the 20 hierarchical ensemble algorithms of the HEMDAG family. In the following sections each HEMDAG algorithm is described
in detail. A step-by-step tutorial available at https://hemdag.readthedocs. io shows how to apply the HEMDAG algorithms to real data.

Table S1. HEMDAG family of hierarchical ensemble algorithms. In bold are highlighted the novel HEMs algorithms presented for the first time in this manuscript.
The acronyms TF (Threshold-Free), T (Threshold), W (Weight) and WT (Weight-Threshold) at the end of the HEMs names refer to the bottom-up strategy used to
select the positive nodes. “None” in the column Bottom-up step, points out that HTD and GPAV algorithm are characterized only by the consistency step. All the
other algorithms choose in the bottom-up step positive children or descendants nodes according to the family they belong to.

HEMs Family Bottom-up Step | Consistency Step Description Type
HTD HTD None HTD satisfy the hierarchical constraints. No bottom-up step is applied
GPAV GPAV GPAV satisfy the hierarchical constraints. No bottom-up step is applied
tprTF TPR-DAG . HTD ¢; chosen by applying formula (3). HTD is applied to satisfy hierarchical constraints

Children — - . —— . - Parameter-free

ISOtprTF ISO-TPR GPAV ¢; chosen by applying formula (3). GPAV is applied to satisfy hierarchical constraints
descensTF DESCENS Descendants HTD A, chosen by applying formula (8). HTD is applied to satisfy hierarchical constraints
ISOdescensTF | ISO-DESCENS GPAV A, chosen by applying formula (8). GPAV is applied to satisfy hierarchical constraints
tprT ¢; chosen by applying formula (4) or (5). HTD is applied to satisfy hierarchical constraints
tprW TPR-DAG HTD ¢; chosen by applying formula (6). HTD is applied to satisfy hierarchical constraints
tprWT Children combination of tprT and tprW. HTD is applied to satisfy hierarchical constraints
ISOtprT ¢; chosen by applying formula (4) or (5). GPAV is applied to satisfy hierarchical constraints
ISOtprW ISO-TPR GPAV ¢; chosen by applying formula (6). GPAV is applied to satisfy hierarchical constraints
ISOtprWT combination of ISOtprT and ISOtprW. GPAV is applied to satisfy hierarchical constraints
descensT A, chosen by applying formula (9) or (10). HTD is applied to satisfy hierarchical constraints Parametric
descensW DESCENS HTD A, chosen by applying formula (11). HTD is applied to satisfy hierarchical constraints
desensWT combination of descensT and descensW. HTD is applied to satisfy hierarchical constraints
descensTAU Descendants A, chosen by applying formula (12). HTD is applied to satisfy hierarchical constraints
ISOdescensT A, chosen by applying formula (9) or (10). GPAV is applied to satisfy hierarchical constraints
ISOdescensW ISO-DESCENS GPAV A clinoselrl by applying formula (11). GPAV is applied tol satisf)./ hierarcl?ical c{onslrailnt.s' 4
ISOdescensWT combination of ISOdescensT and ISOdescensW. GPAV is applied to satisfy hierarchical constraints
ISOdescensTAU A; chosen by applying formula (12). GPAV is applied to satisfy hierarchical constraints

S3.1 HTD

HTD is the simplest algorithm of the HEMDAG family. The HTD algorithm modifies the flat scores according to the hierarchy of a DAG g through a
unique run across the nodes of the graph. For a given example z, the flat predictions f(z) = ¢ are hierarchically corrected to g, by per-level visiting the
nodes of the DAG from top to bottom according to the following simple rule:

Ui if i€ root(G)
Ui = Miljepar) Y5 i mMinjepar) Y5 < i 1
Ui otherwise

The pseudocode of the HTD algorithm is presented and discussed in Notaro et al. (2017).

S3.2 GPAV

The GPAV algorithm is described in the section 2.3.2 of the main manuscript and the pseudo-code is presented in the step C on the Fig. S2.

S3.3 ISO-TPR family

ISO-TPR is a family of methods that integrate isotonic regression (Barlow, 1972) and TPR algorithms (Valentini, 2011; Notaro et al., 2017). The vanilla
ISO-TPR algorithm adopt a per-level bottom-up visit of the DAG to modify the flat predictions g; according to the following equation:
1

Vi = ——— (Ui + Uj (@)
0= ]giyj)

where ¢; are the positive children of 4. Different ISO-TPR variants can be designed according to the strategy used to select the positive children ¢;:

1. threshold-free strategy (TF): the positive nodes are those children that can increment the score of the node %, that is those nodes that achieve a score
higher than that of their parents:
@i :={J € child(i)|g; > §:} 3)
2. threshold strategy (T):

a. aunique threshold £ is a priori selected for all nodes to determine the set of positives
¢; = {j € child(i)|y; > t},VieV )

For instance, if the flat predictions are probabilities, it could be meaningful to a priori select £ = 0.5

b. athreshold is selected to maximize some imbalance-aware performance metric M estimated on the training data, e.g. the F'-measure or the Area
Under the Precision-Recall curve (AUPRC). Namely, the threshold is selected to maximize the measure M (4, t) on the training data for the term

7 with respect to the threshold ¢. The corresponding set of positives is:
¢i = {Jj € child(i)|g; > t},t; = arg m?XM(j,t)},Vi ev ©)

Internal cross-validation has been be used to select t;f within a set of possible thresholds ¢ € (0, 1);
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By applying eq. 3 we design the algorithm ISOtprTF. Instead, by adopting eq. 4 or 5 we design the algorithm ISOtprT. We also design the weighted
ISO-TPR version (ISOtprW) by adding a weight w € [0, 1] to balance the contribution of the parent node 4 and its positive children:

g wgi+ L0 3 g ©)
o =

If w = 1, no weight is attributed to the children and the ISO-TPR reduces to the GPAV algorithm. If w = 0, only the predictors associated to the
positive children nodes “vote” to predict node 4. In the intermediate cases we attribute more importance to the predictor for the node ¢ or to its children
depending on the values of w. The weighted-threshold variant ISOtprWT, characterized by a double parametrization, is designed by combining the
variants ISOtprT and ISOtprW. The pseudo-code of the ISO-TPR algorithms is presented in Fig. S2.

S3.4 ISO-DESCENS family

As shown in Valentini (2011) for tree-based hierarchies, the contribution of the descendants of a given node decays exponentially with their distance
from the node itself and it is straightforward to see that this property also holds for DAG structured taxonomies. To overcome this limitation and
in order to enhance the contribution of the most specific nodes to the overall decision of the ensemble we designed ISO-DESCENS. The novelty of
ISO-DESCENS consists in strongly considering the contribution of all the descendants of each node instead of only that of its children. Therefore
ISO-DESCENS predictions are more influenced by the information embedded in the leaf nodes, that are the classes containing the most informative and
meaningful information from a biological standpoint. ISO-DESCENS variants can be designed on the choice of the positive descendants A;. The same
strategies adopted for the choice of ¢; described in section S3.3 can be also adopted for the choice of the positive descendants A ;, simply by replacing ¢;
with A; and child(z) with desc(2) in the equations shown in S3.3. More precisely, the vanilla ISO-DESCENS algorithm adopts a per-level bottom-up
visit of the DAG to modify the flat predictions ¢; according to the following equation:

bi = @i+ Y 75) )
1+|A\ jeR,

The ISOdescensTF variant selects the positive descendants nodes according to a threshold-free strategy:
A; = {j € dese(i)|g; > i} ®)
Instead, the ISOdescensT variant selects the positive nodes according to a threshold strategy. The threshold can be unique for all the nodes:
A= {j € desc(i)|y; > t},VieV 9
or it can be selected by maximizing an imbalance-aware performance metric, such as AUPRC or Fi,qz, on the training data:
Aj = {j € desc(i)|g; > t;,t; = argmtaxM(j,t)},Vi eV (10)

The weighted ISO-TPR version (ISOtprW) adds a weight w € [0, 1] to balance the contribution of the parent node ¢ and its positive descendants:

. (1—w)
i = whi ke Z ¥j an
JEA;

The weighted-threshold variant ISOdescensWT, characterized by two hyper-parameters, is designed by combining the variants ISOdescensT and
ISOdescensW. Finally, we also designed a variant specific only for ISO-DESCENS, named descensTAU, by adding a weight 7 € [0, 1] to simultaneously
leverage the contribution of positive children and descendants (excluding the children) of a term:

Yi = yz + Z y] yz + Z y] (12)
TIPS T 2

where §; = A; \ ¢; are the descendants of ¢ without its children. If 7 = 1 we consider only the contribution of the positive children of 4, if 7 = 0 only
the descendants that are not children contribute to the score, while for intermediate values of 7 we can balance the contribution of ¢; and ¢; positive
nodes. All the DESCENS variants adopt the GPAV algorithm to assure the consistency of the predictions.

S3.5 TPR-DAG family

The algorithms belonging to the TPR-DAG family choose ¢; by using one of the selection strategies described in section S3.3 and by adopting
HTD algorithm instead of the GPAV approach in the consistency step.

S3.6 DESCENS family

The algorithms belonging to the DESCENS family choose A; by using one of the selection strategies described in section S3.4 and by adopting
HTD algorithm instead of the GPAV approach in the consistency step.
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S4 Data preparation pipeline

In Fig. S3 is depicted the pipeline adopted to prepare the dataset for the experiments discussed in Section 3 of the main manuscript. The
main goal of this pipeline is to limit as much as possible the number of the unmapped identifiers for the couple UniProt-AC towards STRING-
ID in the UniProtKB mapping provided by the GOA database. Our data preparation pipeline assures the uniqueness of couples of identifiers
UniProt - STRING. Indeed we just isolated from the GOA gaf file all UniProt proteins annotated with GO terms supported by an experimental
evidence code. These UniProt identifiers are guaranteed to be unique by GOA itself. Then we used these identifiers to extrapolate respectively
from SwissProt and TrEMBL database the relative protein sequences. Next, we blasted the unmapped UniProt identifiers against the STRING
database in order to recover the couple of identifiers UniProt-STRING. This step retrieves unmapped couples of identifiers UniProt-STRING
only if they have an identity of 100% and if the retrieved couple of identifiers do not exist in the UniProtKB mapping file provided by GOA
database. The Perl code of the part of the pipeline that assures that no duplicates are present in out dataset is available at the following
link: https://github.com/marconotaro/godata-pipe/blob/main/build_data/check_blastp_result.pl. The most time-
consuming step of this pipeline, is the part in which we isolate the FASTA sequence of the unmapped UniProt-AC identifiers from the TTEMBL database
(22Gb zipped). This step requires about a couple of hours (by using a machine having an Intel Xeon CPU E5-2630 2.60GHz with 128GB of RAM, but
it must be repeated just once (separately for each organism).

UniProt-GO term extract Experimental
(GOADB) Evidences Codes STRING
mapping by
UniProtKB file
(GOA DB)
Unmapped store :
SWISS and UniProt | UniProt-2-STRING
TREMBL (FASTA)
isolate
makeblastdb
FASTA sequence STRING ——> STRING as
unmapped UniProt FASTA BLAST DB

blast

Retrieve the unmapped couple of identifiers UniProt-
STRING only if they have an identity of 100%. The
retrieved couple of identifiers must not exist in the

UniProtkB mapping file provided by GOA DB

enrich

UniProtkKB mapping file
provided by GOA DB

map associate

‘ UniProt-STRING ‘ ‘ STRING-GO term ‘

Fig. S3. Pipeline adopted to prepare the datasets.

The first entry of the column Statistics of both Table S2 and Table S3 refers the total unique number of UniProt-AC associated with a GO terms,
whereas the fourth entry indicates the total number of unique GO terms associated to a UniProt-AC. These two entries are identical before and after
applying the pipeline illustrated in Fig. S3, because the GOA database provides annotations by using UniProt-AC as primary identifier. The second and the
third entry show respectively the number of mapped and unmapped STRING-ID versus UniProt-AC before and after enriching the UniProtKB mapping
file. Finally, the fifth and the sixth entry refers respectively to the total number of GO terms associated with a STRING-ID and to the total number of
GO terms not associated with a STRING-ID.
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Table S2. Statistics before and after applying the data preparation pipeline || Table S3. Statistics before and after applying the data preparation pipeline
illustrated in Fig. S3 by using the GOA release of December 2017. illustrated in Fig. S3 by using the GOA release of June 2020.

Organism Statistics GOA db After Enrichment Organism Statistics GOA db After Enrichment
UniProt-AC associated with GO term 3449 3449 UniProt-AC associated with GO term 3856 3856
STRING-ID mapped with UniProt-AC 3338 3405 STRING-ID mapped with UniProt-AC 3738 3827

CAEEL STRING-ID unmapped with UniProt-AC 111 44 CAEEL STRING-ID unmapped with UniProt-AC 118 29
GO term associated with UniProt-AC 3083 3083 GO term associated with UniProt-AC 3156 3156
GO term associated with STRING-ID 3052 3061 GO term associated with STRING-ID 3128 3140
GO term not associated with STRING-ID 31 22 GO term not associated with STRING-ID 28 16
UniProt-AC associated with GO term 740 740 UniProt-AC associated with GO term 698 698
STRING-ID mapped with UniProt-AC 521 544 STRING-ID mapped with UniProt-AC 583 590
CHICK STRING-ID unmapped with UniProt-AC 219 196 CHICK STRING-ID unmapped with UniProt-AC 115 108
GO term associated with UniProt-AC 1204 1204 GO term associated with UniProt-AC 1206 1206
GO term associated with STRING-ID 1018 1048 GO term associated with STRING-ID 1145 1147
GO term not associated with STRING-ID 186 156 GO term not associated with STRING-ID 61 59
UniProt-AC associated with GO term 4227 4227 UniProt-AC associated with GO term 4722 4722
STRING-ID mapped with UniProt-AC 3566 3736 STRING-ID mapped with UniProt-AC 3813 4121
STRING-ID unmapped with UniProt-AC 661 491 STRING-ID unmapped with UniProt-AC 909 601
DANRE K . K DANRE K X K
GO term associated with UniProt-AC 3051 3051 GO term associated with UniProt-AC 3341 3341
GO term associated with STRING-ID 2840 2880 GO term associated with STRING-ID 3078 3167
GO term not associated with STRING-ID 211 171 GO term not associated with STRING-ID 263 174
UniProt-AC associated with GO term 6179 6179 UniProt-AC associated with GO term 6028 6028
STRING-ID mapped with UniProt-AC 5675 6025 STRING-ID mapped with UniProt-AC 5686 5887
STRING-ID unmapped with UniProt-AC 504 154 STRING-ID unmapped with UniProt-AC 342 141
DROME K . K DROME K . K
GO term associated with UniProt-AC 5510 5510 GO term associated with UniProt-AC 5801 5801
GO term associated with STRING-ID 5393 5444 GO term associated with STRING-ID 5734 5755
GO term not associated with STRING-ID 117 66 GO term not associated with STRING-ID 67 46
UniProt-AC associated with GO term 13603 13603 UniProt-AC associated with GO term 15699 15699
STRING-ID mapped with UniProt-AC 12795 13160 STRING-ID mapped with UniProt-AC 15265 15356
STRING-ID unmapped with UniProt-AC 808 443 STRING-ID unmapped with UniProt-AC 434 343
HUMAN . . . HUMAN A N .
GO term associated with UniProt-AC 11134 11134 GO term associated with UniProt-AC 11935 11935
GO term associated with STRING-ID 11006 11042 GO term associated with STRING-ID 11875 11895
GO term not associated with STRING-ID 128 92 GO term not associated with STRING-ID 60 40
UniProt-AC associated with GO term 11265 11265 UniProt-AC associated with GO term 11837 11837
STRING-ID mapped with UniProt-AC 10592 10948 STRING-ID mapped with UniProt-AC 11562 11622
MOUSE STRING-ID unmapped with UniProt-AC 673 317 MOUSE STRING-ID unmapped with UniProt-AC 275 215
GO term associated with UniProt-AC 11101 11101 GO term associated with UniProt-AC 11875 11875
GO term associated with STRING-ID 10959 11029 GO term associated with STRING-ID 11824 11830
GO term not associated with STRING-ID 142 72 GO term not associated with STRING-ID 51 45

Table S4 and Table S5 show the percentage of STRING-ID mapped with an UniProt-AC and the GO terms associated with a STRING-ID before and
after applying the data preparation pipeline shown in Fig. S3.

Table S4. Percentage of recovered identifiers and GO terms reported in Table S2 || Table S5. Percentage of recovered identifiers and GO terms reported in Table S3
before and after applying the data preparation pipeline shown in Fig. S3. before and after applying the data preparation pipeline shown in Fig. S3.
Percentage of identifiers and GO terms rescued in Table S2 Percentage of identifiers and GO terms rescued in Table S3
GOA db  After Enrichment Tot. Rescued GOA db  After Enrichment Tot. Rescued
CAEEL UniProt-AC-STRING-ID  96.80% 98.70% 1.90% CAEEL UniProt-AC-STRING-ID  96.90% 99.20% 2.30%
STRING-ID-GO terms 99.00% 99.30% 0.30% STRING-ID-GO terms 99.10% 99.50% 0.40%
CHICK UniProt-AC-STRING-ID  70.40% 73.50% 3.10% CHICK UniProt-AC-STRING-ID  83.50% 84.50% 1.00%
STRING-ID-GO terms 84.60% 87.00% 2.40% STRING-ID-GO terms 94.90% 95.10% 0.20%
DANRE UniProt-AC-STRING-ID  84.40% 88.40% 4.00% DANRE UniProt-AC-STRING-ID  80.70% 87.30% 6.60%
STRING-ID-GO terms 93.10% 94.40% 1.30% STRING-ID-GO terms 92.10% 94.80% 2.70%
DROME UniProt-AC-STRING-ID  91.80% 97.50% 5.70% DROME UniProt-AC-STRING-ID  94.30% 97.70% 3.40%
STRING-ID-GO terms 97.90% 98.80% 0.90% STRING-ID-GO terms 98.80% 99.20% 0.40%
UniProt-AC-STRING-ID  94.10% 96.70% 2.60% UniProt-AC-STRING-ID  97.20% 97.80% 0.60%
HUMAN HUMAN
STRING-ID-GO terms 98.90% 99.20% 0.30% STRING-ID-GO terms 99.50% 99.70% 0.20%
MOUSE UniProt-AC-STRING-ID  94.00% 97.20% 3.20% MOUSE UniProt-AC-STRING-ID  97.70% 98.20% 0.50%
STRING-ID-GO terms 98.70% 99.40% 0.70% STRING-ID-GO terms 99.60% 99.60% 0.00%
Average UniProt-AC-STRING-ID  88.60% 92.00% 3.40% Average UniProt-AC-STRING-ID  91.70% 94.10% 2.40%
across organisms STRING-ID — GO terms ~ 95.40% 96.40% 1.00% across organisms STRING-ID - GO terms ~ 97.30% 98.00% 0.70%
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S5 Performance metrics

We evaluated the generalization performance of the methods by considering two different scenarios, i.e. (a) term-centric and (b) protein-centric
measure (Jiang et al., 2016). These two types of evaluations address the following related questions: (a) what are the gene products associated with
a specific functional term and (b) what are the functions of a given protein. Therefore, the term-centric evaluation is more appropriate to prioritize genes
products respect to a specific function (i.e. an ontology term), whereas the protein-centric evaluation is more appropriate to predict the functions of a
given protein.

1. Term-centric metric. For each GO term we computed the classic Aurea Under the ROC Curve (AUROC) and the Area Under the Precision Recall
Curve (AUPRC) to take into account the imbalance of annotated versus unannotated GO terms. Indeed the AUPRC is more informative on unbalanced
dataset than the classic AUROC (Saito and Rehmsmeier, 2015). The ROC curve is computed by plotting the recall (or sensitivity) against the false
positive rate (or 1 — specificity) at different thresholds, whereas the precision-recall curve shows the trade-off between precision and recall at
different cutoffs. For a particular functional term ¢, the recall (Rc), the specificity (Sp) and the precision (Pc) at a given score threshold 7 € [0, 1]
are defined as follow:

Zjﬂ(y{ >TAjEA)

Re(i,7) = e (13)
() < i A;
Sp(i7) = 225 L(y; STAIE ) (14)
[As]
XMyl >TAJEA)
Pc(i,7) = SR (15)

where yZ € [0,1] is the predicted score (likelihood) that a gene product j is associated with the GO term 4, P;(7) denotes the set of gene
products that have a predicted score greater than or equal to 7 for a given GO term ¢, 7 € [0, 1] is the given threshold, A; is the set of gene products
annotated with GO term 7 and A; is the set complement with regard to the whole corpus and 1 is the standard indicator function.

2. Protein-centric metric. Precision (Pr), Recall (Rc) and the maximum achievable F-score (Finqz) using thresholds 7 € [0, 1] are calculated as

follows:
A 1 L, 1€ Pi(r)Ai €Ty)
Pr(i,7) = — ¢ - (16)
N; 22 1(i € Pi(r))
LRI EP(ND AN ET)
Rl =5 2 =G eny) “

(18)

Finaz = maz, {M}

Pr(r) 4+ Re(T)

where 4 denotes a protein function (GO term) in the gene ontology (excluding the root node), P; (7) denotes the set of terms that have a predicted
scores greater than or equal to 7 for a given protein j, T); denotes the set of experimentally determined terms for a given gene product j, N the number
of examples having at least one annotation with a GO term and 1 stands for the a standard indicator function. In other words the Fyy,q, measure is
the maximum hierarchical F-score achievable by “a posteriori” setting the optimal decision threshold (Jiang et al., 2016). We warn the reader that
the hierarchical F-score as defined in eq. (18) provides an over-optimistic assessment of the hierarchical score. Indeed the threshold 7 in eq. (18) is
by definition “a posteriori” selected, by choosing the optimal 7* that optimizes the F' — score having a set of pre-computed scores. An unbiased
evaluation should embed the selection of the optimal 7 within the learning process. Nevertheless, we use this measure since it is the reference
gene-centric metric within the computational biology community, as witnessed by its usage in the CAFA international challenges (Radivojac et al.,
2013; Jiang et al., 2016; Zhou et al., 2019). For both measures, by averaging across proteins or terms, we can obtain an overall picture of the
prediction performance of the methods.
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S6 HEMDAG versus flat classifiers

S6.1 Flat classifiers

As flat methods used as base learners in our hierarchical ensembles we applied the supervised machine learning methods shown in Table S6. To implement
them we used the caret R package (short for Classification And REgression Training) (Kuhn, 2008), since it provides an uniform interface to execute

more than 250 predictive models.

Flat classifier Reference paper Learning parameter Default value
C5.0 Decision Tree (C50) Quinlan (1993) mtry 2
Lasso and Elastic-Net Regularized Generalized Linear Models (glmnet) | Friedman et al. (2010) alpha !
lambda 100
Linear Discriminant Analysis (Ida) Venables and Ripley (2002) none none
Logit Boost (logit) Dettling and Bithlmann (2003) | boosting iterations 10
Multi Layer Perceptron (mlp) Rumelhart er al. (1986) 2132:11 F:;;Zns i’
Naive Bayes (nb) Zhang (2004) Laplace smoothing 0
mtry 10
Random Forest (f) Breiman (2001) tre(?s ‘numbers 500
splitting rule gini
maximum tree depth 1
Support Vector Machine (svm) Cortes and Vapnik (1995) C 0.001
Support Vector Machine active-learning (svm-al) Frasca and Cesa-Bianchi (2018) active learning §elect10n Stze 150
budget of negatives 600
bootstrap replications 25
Bagged Ensemble of Decision Tree (treebag) Breiman (1996) mtry 2
maximum tree depth 30
boosting iterations 15
Extreme Gradient Boosting (xgboost) Chen and Guestrin (2016) learning rat.e " 0.3
L2 Regularization 0
L1 Regularization 0

Table S6. Default parameter setting of the flat classifiers (short form in brackets) used as base learners in our hierarchical ensemble methods.

S6.2 STRING network

Table S7. STRING network (v10.5) main characteristics.

Organism

Proteins Interactions

CAEEL (C. elegans)
CHICK (G. Gallus)
DANRE (D. rerio)

DROME (D. melanogaster)

HUMAN (H. sapiens)
MOUSE (M. musculus)

15,752 2,889,134
14,093 3,172,417
23,449 13,187,568
13,702 3,981,727
19,576 5,676,528
21,151 6,307,021
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S$6.3 Proteins and GO terms

Table S8. Number of GO terms, edges and proteins, for each GO domain, that we considered in the experiments (December 2017 release).

Organism Domain Terms Edges Proteins

BP 1,335 2458 2,597
CAEEL MF 186 231 1,806
CcC 221 392 1,924

BP 246 411 330
CHICK MF 43 53 292
CcC 58 88 318

BP 1,182 2,088 3,351
DANRE MF 118 153 1,000
CcC 89 145 550

BP 2,244 4,197 5,238
DROME MF 327 419 2,928
CcC 348 614 3,748

BP 3,460 6492 8,169
HUMAN MF 760 988 11,203
CcC 541 1,001 9,412

BP 3899 7372 8,139
MOUSE MF 511 662 7,248
CcC 445 818 7,496

S6.4 Experimental set-up and data

S6.4.1 Data

Protein-Protein interactions were retrieved from the STRING — version 10.5 (Szklarczyk et al., 2015). The main characteristics of the STRING networks
are reported in Table S7. Having considered feature-based flat classifiers, we represented each protein as a vector of features, that we directly obtained
from the rows of the STRING weighted adjacency matrix. Functional annotations cover the three GO domains BP, MF and CC. Both is_a and part_of
relationships were considered to define the GO DAGs, to assure that the annotations can be safely propagated through the ontology. From the Gene
Ontology Annotation (GOA) database (Barrell et al., 2009) we downloaded the protein-GO term associations (December 2017 release) by extracting
just the experimentally supported annotations (EXP, IDA, IPI, IMP, IGI, IEP). We used UniProtKB identifier mapping file to map the UniProtKB
versus the STRING protein identifiers. The pipeline adopted to build the dataset is schematically illustrated in Fig. S3 and its source code is available
at https://github.com/AnacletolLAB/godata-pipe. Finally, to avoid the prediction of those GO terms having too few annotations for a
reliable assessment, we pruned all the GO terms having less than 10 annotations. The considered task covers more than 75K annotated proteins and about
7K unique GO terms. Table S8 shows the number of GO terms and proteins considered in the experiments.

S6.4.2 Experimental set-up

Due to the high dimensionality of the feature space, carrying out experiments using all the available protein features shown in Table S7 is impractical from a
computational standpoint. Consequently, during the training phase we adopted an univariate feature selection based on the Pearson’s correlation coefficient
between the features and the GO term labeling vector to choose the 100 top-ranked features. This operation, in most cases, also led to an improvement in
the accuracy (data not shown). The feature selection was cross-validated in an unbiased way, i.e the top-ranked features were selected during the training
phase (Ambroise and McLachlan, 2002). As performance metrics we adopted ferm-centric and protein-centric measures. As term-centric measure we
used both the classical Area Under the ROC Curve (AUROC) and the Area Under the Precision Recall Curve (AUPRC), which takes into account the
imbalance of annotated versus unannotated GO terms (Saito and Rehmsmeier, 2015). As protein-centric measure we used the Fi,q, measure, i.e. the
maximum hierarchical F’ value achievable by “a posteriori” setting the optimal decision threshold (Jiang et al., 2016) — see Section S5 for further details
on the evaluation metrics.

S6.5 Heatmaps

Heatmaps shown in Fig. S4 and Fig. S5 are produced simply by using the equation shown in the caption of Fig 2 of the main manuscript respectively with
AUROC and Fnqz.
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Fig. S4. Synoptic comparison of hierarchical ensemble methods against flat approaches across GO ontologies and organisms for the metric AUROC. In each panel
the left heatmap refers to direct comparison of AUROC results: green color indicates better HEMDAG results; the right panel refers to the paired Wilcoxon rank
sum test. Blue cells show significantly better results for HEMDAG.
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Fig. S5. Synoptic comparison of hierarchical ensemble methods against flat approaches across GO ontologies and organisms for the metric F),, 4. In each panel
the left heatmap refers to direct comparison of F,,, results: green color indicates better HEMDAG results; the right panel refers to the paired Wilcoxon rank sum

test. Blue cells show significantly better results for HEMDAG.



14 Notaro et al.

S6.6 Win-tie-loss

Table S9 shows for each performance metric how often a hierarchical ensemble algorithm wins, ties or loses against a flat classifier across organisms and
GO domains, according to the two-sided paired Wilcoxon rank sum test (o = 10~%).

Table S9. Counting of wins, ties and loses of HEMs vs flat classifiers. For each performance metric, we have in total 1188 occurrences since we considered 6
HEMs, 11 flat classifiers, 3 GO domains and 6 organisms.

AUROC AUPRC F.,ax Tot.

win 904 858 824 2586
tie 149 226 266 641
loss 135 104 98 337

Tot. 1188 1188 1188 3564

Heatmaps depicted in Fig. S6 compare a hierarchical ensemble algorithm (row) against a flat classifier (column), by putting together the results
coming from all organisms and GO domains. More precisely, the heatmaps show when the comparison of a pair is statistically significant according to a
two-sided paired Wilcoxon rank sum test. In particular, we say that a hierarchical ensemble algorithm significantly “beats” (green cells) a flat classifier
if the Wilcoxon test rejects the null hypothesis (o < 0.05); conversely, we say that a hierarchical ensemble significantly “loses”(blue cells) against a
flat classifier and then we say that a hierarchical ensemble method “ties” (white cells) against a flat classifier when no statistically significant difference
is observed. Since we took into account six different organisms and three GO domains, a heatmap cell can range from a maximum of +18 (i.e., the
hierarchical algorithm always “wins” against a flat classifier) to a minimum of -18 (i.e., the hierarchical algorithm always “loses” against a flat classifier).

HTD

GPAV GPAV
tprTF tprTF.
descensTF descensTF . .
ISOtprTF 1sotprTF [l I
1ISOdescensTF .. 1ISOdescensTF .. . .
O O S > > O 3
s P é":@/ S &
BN .\9 ) S
AUROC Fmax

Fig. S6. Win-tie-loss heatmaps grouping the results coming from all organisms and GO domains and counting how many times an ensemble algorithm wins, ties
or loses against a flat classifier, according to the two-sided paired Wilcoxon rank sum test with o < 10~*. Since we took into account six different organisms and
three GO domains, a heatmap cell can range from a maximum of +18 to a minimum of -18.

S6.7 Boxplots

Box-and-whiskers plots reported below show separately for each organism taken into account in our experiments, the distributions of the AUPRC values
across GO terms (having 10 or more annotations) between flat classifiers and true-path-rule ensemble methods. The star symbol (%) denotes the significance
according to the two-sided paired Wilcoxon sum rank test:

o p-value < 1076 — x % %;
e p-value < 1074 — *%;

e p-value < 1072 — %;

e p-value > 1072 - ns;

Observing these box-and-whiskers plots across all the organisms it easy to note that hierarchical ensemble algorithms achieve statistically significant
better results than flat machine learning classifiers. These results also show that the performance of hierarchical ensembles mostly depends on that of the
underlying flat base learners. This is not surprising since the improvement introduced by hierarchical methods is determined also by the capability of the
base learners to provide correct and at least partially consistent predictions. Indeed when the flat classifier provides random or very noisy predictions, it
is really unlikely that the hierarchical ensemble approaches are able to improve the flat predictions (see for instance the predictions returned by glmnet
method). On average non linear classifiers, as random forests and gradient boosting machines work better than linear ones, and from this standpoint the
box-and-whiskers plots show that these kind of classifiers lead to better results, in both the “flat” and the improved hierarchical ensemble predictions. It is
likely that the performances of the flat classifiers C5.0, glmnet and naive bayes are very low, because we did not tune the learning parameter, but we used
the default setting to avoid the high computational complexity due to the model selection. Moreover, it is important to mention that the improvement of
hierarchical ensemble methods upon flat machine learning classifier is not due to the tuning of any hyper-parameters, since all the hierarchical algorithms
used in these experiments are parameter-free. For support vector machines (svm), there are different kernels which can be employed for this classifier,
such as polynomial, gaussian and radial kernel. Probably these non-linear classifiers may lead to improved results. However, we run the linear kernel
since the other kernels had a too high computational complexity for the task of predicting thousands of different GO terms in different organisms.
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Fig. S7. Distribution of AUPRC values across the GO terms (BP ontology) having 10 or more annotation for the organisms C. elegans (CAEEL) and G. Gallus

(CHICK). The black and white line in the boxplots refer respectively to the median and the mean of an method computed across GO terms.
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DANRE - AUPRC distribution across GO BP terms
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Fig. S8. Distribution of AUPRC values across the GO terms (BP ontology) having 10 or more annotation for the organisms D. rerio (DANRE) and D. melanogaster
(DROME). The black and white line in the boxplots refer respectively to the median and the mean of an method computed across GO terms.
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Fig. S9. Distribution of AUPRC values across the GO terms (BP ontology) having 10 or more annotation for the organisms H. sapiens (HUMAN) and M. musculus

(MOUSE). The black and white line in the boxplots refer respectively to the median and the mean of an method computed across GO terms.
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Fig. S$10. Distribution of AUPRC values across the GO terms (MF ontology) having 10 or more annotation for the organisms C. elegans (CAEEL) and G. Gallus
(CHICK). The black and white line in the boxplots refer respectively to the median and the mean of an method computed across GO terms.
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Fig. S11. Distribution of AUPRC values across the GO terms (MF ontology) having 10 or more annotation for the organisms D. rerio (DANRE) and D. melanogaster

(DROME).

The black and white line in the boxplots refer respectively to the median and the mean of an method computed across GO terms.
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Fig. S12.

Distribution of AUPRC values across the GO terms (MF ontology) having 10 or more annotation for the organisms H. sapiens (HUMAN) and M.

musculus (MOUSE). The black and white line in the boxplots refer respectively to the median and the mean of an method computed across GO terms.
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CHICK - AUPRC distribution across GO CC terms
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Fig. S13. Distribution of AUPRC values across the GO terms (CC ontology) having 10 or more annotation for the organisms C. elegans (CAEEL) and G. Gallus
(CHICK). The black and white line in the boxplots refer respectively to the median and the mean of an method computed across GO terms.
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Fig. S14. Distribution of AUPRC values across the GO terms (CC ontology) having 10 or more annotation for the organisms D. rerio (DANRE) and D. melanogaster
(DROME). The black and white line in the boxplots refer respectively to the median and the mean of an method computed across GO terms.
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Fig. S15. Distribution of AUPRC values across the GO terms (CC ontology) having 10 or more annotation for the organisms H. sapiens (HUMAN) and M.

musculus (MOUSE). The black and white line in the boxplots refer respectively to the median and the mean of an method computed across GO terms.
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S$6.8 Analysis of the impact of hyperparameter selection on the performance of flat classifiers and HEMDAG

Fig. S16 shows the experimental comparison between HEMDAG and the flat classifiers when hyperparameter selection is performed (by using a random
search). In Table S10 we show the grid of the hyperparameters adopted for the model selection. We limited the comparison to two model organisms (C.
elegans and D. rerio) using the two best flat classifiers (SVM and Random Forest, according to the results shown in the previous sections) to avoid the
computational burden due to the application of random search in a double cross-validation (external + internal) experimental setting for model selection.
Results shows that HEMDAG also in this setting significantly outperforms flat classifiers. Both flat classifiers and HEMDAG performance are improved
by model selection: on the average with respect to the values obtained before tuning, AUROC, AUPRC and Fj,qz are improved respectively of 0.9%,
5.5%, 4.9% with flat classifiers, and of 0.8%, 6.6% and 4.6% with HEMDAG. The improvements are averaged across model organisms, ontologies, flat

classifiers and hierarchical ensembles.

Flat classifier

Reference paper

Learning parameter

Parameter values

Random Forest (rf)

Breiman (2001)

mtry 5, 10,20, 50
number of trees 10, 100, 250, 500, 750, 1000
splitting rule gini

maximum tree depth 1,5,10,50

Support Vector Machine (svm)

Cortes and Vapnik (1995)

C

0.0001,0.001, 0.01,0.1,0.5, 1, 10

Table S10. Grid of the hyperparameters of the flat classifiers (short form in brackets) used as base learners in our hierarchical ensemble methods.
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Fig. S16. Top and central rows: synoptic comparison for the metric AUROC, AUPRC and F},, o, obtained by hierarchical ensemble methods against flat approaches

across GO ontologies and C. elegans and D. rerio organisms when a random search of model parameters is performed. In each panel, the left heatmap refers to
the relative difference between HEMDAG and flat classifier results: green color indicates better HEMDAG results; the right heatmap refers to win-tie-loss resuls
according to the paired Wilcoxon rank sum test: blue cells show significantly better results for HEMDAG. Bottom row: win-tie-loss heatmaps grouping the results

coming from the two organisms and GO domains and counting how many times an ensemble algorithm wins, ties or loses against a flat classifier, according to the

two-sided paired Wilcoxon rank sum test with o < 10~ %. Since we took into account two organisms and three GO domains, a heatmap cell can range from a

maximum of +6 to a minimum of -6. Green color stand for better HEMDAG results.
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S6.9 Experiments without IPI annotations

We performed tests with two model organisms (C. elegans and D. rerio) and the two best performing flat classifiers (SVM and Random Forest, according
to the results shown in the previous section) by removing IPI annotations and functional interactions. The rationale behind this experiment is that
GO annotations including IPI evidence codes could lead to increased estimates of the performance improvement achieved by HEMDAG ensembles
since they are trained with the STRING PPI interaction network. In Fig. S17 we report the obtained heatmaps for AUROC, F}, 42, and AUPRC, which
show that the performance improvement due to application of HEMDAG models is maintained, while the overall performance are only slightly decreased
with respect to the experimental setting including IPI annotations.
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Fig. S17. Top and central rows: synoptic comparison for the metric AUROC, AUPRC and F,, o, obtained by hierarchical ensemble methods against flat approaches
across GO ontologies and C. elegans and D. rerio organisms when interactions due to IPI codes and STRING are removed. In each panel, the left heatmap refers
to the relative difference between HEMDAG and flat classifier results: green color indicates better HEMDAG results; the right heatmap refers to win-tie-loss resuls
according to the paired Wilcoxon rank sum test: blue cells show significantly better results for HEMDAG. Bottom row: win-tie-loss heatmaps grouping the results
coming from the two organisms and GO domains and counting how many times an ensemble algorithm wins, ties or loses against a flat classifier, according to the
two-sided paired Wilcoxon rank sum test with & < 10~%. Since we took into account two organisms and three GO domains, a heatmap cell can range from a
maximum of +6 to a minimum of -6. Green color stand for better HEMDAG results.
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S7 HEMDAG validation on synthetic data
S7.1 Experimental set-up.

In order not to depend on a specific organism, we randomly generated the n X m label matrix L, for n = 500 proteins (the number of proteins could not
be increased more due to the massive set of experiments to be run). The DAG schema of the GO MF ontology (release 2020-04-23) has been adopted,
for a total of m = 4182 terms. In order to simulate a realistic distribution of annotations, we first generated a labeling for most specific terms according
to a Binomial distribution B(n, 10~3), with 1073 success probability estimated as an average from real label matrices. Then, we operated the transitive
closure of annotations to respect the true-path-rule, obtaining a final label matrix having a minimum of 1 to a maximum of 500 positive proteins for a
given GO term. 500 positives are only for the root of ontology, which means all proteins are positive for this term; for this reason, we excluded it from
the computation of the average performance. Given a n x m (flat) prediction matrix M € [0, 1]"*", let AUPRC(M, L) be its AUPRC averaged across
GO terms (see Section S5) with regard to labels L, and M be the matrix obtained from M by applying a HEMDAG algorithm. The aim is to estimate the
probability p = P(AUPRC(M, L) > AUPRC(M, L)). To this end, T random matrices M), ..., M(T) were randomly generated and the random
T

variableY = >° H (AUPRC(MW , L) — AUPRC(M, L)) evaluated, where H is the Heaviside function. The variable % is an estimator of p.
i=1

S7.2 Estimating confidence interval for p

To determine a reliable confidence interval of a binomial proportion it is required both T'p, T'(1 — p) > 5 (or 10) (Brown et al., 2001). In order to define
the confidence interval of p at 1 — § = 0.95 confidence level, three cases are distinguished:

1. Y = 0. The confidence interval is [0, 1 — 6%] (Clopper and Pearson, 1934; Louis, 1981);

2. 1 <Y <5.Y is approximately distributed according to the Poisson distribution with expected value A = Y. The confidence interval is thereby
[ﬁxzy’l_% , %X;yﬂ),g , where Xi is a chi squared random variable with k degrees of freedom;

3. 5<Y < T —5.Y is approximately distributed according to a normal distribution with expected value Y and variance Y (1 — % ). The Agresti-

Coull interval estimator is adopted (Agresti and Coull, 1998), which is more stable for values of Y closer to the outliers (Brown et al., 2001). Thus,

the confidence interval is % + %H VY 2T -Y =2)z, s where z1_ is the 1 — « percentile of the standard normal distribution.

In the cases symmetric to case 1 (Y = T) andtocase2 (IT'— 5 <Y < T'), we operate analogously on the random variable T" — Y.

The obtained confidence intervals for p are shown in Table S11. For the methods having hyperparameters (¢ for tprT, ISOtprT, descensT, ISOdescensT,
w for tprW, ISOtprW, descensW, ISOdescensW, £ and w for tprWT, ISOtprWT, desensWT, ISOdescensWT, 7 for descensTAU and ISOdescensTAU), the
hyperparameters have been selected through an internal cross validation on a grid of 5 evenly spaced values in the interval 0.1, . . ., 0.9. The computational
burden of the whole evaluation did not allow to use more refined hyperparameter grids.

Table S11. Confidence interval for the probability p that the ensemble algorithms of the HEMDAG family improve flat predictions. Best results in boldface.

Method Unif Leaves Root Mixed
HTD [0.489,0.551] [0.085,0.123] [0.000, 0.003] [0.282, 0.340]
GPAV [0.469, 0.531] [0.997,1.000] [0.997,1.000] [0.679, 0.736]
tprTF [0.470, 0.532] [0.876,0.913] [0.997, 1.000] [0.481, 0.543]
ISOtprTF [0.462, 0.524] [0.997,1.000] [0.997,1.000] [0.681, 0.737]
descensTF [0.474,0.536] [0.673,0.730] [0.002,0.012] [0.481, 0.543]
ISOdescensTF  [0.465, 0.527] [0.997,1.000] [0.997,1.000] [0.681, 0.737]
tprT [0.466, 0.528] [0.000, 0.003] [0.000, 0.003] [0.178, 0.228]
tprW [0.471,0.533] [0.802,0.849] [0.997,1.000] [0.481, 0.543]
tprWT [0.507, 0.569] [0.840,0.883] [0.913,0.944] [0.368, 0.429]
ISOtprT [0.477,0.539] [0.993, 1.000] [0.997, 1.000] [0.569, 0.630]
ISOtprwW [0.488, 0.550] [0.997,1.000] [0.997,1.000] [0.681,0.737]
ISOtprWT [0.459,0.521] [0.994, 1.000] [0.943,0.968] [0.571, 0.632]
descensT [0.472,0.534] [0.000, 0.003] [0.000, 0.003] [0.176, 0.226]
descensW [0.466, 0.528] [0.599, 0.660] [0.001, 0.009] [0.481, 0.543]
desensWT [0.506, 0.568] [0.831,0.875] [0.000, 0.003] [0.370, 0.431]
descensTAU [0.462,0.524] [0.651,0.709] [0.988,0.996] [0.479, 0.541]

ISOdescensT [0.478,0.540] [0.919,0.949] [0.997, 1.000] [0.569, 0.630]
ISOdescensW [0.481, 0.543] [0.997,1.000] [0.997,1.000] [0.681,0.737]
ISOdescensWT  [0.472,0.534] [0.997, 1.000] [0.997,1.000] [0.569, 0.630]
ISOdescensTAU [0.476, 0.538] [0.997,1.000] [0.997,1.000] [0.683, 0.739]




28 Notaro et al.

S8 HEMDAG versus structured output SOTA methods
S8.1 STRING network

Table S12. STRING network (v11) main characteristics.

Organism Proteins Interactions
CAEEL (C. elegans) 18,181 3,709,383
CHICK (G. Gallus) 14,683 3,063,715
DANRE (D. rerio) 24,681 7,058,228
DROME (D. melanogaster) 13,046 1,981,482
HUMAN (H. sapiens) 19,354 5,879,727
MOUSE (M. musculus) 21,291 5,972,403

S8.2 Proteins and GO terms

Table S13. Number of GO terms, edges and proteins for each GO domain that we considered in the time-lapse experiments (2017-2020).

Organism Domain Terms Edges Proteins Training Proteins Test Proteins

BP 1332 2458 2828 2,600 228
CAEEL  MF 179 216 1862 1,800 62
ccC 192 315 2,195 1,919 276
BP 285 474 401 320 81
CHICK  MF 44 49 345 274 71
cC 53 75 328 264 64
BP 1277 2260 4011 3,348 663
DANRE  MF 128 155 1138 997 141
cC 7 17 630 551 79
BP 2265 4250 5342 5,192 150
DROME  MF 314 395 3,002 2,917 85
cc 317 508 3.879 3,721 158
BP 3522 6584 8698 8,119 579
HUMAN MF 762 967 13,081 11,126 1,955
ccC 513 866 10378 9351 1,027
BP 3967 7491 8655 8,117 538
MOUSE  MF 497 630  7.561 7219 342
cc 423 708 7.953 TAT2 481

S$8.3 Data and experimental set-up

$8.3.1 Data

As protein-protein interaction network, we used the most recent release of STRING — v11 (Szklarczyk ef al., 2018). The topological characteristics
of the STRING networks (v11.0) are reported in Table S12. We downloaded the protein-GO term associations (June 2020 release) from
GOA database, by extracting only the annotations supported by experimental evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, HTP HDA HMP
HGI HEP) and by pruning all the GO terms having less than 10 annotations. In Table S13 we report the statistics of the data used in the
time lapse experiments. We used the annotations of an old GO release (December 2017) to predict the protein functions of a more recent
GO release (June 2020). Since among different GO releases some functional terms can change, become obsolete or also removed, we mapped
the old GO terms to the new ones by parsing the annotation file of December 2017 GO release by using as key the alt-ID taken from the
obo file of June 2020 GO release. To map ontology terms between releases we used the in-house developed Perl5 module obogaf: :parser,
which is publicly available both on CPAN and Bioconda repository (https://anaconda.org/bioconda/perl-obogaf-parser)
alongside a comprehensive tutorial (https://obogaf-parser.readthedocs.io). The source code used to build the datasets is available at
https://github.com/AnacletolLAB/godata-pipe.

S8.3.2 Experimental set-up

Let us denote by 7 the set of proteins having at least 1 annotation with a GO term of the “old” GO release (2017), and by S the set of newly annotated
proteins, i.e. gene products having at least one new annotation in the “new” GO release (2020), but unannotated in the December 2017 GO release.
Hence we have that S N'T = (). We used the set T" as training set and the set S as hold-out test set to assess the capability of predicting newly annotated
proteins using only the annotations of the previous GO release. We used as positives all the proteins in 7" annotated with a GO term and as negatives all
the remaining proteins in 7. To evaluate the performance of the SOTA methods, we executed the DeepGOPlus Python code as published in Kulmanov
and Hoehndorf (2020) and we adapted the GOstruct C++ source code to a time-lapse hold-out procedure. As evaluation metrics we used the Area Under
the ROC Curve (AUROC), Area Under the Precision Recall Curve (AUPRC) and the F), 44 — see Section S5 for more details.
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S$8.4 Heatmaps
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Fig. S18. Synoptic comparison of hierarchical ensemble methods vs structured output SOTA methods across GO ontologies and organisms for the metric AUROC.
In each panel the left heatmap refers to direct comparison of AUROC results: green color indicates better HEMDAG results; the right panel refers to the paired
Wilcoxon rank sum test. Blue cells show significantly better results for HEMDAG.
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Fig. S19. Synoptic comparison of hierarchical ensemble methods vs structured output SOTA methods across GO ontologies and organisms for the metric AUPRC.
In each panel the left heatmap refers to direct comparison of AUPRC results: green color indicates better HEMDAG results; the right panel refers to the paired
Wilcoxon rank sum test. Blue cells show significantly better results for HEMDAG.
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Fig. S20. Synoptic comparison of hierarchical ensemble methods vs structured output SOTA methods across GO ontologies and organisms for the metric Fiy,qq -
In each panel the left heatmap refers to direct comparison of F), . results: green color indicates better HEMDAG results; the right panel refers to the paired
Wilcoxon rank sum test. Blue cells show significantly better results for HEMDAG.
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S8.5 Win-tie-loss

Table S14 shows for each performance metric how often HEMDAG wins, ties or loses against a SOTA approaches across organisms and GO domains,
according to the two-sided paired Wilcoxon rank sum test (o« = 0.05).

Table S14. Counting of wins, ties and losses of ISO-DESCENS vs SOTA methods. For each performance metric, we have in total 432 occurrences since we
considered 6 HEMs, 4 SOTA, 3 GO domains and 6 organisms.

AUROC AUPRC F.,a.x Tot.

win 336 340 268 944
tie 75 80 155 310
loss 21 12 9 42

Tot. 432 432 432 1296

Heatmap depicted in Fig. S21 compares ISO-DESCENS algorithms (rows) against competitor structured output methods (columns), by putting together
the results coming from all organisms and GO domains. More precisely, the heatmap shows when the comparison of a pair is statistically significant
according to a two-sided paired Wilcoxon rank sum test for the metric AUROC. In particular, we say that a hierarchical ensemble algorithm significantly
“beats” (green cells) a competitor method if the Wilcoxon test rejects the null hypothesis (o« < 0.05); conversely, we say that a hierarchical ensemble
significantly “loses”(blue cells) against the competitor and then we say that a hierarchical ensemble method “ties” (white cells) against a competitor
method when no statistically significant difference is observed. Since we took into account six different organisms and three GO domains, a heatmap cell
can range from a maximum of +18 (i.e., the hierarchical algorithm always “wins” against a SOTA method) to a minimum of -18 (i.e., the hierarchical
algorithm always “loses” against a SOTA method).

svm-1SOdescensTF

svm-ISOdescensW
svm-ISOdescensTAU
rf-ISOdescensTF
rf-1ISOdescensW
rf-ISOdescensTAU

Fig. S21. Win-tie-loss heatmap and boxplot for the AUROC metric grouping the results coming from all organisms and GO domains and counting how many times
an ensemble algorithm wins, ties or loses against a structured output SOTA method according to the two-sided paired Wilcoxon rank sum test with o < 0.05.
Since we took into account six different organisms and three GO domains, a heatmap cell can range from a maximum of +18 to a minimum of -18. The black and
white line in the boxplots refer respectively to the median and the mean of an method across organisms and ontologies.
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S8.6 Boxplots
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Fig. $22. Distribution of AUROC values across GO terms for each GO domain and organism between HEMDAG and structured output SOTA methods. The black

and white line in the boxplots refer respectively to the median and the mean of an method computed across GO terms.
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Fig. S23. Distribution of AUPRC values across GO terms for each GO domain and organism between HEMDAG and structured output SOTA methods. The black

and white line in the boxplots refer respectively to the median and the mean of an method computed across GO terms.
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Fig. S24. Distribution of F, ., values across GO terms for each GO domain and organism between HEMDAG and structured output SOTA methods. The black

and white line in the boxplots refer respectively to the median and the mean of an method computed across GO terms.
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S8.7 Precision-Recall curves
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Fig. S25. Comparison of precision at different recall levels averaged across BP terms between ISO-DESCENS (by using rf as base learner) and SOTA structured

output methods.
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Fig. $26. Comparison of precision at different recall levels averaged across MF terms between ISO-DESCENS (by using rf as base learner) and SOTA structured

output methods.
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Fig. S27. Comparison of precision at different recall levels averaged across CC terms between ISO-DESCENS (by using rf as base learner) and SOTA structured

output methods.
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Fig. $28. Comparison of precision at different recall levels averaged across BP terms between ISO-DESCENS (by using SVMs as base learners) and SOTA structured

output methods.
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Fig. $29. Comparison of precision at different recall levels averaged across BP terms between ISO-DESCENS (by using SVMs as base learners) and SOTA structured

output methods.
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Fig. S$30. Comparison of precision at different recall levels averaged across BP terms between ISO-DESCENS (by using SVMs as base learners) and SOTA structured

output methods.
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S$8.8 Empirical computational time

Table S15 compares empirical computational time in minutes (training + test phase) between HEMDAG algorithms and structured output SOTA methods.
To calculate the running time of HEMDAG algorithms, we firstly averaged the computational time of the hierarchical algorithms and then we summed
(separately for each GO domain) the elapsed time of the flat classifier to the average time of the hierarchical algorithms. The computational time of svm is
low because we implemented a multi-thread version of LiblineaR. Instead, to calculate the elapsed time of DeepGOCNN, DiamondScore, DeepGOPlus we
just summed (for each GO domain) the elapsed time of the deep convolutional neural network with that coming from respectively the sequence similarity
(diamond) and the hierarchical correction step. For GOstruct, we simply report the elapsed time for each ontology. From Table S15 we can note that
HEMDAG methods are in average significantly faster than GOstruct, DiamondScore, DeepGOCNN and DeepGOPlus across all the considered organisms
and GO domains, even if two of our HEMs variants (i.e. [ISOdescensW, ISOdescensTAU) have one hyper-parameter to be tuned. All the experiments
were executed by using a machine having an Intel Xeon CPU E5-2630 2.60GHz with 128GB of RAM.

Table S15. Empirical computational time (in minutes): HEMDAG vs structured-output SOTA methods. rf stands for random forest and svm for support vector
machine. The elapsed time (in minutes) includes both training and test phase. Numbers in brackets represent the elapsed time of the training and the test phase.

Organism Domain HEMDAG (rf+hem) HEMDAG (svm+hem) GOstruct DeepGOCNN DiamondScore DeepGOPlus

BP 65 (43 +22) 22 (2 +20) 705 309 (309+40) 309 (309+0) 310 (309+1)
CAEEL  MF 43+1) 1(0+1) 7 203 (223+0) 223 (223+0) 223 (223+0)
cc 5@A+1) 1O0+1) 108 174 (174+0) 174 (174+0) 174 (174+0)
BP 42+2) 2(0+2) 0 55 (55+0) 55 (55+0) 55 (55+0)
CHICK  MF 0(0+0) 0(0+0) 0 11 (11+0) 11 (11+0) 11 (11+0)
cc 0(0+0) 0(0+0) 0 12 (12+0) 12 (12+0) 12 (12+0)
BP 92 (67 + 25) 25(3 +22) 1565 318 (318+40) 318 (318+0) 320 (318+2)
DANRE  MF 32+1) 1(0+1) 4 153 (153+0) 153 (153+0) 153 (153+0)
cc 1(1+0) 0(0+0) 0 95 (95+0) 95 (95+0) 95 (95+0)
BP 291 (206 + 85) 86 (10 + 76) 6324 487 (487+0) 487 (487+0) 491 (487+4)
DROME  MF 13(11+2) 2(0+2) 347 330(33040) 330 (330+0) 330 (330+0)
cc 20 (17 +3) 4(1+3) 715 332 (33240)  332(332+40) 332 (332+0)
BP 994 (707 + 287) 335 (67 + 268) 23971 841 (840+1) 840 (840+0) 850 (840+10)
HUMAN  MF 340 (307 + 33) 92 (59 + 33) 19414 946 (946+0) 946 (946+0) 948 (946+2)
cc 156 (143 + 13) 42 (28 + 14) 13021 616(616+0) 616 (616+0) 618 (616+2)
BP 1129 (786 + 343) 385 (72 +313) 26758 728(727+1)  727(727+0) 738 (727+11)
MOUSE  MF 85 (77 + 8) 14 (6+8) 4127 S81(58140) 581 (581+0) 582 (581+1)
cc 79(72+7) 136+7) 5263 561(56140) 561 (561+0) 562 (561+1)

References

Agresti, A. and Coull, B. A. (1998). Approximate is better than exact for interval estimation of binomial proportions. Statistical Science, 52(2), 119-126.

Ambroise, C. and McLachlan, G. J. (2002). Selection bias in gene extraction on the basis of microarray gene-expression data. PNAS, 99(10), 6562—-6566.

Barlow, R. (1972). Statistical Inference Under Order Restrictions: The Theory and Application of Isotonic Regression. J. Wiley.

Barrell, D, et al. (2009). The GOA database in 2009 - an integrated gene ontology annotation resource. NAR, 37(Database-Issue), 396—403.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Brown, L. D., e al. (2001). Interval estimation for a binomial proportion. Statistical Science, 16, 101-133.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 785-794.

Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. biometrika, 26(4), 404-413.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.

Dettling, M. and Biihlmann, P. (2003). Boosting for tumor classification with gene expression data. Bioinformatics, 19(9), 1061-1069.

Frasca, M. and Cesa-Bianchi, N. (2018). Combining cost-sensitive classification with negative selection for protein function prediction.

Friedman, J., et al. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), 1—22.

Jiang, Y., et al. (2016). An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol., 17(1), 184.

Kuhn, M. (2008). Building predictive models in r using the caret package. Journal of Statistical Software, Articles, 28(5), 1-26.

Kulmanov, M. and Hoehndorf, R. (2020). DeepGOPlus: improved protein function prediction from sequence. Bioinformatics, 36(2), 422-429.

Louis, T. (1981). Confidence intervals for a binomial parameter after observing no successes. The American Statistician, 35, 154.

Notaro, M., et al. (2017). Prediction of human phenotype ontology terms by means of hierarchical ensemble methods. BMC Bioinform., 18(1),
449:1-449:18.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Radivojac, P, er al. (2013). A large-scale evaluation of computational protein function prediction. Nat. methods, 10(3), 221-227.

Rumelhart, D., et al. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.

Saito, T. and Rehmsmeier, M. (2015). The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced
datasets. PLOS ONE, 10(3), 1-21.

Szklarczyk, D., et al. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. NAR, 43, 447-452.

Szklarczyk, D., etal. (2018). STRING v11: protein—protein association networks with increased coverage, supporting functional discovery in genome-wide
experimental datasets. NAR, 47(D1), D607-D613.



HEMDAG: a hierarchical ensemble-based tool 43

Valentini, G. (2011). True path rule hierarchical ensembles for genome-wide gene function prediction. IEEE/ACM Trans. Comput. Biol. Bioinform., 8(3),
832-847.

Venables, W. N. and Ripley, B. D. (2002). Modern applied statistics with S, 4th Edition. Statistics and computing. Springer.

Zhang, H. (2004). The optimality of naive bayes. In Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society

Conference, Miami Beach, Florida, USA, pages 562-567.
Zhou, N., et al. (2019). The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through

experimental screens. Genome Biol., 20(1), 244.



