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Abstract

Protein function prediction is a complex multi-class multi-label classification
problem, characterized by multiple issues such as the the incompleteness of the
available annotations, the integration of multiple sources of high dimensional biomolec-
ular data, the unbalance of several functional classes, and the difficulty of univo-
cally determining negative examples. Moreover the hierarchical relationships be-
tween functional classes, that characterize both the Gene Ontology and FunCat
taxonomies, motivate the development of hierarchy-aware prediction methods that
showed significantly better performances than hierarchical-unaware“flat” predic-
tion methods. In this paper we provide a comprehensive review of hierarchical
methods for protein function prediction based on ensembles of learning machines.
According to this general approach a separate learning machine is trained to learn
a specific functional term and then the resulting predictions are assembled in a
“consensus” ensemble decision, taking into account the hierarchical relationships
between classes. The main hierarchical ensemble methods proposed in the liter-
ature are discussed in the context of existing computational methods for protein
function prediction, highlighting their characteristics, advantages and limitations.
Open problems of this exciting research area of computational biology are finally
considered, outlining novel perspectives for future research.

1 Introduction
Exploiting the wealth of biomolecular data accumulated by novel high-throughput
biotechnologies, “in silico” protein function prediction can generate hypotheses to
drive the biological discovery and validation of protein functions [69]. Indeed, “in
vitro” methods are costly in time and money, and automatic prediction methods can
support the biologist in understanding the role of a protein or of a biological process,
or in annotating a new genome at high level of accuracy, or more in general in solving
problems of functional genomics [125].

The Automated Function Prediction (AFP ) is a multiclass, multilabel classification
problem characterized by hundreds or thousands of functional classes structured ac-
cording to a predefined hierarchy. Even in principle also unsupervised methods can be
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applied to AFP, due to the inherent difficulty of extracting functional classes without
exploiting any available a priori information [177, 19], usually supervised or semi-
supervised learning methods are applied in order to exploit the available a priori infor-
mation about gene annotations.

From a computational standpoint AFP is a challenging problem for several reasons:

• The number of functional classes is usually large: hundreds for the Functional
Catalogue (FunCat) [146] or thousands for the Gene Ontology (GO) [167].

• Proteins may be annotated for multiple functional classes: since each protein
may belong to more than one class at the same time, the classification problem
is multilabel.

• Multiple sources of data are available for each protein: high-throughput biotech-
nologies make available an increasing number of sources of genomic and pro-
teomic data. Hence, in order to exploit all the information available for each pro-
tein, we need learning methods that are able to integrate different data sources [176].

• Functional classes are hierarchically related: annotations are not independent
because functional classes are hierarchically organized; in general, known func-
tional relationships (such as taxonomies) can be exploited to incorporate a priori
knowledge in learning algorithms or to introduce explicit constraints between
labels.

• Small number of annotations for each class: typically functional classes are
severely unbalanced, with a small number of available “positive” annotations.

• Multiple possible definitions of negative examples: since we only have positive
annotations 1, the notion of negative example is not uniquely determined, and dif-
ferent strategies of choosing negative examples can be in principle applied [195].

• Different reliability of functional labels: functional annotations have different
degrees of evidence; that is, each label is assigned to a gene with a specific level
of reliability.

• Complex and noisy data: data are usually complex (e.g., high-dimensional, large-
scale, graph-structured) and noisy.

Most of the computational methods for AFP have been applied to unicellular or-
ganisms (e.g. S. cerevisiae) [50, 21, 100], but recently several approaches have been
applied to multi-cellular organisms (such as M. musculus or the A. thaliana plant model
organisms [125, 168, 85, 114, 102, 129]).

Several computational approaches, and in particular machine learning methods,
have been proposed to deal with the above issues, ranging from sequence-based meth-
ods [83], to network-based methods [153], structured output algorithm based on ker-
nels [160] and hierarchical ensemble methods [12].

1The total number of GO negative annotations is about 2500, considering all species (August 2013).
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Other approaches focused primarily on the integration of multiple sources of data,
since each type of genomic data captures only some aspects of the genes to be clas-
sified, and a specific source can be useful to learn a specific functional class while
being irrelevant to others. In the literature, many approaches have been proposed to
deal with this topic: for example, functional linkage networks integration [49], kernel
fusion [100], vector space integration [124], and ensemble systems [137].

Extensive experimental studies showed that flat prediction, i.e. predictions for each
class made independently of the other classes, introduce significant inconsistencies in
the classification, due to the violation of the true path rule, that governs the functional
annotations of genes both in the GO and in FunCat taxonomies [118]. According to this
rule, positive predictions for a given term must be transferred to its “ancestor” terms
and negative predictions to its descendants (see Appendix A and Section 7 for more
details about the GO and the true path rule). Moreover flat predictions are difficult to
interpret because they may be inconsistent with one another. A method that claims, for
example, that a protein has homodimerization activity but does not have dimerization
activity is clearly incorrect, and a biologist attempting to interpret these results would
likely not trust either prediction [118].

It is worth noting that the results of the Critical Assessment of Functional An-
notation (CAFA) challenge, a recent comprehensive critical assessment and compari-
son of different computational methods for AFP [129], showed that AFP is charac-
terized by multiple complex issues, and one of the best performing CAFA methods
corrected flat predictions taking into account the hierarchical relationships between
functional terms, with an approach similar to that adopted by hierarchical ensemble
methods [52]. Indeed hierarchical ensemble methods embed in the learning process
the relationships between functional classes. Usually this is performed in a second
“reconciliation” step, where the predictions are modified to make them consistent with
the ontology [82, 43, 36, 151]. More in general these methods exploit the relationships
between ontology terms, structured according to a forest of trees [146] or a directed
acyclic graph [167] to significantly improve prediction performances with respect to
“flat” prediction methods [76, 179, 3].

Hierarchical classification and in particular ensemble methods for hierarchical clas-
sification have been applied in several domains different from protein function predic-
tion, ranging from text categorization [92, 44, 200] to music genre classification [32,
54, 171], hierarchical image classification [22, 11] and video annotation [62], and au-
tomatic classification of World Wide Web documents [127, 33]. The present review
focuses on hierarchical ensemble methods for AFP. For a more general review on hier-
archical classification methods and their applications in different domains, see [155].

The paper is structured as follows. In Section 2 we provide a synthetic picture of the
main categories of protein function methods, to properly position hierarchical ensemble
methods in the context of computational methods for AFP. In section 3 the main com-
mon characteristics of hierarchical ensemble algorithms, as well as a general taxonomy
of these methods are proposed. The following five sections focus on the main families
of hierarchical methods for AFP, and discuss their main characteristics: Section 4 in-
troduces Hierarchical Top-Down methods, Section 5 Bayesian ensemble approaches,
Section 6 Reconciliation methods, Section 7 True Path Rule ensemble methods and
the last one (Section 8) ensembles based on decision trees. Section 9 critically dis-
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cuss the main issues and limitations of hierarchical ensemble methods and shows that
this approach, such as the other current approaches for AFP, cannot be successfully
applied without considering the large set of complex learning issues that characterize
the AFP problem. The last two sections discuss the open problems and future possi-
ble research lines in the context of hierarchical ensemble methods and summarize the
main findings in this exciting research area. In the Appendix some basic information
about the FunCat and the GO, i.e. the two main hierarchical ontologies that are widely
used to annotate proteins in all organisms, are provided , as well as the characteristics
of the hierarchical-aware performance measures proposed in the literature to assess
the accuracy and the reliability of the predictions made by hierarchical computational
methods.

2 A taxonomy of protein function prediction methods
Several computational methods for the AFP problem have been proposed in the litera-
ture. Some methods provided predictions a relatively small set of functional classes [100,
172, 175], while others considered predictions extended to larger sets, using Support
Vector Machines and semidefinite programming [100], artificial neural networks [193],
functional linkage networks [84, 49], Bayesian Networks [172], or methods that com-
bine functional linkage networks with learning machines using a logistic regression
model [168] or simple algebraic operators [85].

Other research lines for AFP explicitly take into account the hierarchical nature
of the multi-label classification problem. For instance, structured-output methods are
based on the joint kernelization of both input variables and output labels, using e.g.
perceptron-like learning algorithms [159] or maximum-margin algorithms [7]. Other
approaches improve the prediction of GO annotations by extracting implicit seman-
tic relationships between genes and functions [63]. Finally other methods adopted
an ensemble approach [181] to take advantage of the intrinsic hierarchical nature of
protein function prediction, explicitly considering the relationships between functional
classes [152, 185, 118, 178].

Computational methods for AFP, mostly based on machine learning methods, can
be schematically grouped in four families:

1. Sequence-based methods

2. Network-based methods

3. Kernel methods for structured output spaces

4. Hierarchical ensemble methods

This grouping is neither exhaustive nor strict, meaning that certain methods do not
belong to any of these groups, and others belong to more than one.

2.1 Sequence-based methods
Algorithms based on alignment of sequences represent the first attempts to computa-
tionally predict the function of proteins [5, 6]: similar sequences are likely to share
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common functions, even if it is well-known that secondary and tertiary structure con-
servation are usually more strictly related to protein functions. However algorithms
able to infer similarities between sequences are today standard methods of assigning
functions to proteins in newly sequenced organisms [51, 83]. Of course, global or
local structure comparison algorithms between proteins can be applied to detect func-
tional properties [105], and in this context, the integration of different sequence and
structure-based prediction methods represents a major challenge [126].

Even if most of the research efforts for the design and development of AFP meth-
ods concentrated on machine learning methods, it is worth noting that in the AFP 2011
challenge [129] one of the best performing method is represented by a sequence-based
algorithm [65]. Indeed, when the only information available is represented by a raw
sequence of aminoacids or nucleotides, sequence-based methods can be competitive
with state-of-the-art machine learning methods by exploiting homology-based infer-
ence [78].

2.2 Network-based methods.
These methods usually represent each dataset through an undirected graph G = (V,E),
where nodes v ∈ V correspond to gene/gene products, and edges e ∈ E are weighted
according to the evidence of co-functionality implied by data source [106, 184]. These
algorithms are able to transfer annotations from previously annotated (labeled) nodes
to unannotated (unlabeled) ones by exploiting “proximity relationships” between con-
nected nodes. Basically, these methods are based on transductive label propagation
algorithms that predict the labels of unannotated examples without using a global pre-
dictive model [172, 49, 114]. Several method exploited the semantic similarity between
GO terms [191, 194] to derive functional similarity measures between genes to con-
struct functional terms, using then supervised or semi-supervised learning algorithm to
infer GO annotations of genes [199, 166, 123, 201].

Different strategies to learn the unlabeled nodes have been explored by “label prop-
agation” algorithms, that is methods able to “propagate” the labels of annotated pro-
teins across the networks, by exploiting the topology of the underlying graph. For
instance, methods based on the evaluation of the functional flow in graphs [184, 116],
methods based on Hopfield networks [84, 17, 67], methods based on Markov [57, 93]
and Gaussian Random Fields [175, 114], but also simple “guilt-by-association” meth-
ods [120, 107], based on the assumption that connected nodes/proteins in the func-
tional networks are likely to share the same functions. Recently methods based on
kernelized score functions, able to exploit both local and global semi-supervised learn-
ing strategies have been successfully applied to AFP [131] as well as to disease gene
prioritization [138] and drug repositioning problems [140, 141].

[16] showed that different graph-based algorithms can be cast into a common frame-
work where a quadratic cost objective function is minimized. In this framework closed
form solutions can be derived by solving a linear system of size equal to the cardinality
of nodes (proteins), or using fast iterative procedures such as the Jacobi method [148].
A network-based approach, alternative to label propagation and exhibiting strong the-
oretical predictive guarantees in the so-called mistake bound model, has been recently
proposed by [39].
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2.3 Kernel methods for structured output spaces.
By extending kernels to the output space, the multilabel hierarchical classification prob-
lem is solved globally: the multilabels are viewed as elements of a structured space
modeled by suitable kernel functions [173, 144, 98], and structured predictions are
viewed as a maximum a-posteriori prediction problem [8].

Given a feature space X and a space of structured labels Y , the task is to learn a
mapping f : X → Y by an induced joint kernel function k that computes the “com-
patibility” of a given input-output pair (x,y): for each test example x ∈ X we need to
determine the label y ∈ Y such that y = argmaxy∈Y k(x,y), for any x ∈ X . By model-
ing probabilities by a log-linear model, and using a suitable feature map φ(x,y), we can
define an induced joint kernel function that uses both inputs and outputs to compute
the ”compatibility” of a given input-output pair [8]:

k : (X ×Y )× (X ×Y )→ R (1)

Structured output methods infer a label ŷ by finding the maximum of a function g that
uses the previously defined joint kernel (1):

ŷ = argmax
y∈Y

g(x,y) (2)

The GOstruct system implemented a structured Perceptron, and a variant of the
structured support vector machine [173]. This approach has been successfully applied
to the the prediction of GO terms in mouse and other model organisms [160]. Struc-
tured output maximum-margin algorithms have been also applied to the tree-structured
prediction of enzyme functions [7, 144].

2.4 Hierarchical ensemble methods
Other approaches take explicitly into account the hierarchical relationships between
functional terms [64, 24, 152, 185, 82, 151]. Usually they modify the “flat” predic-
tions (i.e. predictions made independently of the hierarchical structure of the classes)
and correct them improving accuracy and consistency of the multilabel annotations of
proteins [118].

The flat approach makes predictions for each term independently and, consequently,
the predictor may assign to a single protein a set of terms that are inconsistent with one
another. A possible solution for this problem is to train a classifier for each term of
the reference ontology, to produce a set of prediction at each term and, finally, to rec-
oncile the predictions by tacking into account the relationships between the classes of
the ontology. Different ensemble based algorithms have been proposed ranging from
methods restricted to multilabels with single and no partial paths [55] to methods ex-
tended to multiple and also partial paths [40]. Many recent published works clearly
demonstrated that this approach ensures an increment in precision, but this comes at
expenses of the overall recall [125, 76].

In the next section we discuss in detail hierarchical ensemble methods, since they
constitute the main topic of this review.
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Figure 1: Ensemble of classifiers

3 Hierarchical ensemble methods: exploiting the hier-
archy to improve protein function prediction

Ensemble methods are one of the main research areas of machine learning [60, 181,
119, 139]. From a general standpoint ensembles of classifiers are sets of learning ma-
chines that work together to solve a classification problem (Fig. 1). Empirical studies
showed that both in classification and regression problems ensembles improves on sin-
gle learning machines, and moreover large experimental studies compared the effec-
tiveness of different ensemble methods on benchmark data sets [14, 61, 9, 158], and
they have been successfully applied to several computational biology problems [59,
143, 182, 1, 145]. Ensemble methods have been also successfully applied in an unsu-
pervised setting [170, 18]. Several theories have been proposed to explain the charac-
teristics and the successful application of ensembles to different application domains.
For instance, Allwein, Schapire and Singer interpreted the improved generalization
capabilities of ensembles of learning machines in the framework of large margin clas-
sifiers [150, 4], Kleinberg in the context of Stochastic Discrimination Theory [89],
and Breiman and Friedman in the light of the bias–variance analysis borrowed from
classical statistics [29, 70]. The interest in this research area is motivated also by the
availability of very fast computers and networks of workstations at a relatively low cost
that allow the implementation and the experimentation of complex ensemble methods
using off-the-shelf computer platforms.

Constraints between labels and, more in general, the issue of label dependence have
been recognized to play a central role in multilabel learning [56]. Protein function
prediction can be regarded as a paradigmatic multilabel classification problem, where
the exploitation of a priori knowledge about the hierarchical relationships between the
labels can dramatically improve classification performance [118, 112, 43].

In the context of AFP problems, ensemble methods reflect the hierarchy of func-
tional terms in the structure of the ensemble itself: each base learner is associated to a
node of the graph representing the functional hierarchy and learns a specific GO term or
FunCat category. The predictions provided by the trained classifiers are then combined
by exploiting the hierarchical relationships of the taxonomy.

In their more general form hierarchical ensemble methods adopt a two-steps learn-
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ing strategy:

1. In the first step each base learner separately or interacting with connected base
learners learns the protein functional category on a per-term basis. In most cases
this yields a set of independent classification problems, where each base learning
machine is trained to learn a specific functional term, independently of the other
base learners.

2. In the second step the predictions provided by the trained classifiers are com-
bined by considering the hierarchical relationships between the base classifiers
modeled according to the hierarchy of the functional classes.

Fig. 2 depicts the two learning steps of hierarchical ensemble methods. In the
first step a learning algorithm (a square object in Fig. 2 a) is applied to train the base
classifiers associated to each class (represented with numbers from 1 to 9). Then the
resulting base classifiers (circles) in the prediction phase exploit the hierarchical rela-
tionships between classes to combine its predictions with those provided by the other
base classifiers (Fig. 2 b). Note that the dummy 0 node is added to obtain a rooted
hierarchy. Up and down arrows represent the possibility of combining predictions by
exploiting those provided respectively by children and parents classifiers, according to
a bottom-up or top-down learning strategy. Note that both “local” combinations are
possible (e.g. the prediction of node 5 may depend only on the prediction of node 1),
but also “global” combinations can be considered, by taking into account the predic-
tions across the overall structure of the graph (e.g. predictions for node 9 can depend
on all the predictions made by all the other base classifiers from 1 to 8). Moreover
both top-down propagation of the predictions (down arrows, Fig. 2 b) and bottom-up
propagation (up arrows) can be considered, depending on the specific design of the
hierarchical ensemble algorithm.

(a) (b)

Figure 2: Schematic representation of the two main learning steps of hierarchical en-
semble methods. (a) Training of base classifiers (b) Top-down and/or bottom up prop-
agation of the predictions.

This ensemble approach is highly modular: in principle any learning algorithm can
be used to train the classifiers in the first step, and both annotation decisions, probabil-
ities or whatever scores provided by each base learner can be combined, depending on
the characteristics of the specific hierarchical ensemble method.
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In this section we provide some basic notation and an ensemble taxonomy that will
be used to introduce the different hierarchical ensemble methods for AFP.

3.1 Basic notation
A gene/gene product g can be represented through a vector x ∈ Rd having d different
features (e.g., gene expression levels across d different conditions, sequence similari-
ties with other genes/proteins, or presence or absence of a given domain in the corre-
sponding protein or genetic or physical interaction with other proteins). Note that we,
for a sake of simplicity and with a certain approximation, we refer in the same way
to genes and proteins, even if it is well-known that a given gene may correspond to
multiple proteins. A gene g is assigned to one or more functional classes in the set
C = {c1,c2, . . . ,cm} structured according to a FunCat forest of trees T or a directed
acyclic graph G of the Gene Ontology 2. The assignments are coded through a vector
of multilabels y = (y1,y2, . . . ,ym) ∈ {0,1}m, where g belongs to class ci if and only if
yi = 1.

In both the Gene Ontology (GO) and FunCat taxonomies the functional classes are
structured according to a hierarchy and can be represented by a directed graph, where
nodes correspond to classes, and edges to relationships between classes. Hence the
node corresponding to the class ci can be simply denoted by i. We represent the set of
children nodes of i by child(i), and the set of its parents by par(i). Moreover ychild(i)
denotes the labels of the children classes of node i and analogously ypar(i) denotes the
labels of the parent classes of i. Note that in FunCat only one parent is permitted,
since the overall hierarchy is a tree forest, while in the GO, more parents are allowed,
because the relationships are structured according to a directed acyclic graph.

Hierarchical ensemble methods train a set of calibrated classifiers, one for each
node of the taxonomy T . These classifiers are used to derive estimates p̂i(g) of the
probabilities pi(g) = P

(
Vi = 1 | Vpar(i) = 1, g

)
for all g and i, where (V1, . . . ,Vm) ∈

{0,1}m is the vector random variable modeling the unknown multilabel of a gene g,
and Vpar(i) denotes the random variables associated to the parents of node i. Note that
pi(g) are probabilities conditioned to Vpar(i) = 1, that is the probability that a gene is
annotated to a given term i, given that the gene is just annotated to its parent terms,
thus respecting the true path rule. Ensemble methods infer a multilabel assignment
ŷ = (ŷ1, . . . , ŷm) ∈ {0,1}m based on estimates p̂1(g), . . . , p̂m(g).

3.2 A taxonomy of hierarchical ensemble methods
Hierarchical ensemble methods for AFP share several characteristics, from the two-
steps learning approach to the exploitation of the hierarchical relationships between
classes. For these reasons is quite difficult to clearly and univocally individuate a tax-
onomy of hierarchical ensemble methods. Here we show a taxonomy useful mainly to
describe and discuss existing methods for AFP. For a recent review and taxonomy of
hierarchical ensemble methods, not specific for AFP problems, we refer the reader to
the comprehensive Silla’s and others review [155].

2Usually a a dummy root class c0, which every gene belongs to, is added to T or G to facilitate the
processing
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In the following sections we discuss the following groups of hierarchical ensemble
methods:

• Top-down ensemble methods. These methods are characterized by a simple top-
down approach in the second step: only the output of the parent node/base clas-
sifier influences the output of the children, thus resulting in a top-down propaga-
tion of the decisions.

• Bayesian ensemble methods. These are a class of methods theoretically well-
founded and in some cases they are optimal from a Bayesian standpoint.

• Reconciliation methods. This is a heterogeneous class of heuristics by which we
can combine the predictions of the base learners, by adopting different “local”
or “global” combination strategies.

• True Path Rule ensembles. These methods adopt an heuristic approach based on
the “true path rule” that governs both the GO and FunCat ontologies.

• Decision tree-based ensembles. These methods are characterized by the applica-
tion of decision trees as base learners or by adopting decision tree-like learning
strategies to combine predictions of the base learners.

Despite this general characterization, several methods could be assigned to different
groups, and for several hierarchical ensemble methods it is difficult to assign them to
any the introduced classes of methods.

For instance, in [81, 97, 20] the authors used the hierarchy only to construct training
sets different for each term of the Gene Ontology, by determining positive and negative
examples on the basis of the relationships between functional terms. In [64] for each
classifier associated with a node, a gene is labeled as positive (i.e. belonging to the
term associated with that node) if it actually belongs to that node, or as negative if it
does not belong to that node or to the ancestors or descendants of the node.

Other approaches exploited the correlation between nearby classes [152, 26, 3].
Shahbaba et al. [152] take into account the hierarchy to introduce correlation between
functional classes, using a multinomial logit model with Bayesian priors in the con-
text of E. coli functional classification with Riley’s hierarchies [142]. Bogdanov et al.
incorporated functional interrelationships between terms during the extraction of fea-
tures based on annotations of neighbouring genes and then applied a nearest-neighbour
classifier to predict protein functions [26]. The HiBLADE method (Hierarchical multi-
label Boosting with LAbel DEpendency) [3], takes advantage of not only the pre-
established hierarchical taxonomy of the classes, but also effectively exploits the hid-
den correlation among the classes that is not shown through the class hierarchy, thereby
improving the quality of the predictions. In particular the dependencies of the chil-
dren for each label in the hierarchy are captured and analyzed using Bayes method
and instance-based similarity. Experiments using the FunCat taxonomy and the yeast
model organism show that the proposed method is competitive with TPR-W (Sec-
tion 7.2) and HABYES-CS (Section 5.3) hierarchical ensemble methods.

An adaptation of a classical multiclass boosting algorithm [149] has been adapted
to fit the hierarchical structure of the FunCat taxonomy [2]: the method is relatively
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simple and straightforward to be implemented and achieves competitive results for the
AFP in the yeast model organism.

Finally other hierarchical approaches have been proposed in the context of com-
petitive networks learning framework. Competitive networks are well-known unsu-
pervised and supervised methods able to map the input space into a structured output
space where clusters or classes are usually arranged according to a grid topology, and
where learning adopts at the same way a competition, cooperation and adaptation strat-
egy [91]. Interestingly enough, in [27] the authors adopted this approach to predict the
hierarchy of gene annotations in the yeast model organism, by using a tree-topology
according to the FunCat taxonomy: each neuron is connected with its parent or with
its children. Moreover each neuron in tree-structured output layer is connected to all
neurons of the input layer, representing the instances, i.e. the set of genomic features
associated to each gene to be classified. Results obtained with the hierarchy of Enzyme
Commission Codes showed that this approach is competitive with those obtained with
hierarchical decision trees ensembles [151] (Section. 8).

To provide a general picture of the methods discussed in the following sections,
Table 1 summarizes their main characteristics. The first two columns report the name
and a reference to the method, the third whether multiple or single paths across the
taxonomy are allowed, the next whether partial paths are considered (i.e. paths that
do not end with a leaf). The successive columns refer to the class structure (a tree or
a DAG), to the adoption or not of cost-sensitive (i.e. unbalance-aware) classification
approaches, to the adoption of strategies to properly select negative examples in the
training phase. Finally the last three columns summarize the type of the base learner
used (“spec” means that only a specific type of base learner is allowed, “any” that any
type of learner can be used within the method), whether the method improves or not
with respect to the flat approach and the mode of processing of the nodes (“TD” – top-
down approach, and “TD&BUP” – adopting both top-down and bottom-up strategies).
Of course methods having more checkmarks are more flexible and in general methods
that can process a DAG can also process tree-structured ontologies, but the viceversa
is not guaranteed, while the type of node processing relies on the way the information
is propagated across the ontology. It is worth noting that all the considered methods
improves on baseline “flat” classification methods.

4 Hierarchical Top-Down (HTD) ensembles
These ensemble methods exploit the hierarchical relationships between functional terms
in a top-to-bottom fashion, i.e. considering only the relationships denoted by the down
arrows in Fig. 2 b. The basic Hierarchical Top-Down ensemble method (HTD) algo-
rithm is straightforward: for each gene g, starting from the set of nodes at the first
level of the graph G (denoted by root(G)), the classifier associated to the node i ∈ G
computes whether the gene belongs to the class ci. If yes, the classification process con-
tinues recursively on the nodes j ∈ child(i); otherwise, it stops at node i, and the nodes
belonging to the descendants rooted at i are all set to 0. To introduce the method we
use probabilistic classifiers as base learners trained to predict class ci associated to the
node i of the hierarchical taxonomy. Their estimates p̂i(g) of P

(
Vi = 1 |Vpar(i) = 1, g

)
11
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Table 1: Characteristics of some of the main hierarchical ensemble methods for AFP

Methods Ref. multi partial class cost sel base improves node
path path struct sens neg learn on flat process

HMC-LMLP [35, 37]
√ √

TREE ANY
√

TD
HTD-CS [43]

√ √
TREE

√
ANY

√
TD

HTD-MULTI [79]
√

TREE ANY
√

TD
HTD-PERLEV [122] TREE SPEC

√
TD

HTD-NET [82]
√ √

DAG ANY
√

TD
BAYES NET-ENS [12]

√ √
DAG

√
SPEC

√
TD&BUP

HIER-MB AND BFS [76]
√ √

DAG ANY
√

TD&BUP
HBAYES [38, 40]

√ √
TREE

√
ANY

√
TD&BUP

HBAYES-CS [42]
√ √

TREE
√ √

ANY
√

TD&BUP
RECONC-HEURISTIC [118]

√ √
DAG ANY

√
TD

CASCADED LOG [118]
√ √

DAG ANY
√

TD
PROJECTION-BASED [118]

√ √
DAG ANY

√
TD&BUP

TPR [183, 179]
√ √

TREE
√

ANY
√

TD&BUP
TPR-W [179]

√ √
TREE

√ √
ANY

√
TD&BUP

TPR-W WEIGHTED [47]
√ √

TREE
√

ANY
√

TD&BUP
DECISION-TREE-ENS [151]

√ √
DAG SPEC

√
TD&BUP

are used by the HTD ensemble to classify a gene g as follows

ŷi =


{ p̂i(g)> 1

2} if i ∈ root(G)
{p̂i(g)> 1

2} if i /∈ root(G) ∧ { p̂par(i)(g)>
1
2}

0 if i /∈ root(G) ∧ { p̂par(i)(g)≤ 1
2}

(3)

where {x} = 1 if x > 0 otherwise {x} = 0, and p̂par(i) is the probability predicted for
the parent of the term i. It is easy to see that this procedure ensures that the predicted
multilabels ŷ = (ŷ1, . . . , ŷm) are consistent with the hierarchy. We can apply the same
top-down procedure also using non probabilistic classifiers, i.e. base learners generat-
ing continuous scores, or also discrete decisions, by slightly modifying (3).

In [42] a cost-sensitive version of the basic top-down hierarchical ensemble method
HTD has been proposed: by assigning ŷi before the label of any j in the subtree rooted
at i, the following rule is used:

ŷi =

{
p̂i ≥

1
2

}
×{ŷpar(i) = 1} (4)

for i = 1, . . . ,m (note that the guessed label ŷ0 of the root of G is always 1). Then the
cost-sensitive variant HTD-CS introduces a single cost sensitive parameter τ > 0 which
replaces the threshold 1

2 . The resulting rule for HTD-CS is then

ŷi = {p̂i ≥ τ}×{ŷpar(i) = 1} (5)

By tuning τ we may obtain ensembles with different precision/recall characteristics.
Despite the simplicity of the hierarchical top-down methods, several works showed
their effectiveness for AFP problems [179, 36].

For instance, Cerri and de Carvalho experimented different variants of Top-down
hierarchical ensemble methods for AFP [35, 36, 37]. The HMC-LMLP (Hierarchical
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Multilabel Classification with Local Multilayer Perceptron) successively trains a local
MLP network for each hierarchical level, using the classical backpropagation algo-
rithm [147]. Then the output of the MLP for the first layer is used as input to train the
MLP that learns the classes of the second level and so on (Fig. 3). A gene is annotated
to a class if its corresponding output in the MLP is larger than a predefined threshold,
then in a post-processing phase (second-step of the hierarchical classification) incon-
sistent predictions are removed (i.e. classes predicted without the prediction of their
superclasses) [37]. In practice, instead of using a dichotomic classifier for each node,

Figure 3: HMC-LMLP: Outputs of the MLP responsible for the predictions in the first
level are used as input to another MLP for the predictions in the second level (adapted
from [37]).

the HMC-LMLP algorithm applies a single multi-class multi-layer perceptron for each
level of the hierarchy.

A related approach adopts multi-class classifiers (HTD-MULTI) for each node, in-
stead of a simple binary classifier, and tries to find the most likely path from the root
to the leaves of the hierarchy, considering simple techniques, such as the multiplica-
tion or the sum of the probabilities estimated at each node along the path [79]. The
method has been applied to the Cell Cycle branch of the FunCat hierarchy with the
yeast model organism, showing improvements with respect to classical Hierarchical
Top-Down methods, even if the proposed approach can only predict classes along a
single “most likely path”, thus not considering that in AFP we may have annotations
involving multiple and partial paths.

Another method that introduces multi-class classifiers instead of simple dichotomic
classifiers has been proposed by Paes et al. [122]: local per level multiclass classifiers
(HTD-PERLEV) are trained to distinguish between the classes of a specific level of the
hierarchy, and two different strategies to remove inconsistencies are introduced. The
method has been applied to the hierarchical classification of enzymes using the EC
taxonomy for the hierarchical classification of enzymes, but unfortunately this algo-
rithm is not well-suited to AFP, since leaf nodes are mandatory (that is partial path
annotations are not allowed) and multi-label annotations along multiple paths are not
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allowed.
Another interesting Top-down hierarchical approach proposed by the same authors,

is HMC-LP (Hierarchical Multilabel Classification Label-Powerset), a hierarchical vari-
ation of the Label-Powerset non-hierarchical multilabel method [174], that has been
applied to the prediction of gene function of the yeast model organism using 10 dif-
ferent data sets and the FunCat taxonomy [35]. According to the Label-Powerset ap-
proach, the method is based on a first label-combination step by which, for each ex-
ample (gene), all classes assigned to the example are combined into a new and unique
class, and this process is repeated for each level of the hierarchy. In this way the origi-
nal problem is transformed into a hierarchical single-label problem. In both the training
and test phases the Top-Down approach is applied, and at the end of the classification
phase the original classes can be easily reconstructed [35]. In an experimental com-
parison using the FunCat taxonomy for S. cerevisiae results showed that hierarchical
Top-down ensemble methods significantly outperform decision trees based hierarchical
methods, but no significant difference between different flavours of Top-down hierar-
chical ensembles has been detected [36].

Top-down algorithms can be conceived also in the context of network-based meth-
ods (HTD-NET). For instance, in [82] a probabilistic model, that combines relational
protein-protein interaction data and the hierarchical structure of GO to predict true-
path consistent function labels, obeys the true path rule by setting the descendants of
a node as negative whenever that node is set to negative. More precisely the authors
at first compute a local hierarchical conditional probability, in the sense that for any
non-root GO term, only the parents affect its labelling. This probability is computed
within a network-based framework assuming that the labeling of a gene is independent
of any other genes given that of its neighbours (a sort of Markov property with respect
to gene functional interaction networks), and assuming also a binomial distribution for
the number of neighbours labeled with child terms with respect to those labeled with
the parent term. These assumptions are quite stringent, but are necessary to make the
model tractable. Then a global hierarchical conditional probability is computed by re-
cursively applying the previously computed local hierarchical conditional probability
by considering all the ancestors. More precisely, by assuming that P(ŷi = 1|g,N(g)),
i.e. the probability that a gene g is annotated for a a node i, given the status of the an-
notations of its neighborhood N(g) in the functional networks, the global hierarchical
conditional probability factorizes according to the GO graph:

P(ŷi = 1|g,N(g)) = ∏
j∈anc(i)

P(ŷ j = 1|ŷpar( j) = 1,Nloc(g)) (6)

where Nloc(g) represents the local hierarchical neighborhood information on the parent-
child GO term pair par( j) and j [82]. This approach guarantees to produce GO term
label assignments consistent with the hierarchy, without the need of a post-processing
step.

Finally in [190] the author applied a hierarchical method to the classification of
yeast FunCat categories. Despite its well-founded theoretical properties based on large
margin methods, this approach is conceived for one path hierarchical classification,
and hence it results unsuited for hierarchical AFP, where usually multiple paths in the
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hierarchy should be considered, since in most cases genes can play different functional
roles in the cell.

5 Ensemble based Bayesian approaches for hierarchi-
cal classification

These methods introduce a Bayesian approach to the hierarchical classification of pro-
teins, by using the classical Bayes theorem, or Bayesian networks to obtain tractable
factorizations of the joint conditional probabilities from the original “full Bayesian”
setting of the hierarchical AFP problem [12, 76], or to achieve “Bayes-optimal” solu-
tions with respect to loss functions well-suited to hierarchical problems [40, 43].

5.1 The solution based on Bayesian networks
One of the first approaches addressing the issue of inconsistent predictions in the Gene
Ontology is represented by the Bayesian approach proposed in [12] (BAYES NET-ENS).
According to the general scheme of hierarchical ensemble methods, two main steps
characterize the algorithm:

1. Flat prediction of each term/class (possibly inconsistent)

2. Bayesian hierarchical combination scheme to allow collaborative error-correction
over all nodes

After training a set of base classifiers on each of the considered GO terms (in their
work the authors applied the method to 105 selected GO terms), we may have a set of
(possibly inconsistent) ŷ predictions. The goal consists in finding a set of consistent y
predictions, by maximizing the following equation derived from the Bayes theorem:

P(y1, . . . ,yn|ŷ1, . . . , ŷn) =
P(ŷ1, . . . , ŷn|y1, . . . ,yn)P(y1, . . . ,yn)

Z
(7)

where n is the number of GO nodes/terms and Z is a constant normalization factor.
Since the direct solution of (7) is too hard, i.e. exponential in time w.r.t to the num-

ber of nodes, the authors proposed a Bayesian network structure to solve this difficult
problem, in order to exploit the relationships between the GO terms. More precisely, to
reduce the complexity of the problem, the authors imposed the following constraints:

1. yi nodes conditioned to their children (GO structure constraints)

2. ŷi nodes conditioned on their label yi (Bayes rule)

3. ŷi are independent from both ŷ j, i 6= j and y j, i 6= j, given yi

In other words we can ensure that a label is 1 (positive) when any one of its children
is 1 and the edges from yi to ŷi assure that a classifier output ŷi is a random variable
independent of all other classifier outputs ŷ j and labels y j, given its true label yi (Fig. 4).
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Figure 4: Bayesian network involved in the hierarchical classification (adapted
from [12]).

More precisely, from the previous constraints we can derive the following equa-
tions:

from the first constraint: P(y1, . . . ,yn) =
n

∏
i=1

P(yi|child(yi)) (8)

from the last two constraints: P(ŷ1, . . . , ŷn|y1, . . . ,yn) =
n

∏
i=1

P(ŷi|yi) (9)

Note that (8) can be inferred from training labels simply by counting, while (9)
can be inferred by validation during training, by modeling the distribution of ŷi outputs
over positive and negative examples, by assuming a parametric model (e.g. Gaussian
distribution –see Fig. 5).

For the implementation of their method the authors adopted bagged ensemble of
SVMs [28] to make their predictions more robust and reliable at each node of the GO
hierarchy, and median values of their outputs on out-of-bag examples have been used
to estimate means and variances for each class. Finally means and variances have been
used as parameters of the gaussian models used to estimate the conditional probabilities
of (9).

Results with the 105 terms/nodes of the GO BP (model organism S.cerevisiae)
showed substantial improvements with respect to non hierarchical “flat” predictions:
the hierarchical approach improves AUC results on 93 of the 105 GO terms (Fig. 6).

5.2 The Markov blanket and approximated breadth first solution
In [76] the authors proposed an alternative approximated solution to the complex equa-
tion (7) by introducing two variants of the Bayesian integration:

1. HIER-MB: Hierarchical Bayesian combination involving nodes in the Markov
Blanket.

16



Hierarchical ensemble methods ISRN Bioinformatics

Figure 5: Distribution of positive and negative validation examples (a gaussian distri-
bution is assumed – adapted from [12]).

Figure 6: Improvements induced by the hierarchical prediction of the GO terms.
Darker shades of blue indicate largest improvements, and darker shades of red indi-
cate largest deterioration; white means no change (adapted from [12]).

2. HIER-BFS: Hierarchical Bayesian combination involving the 30 first nodes vis-
ited through a Breadth-First-Search (BFS) in the GO graph.

The method has been applied to the prediction of more than 2000 GO terms for the
mouse model organism, and performed among the top methods in the MouseFunc chal-
lenge [125].

The first approach (HIER-MB) modifies the output of the base learners (SVMs in
the Guan et al. paper) taking into account the Bayesian network constructed using the
Markov blanket surrounding the GO term of interest (Fig. 7). In a Bayesian network the
Markov blanket of a node i is represented by its parents (par(i)), its children (child(i))
and its children’s other parents. The Bayesian network involving the Markov blanket
of node i is used to provide the prediction ŷi of the ensemble, thus leveraging the local
relationships of node i and the predictions for the nodes included in its Markov blanket.
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Figure 7: Markov blanket surrounding the GO term Y1. Each GO term is represented
as a blank node, while the SVM classifier output is represented as a gray node (adapted
from [76]).

Figure 8: The breadth-first subnetwork stemming from Y1. Each GO term is repre-
sented through a blank node and the SVM outputs as gray nodes (adapted from [76]).

To enlarge the size of the Bayesian subnetwork involved in the prediction of the
node of interest, a variant based on the Bayesian networks constructed by applying a
classical breadth-first search is the basis of the HIER-BFS algorithm. To reduce the
complexity at most 30 terms are included (i.e. the first 30 nodes reached by the breadth-
first algorithm). In the implementation ensembles of 25 SVMs have been trained for
each node, using vector space integration techniques [58] to integrate multiple sources
of data.

Note that with both HIER-MB and HIER-BFS methods we do not take into ac-
count the overall topology of the GO network, but only the terms related to the node
for which we perform the prediction. Even if this general approach is reasonable and
achieve good results, its main drawback is represented by the locality of the hierarchi-
cal integration (limited to the Markov blanket and the first 30 BFS nodes). Moreover in
previous works it has been shown that the adopted integration strategy (vector space in-
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tegration) is in most cases worse than Kernel fusion [100] and than ensemble methods
for data integration [137].

In the same work [76] the authors propose also a sort of “test and select” method [154],
by which three different classification approaches: a) single flat SVMs; b) Bayesian hi-
erarchical correction; c) Naive Bayes combination are applied, and for each GO term
the best one is selected by internal cross-validation (Fig. 9).

Figure 9: Integration of diverse methods and diverse sources of data in an ensemble
framework for AFPprediction. The best classifier for each GO term is selected through
held-out set validation (adapted from [76]).

It is worth noting that other approaches adopted Bayesian networks to resolve the
hierarchical constraints underlying the GO taxonomy. For instance in the FALCON al-
gorithm the GO is modeled as a Bayesian network and for any given input the algorithm
returns the most probable GO term assignment in accordance with the GO structure,
by using an evolutionary-based optimization algorithm [94].

5.3 HBAYES: an “optimal” Hierarchical Bayesian ensemble ap-
proach

The HBAYES ensemble method [38, 40] is a general technique for solving hierarchical
classification problems on generic taxonomies G structured according to forest of trees.
The method consists in training a calibrated classifier at each node of the taxonomy. In
principle any algorithm (e.g. Support Vector Machines or Artificial Neural Networks)
whose classifications are obtained by thresholding a real prediction p̂, e.g., ŷ= SGN(p̂),
can be used as base learner. The real-valued outputs p̂i(g) of the calibrated classifier
for node i on the gene g are viewed as estimates of the probabilities pi(g) = P

(
yi = 1 |
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ypar(i) = 1, g
)
, The distribution of the random boolean vector Y is assumed to be

P
(
Y = y

)
=

m

∏
i=1

P
(
Yi = yi | Ypar(i) = 1, g

)
for all y ∈ {0,1}m

where, in order to enforce that only multilabels Y that respect the hierarchy have
nonzero probability, it is imposed that P

(
Yi = 1 | Ypar(i) = 0, g

)
= 0 for all nodes i =

1, . . . ,m and all g. This implies that the base learner at node i is only trained on the
subset of the training set including all examples (g,y) such that ypar(i) = 1.

5.3.1 HBAYES ensembles for protein function prediction

H-loss is a measure of discrepancy between multilabels based on a simple intuition: if
a parent class has been predicted wrongly, then errors in its descendants should not be
taken into account. Given fixed cost coefficients θ1, . . . ,θm > 0, the H-loss `H(ŷ,v) be-
tween multilabels ŷ and v is computed as follows: all paths in the taxonomy T from the
root down to each leaf are examined and, whenever a node i∈{1, . . . ,m} is encountered
such that ŷi 6= vi, then θi is added to the loss, while all the other loss contributions from
the subtree rooted at i are discarded. This method assumes that, given a gene g, the
distribution of the labels V = (V1, . . . ,Vm) is P

(
V = v

)
= ∏

m
i=1 pi(g) for all v ∈ {0,1}m,

where pi(g) = P
(
Vi = vi |Vpar(i) = 1, g

)
. According to the true path rule, it is imposed

that P
(
Vi = 1 |Vpar(i) = 0, g

)
= 0 for all nodes i and all genes g.

In the evaluation phase, HBAYES predicts the Bayes-optimal multilabel ŷ ∈ {0,1}m

for a gene g based on the estimates p̂i(g) for i = 1, . . . ,m. By definition of Bayes-
optimality, the optimal multilabel for g is the one that minimizes the loss when the
true multilabel V is drawn from the joint distribution computed from the estimated
conditionals p̂i(g). That is,

ŷ = argmin
y∈{0,1}m

E
[
`H(y,V ) | g

]
(10)

In other words the ensemble method HBAYES provides an approximation of the optimal
Bayesian classifier w.r.t. the H-loss [38]. More precisely, as shown in [43] the following
theorem holds:

Theorem 1 For any tree T and gene g the multilabel generated according to the
HBAYES prediction rule is the Bayes-optimal classification of g for the H-loss.

In the evaluation phase the uniform cost coefficients θi = 1, for i = 1, . . . ,m, are
used. However, since with uniform coefficients the H-loss can be made small simply
by predicting sparse multilabels (i.e., multilabels ŷ such that ∑i ŷi is small), in the
training phase the cost coefficients are set to θi = 1/|root(G)|, if i ∈ root(G), and to
θi = θ j/|child( j)| with j = par(i) otherwise. This normalizes the H-loss, in the sense
that the maximal H-loss contribution of all nodes in a subtree excluding its root equals
that of its root.

Let {E } be the indicator function of event E. Given g and the estimates p̂i = p̂i(g)
for i = 1, . . . ,m, the HBAYES prediction rule can be formulated as follows:
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HBAYES prediction rule
Initially, set the labels of each node i to

ŷi = argmin
y∈{0,1}

(
θi p̂i(1− y)+θi(1− p̂i)y+ p̂i{y = 1} ∑

j∈child(i)
H j(ŷ)

)
(11)

where

H j(ŷ) = θ j p̂ j(1− ŷ j)+θ j(1− p̂ j)ŷ j + p̂ j{ŷ j = 1} ∑
k∈child( j)

Hk(ŷ)

is recursively defined over the nodes j in the subtree rooted at i with each ŷ j
set according to (11).
Then, if ŷi is set to zero, set all nodes in the subtree rooted at i to zero as well.

It is worth noting that ŷ can be computed for a given g via a simple bottom-up
message-passing procedure. It can be shown that if all child nodes k of i have p̂k close
to a half, then the Bayes-optimal label of i tends to be 0 irrespective of the value of
p̂i. Vice versa, if i’s children all have p̂k close to either 0 or 1, then the Bayes-optimal
label of i is based on p̂i only, ignoring the children. This behaviour can be intuitively
explained in the following way: the estimate p̂k is built based only on the examples
on which the parent i of k is positive; hence, a “neutral” estimate p̂k =

1
2 signals that

the current instance is a negative example for the parent i. Experimental results show
that this approach achieves comparable results with the TPR method (Section 7), an
ensemble approach based on the “true path rule” [134].

5.3.2 HBAYES-CS: the cost-sensitive version

The HBAYES-CS is the cost-sensitive version of HBAYES proposed in [43]. By this
approach the misclassification cost coefficient θi for node i is split in two terms θ

+
i

and θ
−
i for taking into account misclassifications respectively for positive and negative

examples. By considering separately these two terms, (11) can be rewritten as:

ŷi = argmin
y∈{0,1}

(
θ
−
i p̂i(1− y)+θ

+
i (1− p̂i)y+ p̂i{y = 1} ∑

j∈child(i)
H j(ŷ)

)
(12)

where the expression for H j(ŷ) gets changed correspondingly. By introducing a factor
α ≥ 0 such that θ

−
i = αθ

+
i while keeping θ

+
i + θ

−
i = 2θi, the relative costs of false

positives and false negatives can be parametrized, thus allowing us to further rewrite
the hierarchical Bayesian rule (Section 5.3.1):

ŷi = 1⇐⇒ p̂i

(
2θi− ∑

j∈child(i)
H j

)
≥ 2θi

1+α
. (13)

By setting α = 1 we obtain the original version of the hierarchical Bayesian en-
semble and by incrementing α we introduce progressively lower costs for positive pre-
dictions. In this way we can obtain that the recall of the ensemble tends to increase,
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eventually at the expenses of the precision, and by tuning the α parameter we can obtain
different combinations of precision/recall values.

In principle, a cost factor αi can be set for each node i to explicitly take into account
the unbalance between the number of positive n+i and negative n−i examples, estimated
from the training data:

αi =
n−i
n+i
⇒ θ

+
i =

2
n−i
n+i

+1
θi =

2n+i
n−i +n+i

θi . (14)

The decision rule (13) at each node then becomes:

ŷi = 1⇐⇒ pi

(
2θi− ∑

j∈child(i)
H j

)
≥ 2θi

1+αi
=

2θin+i
n−i +n+i

. (15)

Results obtained with the yeast model organism showed that HBAYES-CS signifi-
cantly outperform HTD methods [43, 134].

6 Reconciliation methods
Hierarchical ensemble methods are basically two-steps methods, since at first provide
predictions for the single classes and then arrange these predictions to take into account
the functional relationships between GO terms. Noble and colleagues name this gen-
eral approach reconciliation methods [118]: they proposed methods for calibrating and
combining independent predictions to obtain a set of probabilistic predictions that are
consistent with the topology of the ontology. They applied their ensemble methods to
the genome-wide and ontology-wide function prediction with M. musculus, involving
about 3000 GO terms.

Their goal consists in providing consistent predictions, that is predictions whose
confidence (for example, posterior probability) increases as we ascend from more spe-
cific to more general terms in the GO. Moreover another important issue of these meth-
ods is the availability of confidence values associated to the predictions, that can be
interpreted as probabilities that a protein has a certain function given the information
provided by the data.

The overall reconciliation approach can be summarized in four basic steps (Fig. 10):

1. Kernel computation. At first a set of kernels is computed from the available data.
We may choose kernel specific for each source of data (e.g. diffusion kernels for
protein-protein interaction data [157], linear or gaussian kernel for expression
data, string kernel for sequence data [103]). Multiple kernels for the same type
of data can also be constructed [118].

2. SVM learning. SVMs are used as base learners using the kernels selected at
the previous step: the training is performed by internal cross-validation to avoid
overfitting, and a local cost-sensitive strategy is applied, by tuning separately the
C regularization factor for positive and negative examples. Note that the authors
in their experiments used SVMs as base learners but any meaningful classifier
could be used at this step.
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Figure 10: The overall scheme of reconciliation methods (adapted from [118]).

3. Calibration. To produce individual probabilistic outputs from the set of SVM
outputs corresponding to one GO term, a logistic regression approach is applied.
In this way a calibration of the individual SVM outputs is obtained, resulting in
a probabilistic prediction of the random variable Yi, for each node/term i of the
hierarchy, given the outputs ŷi of the SVM classifiers.

4. Reconciliation. the first three steps generate unreconciled outputs, that is in prac-
tice a “flat” ensemble is applied that may generate inconsistent predictions with
respect to the given taxonomy. In this step, the outputs of step three are processed
by a ’reconciliation method’. The goal of this stage is to combine predictions for
each term to produce predictions that are consistent with the ontology, meaning
that all the probabilities assigned to the ancestors of a GO term are larger than
the probability assigned to that term.

The first three steps are basically the same (or very similar) for each reconciliation
ensemble method. The crucial step is represented by the fourth, i.e. the reconciliation
step, and different ensemble algorithms can be designed to implement it. The authors
proposed 11 different ensemble methods for the reconciliation of the base classifier
outputs. Schematically, they can be subdivided in four main classes of ensembles:

1. Heuristic methods

2. Bayesian network-based methods

3. Cascaded logistic regression

4. Projection-based methods
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6.1 Heuristic methods
These approach preserve the ”reconciliation property”:

∀i, j ∈ G, (i, j) ∈ G⇒ p̂i ≥ p̂ j (16)

through simple heuristic modifications of the probabilities computed at step 3 of the
overall reconciliation scheme.

• The MAX method simply chooses the the largest logistic regression value for the
node i and all its descendants desc:

pi = max j∈desc(i) p̂ j (17)

• The AND method implements the notion that the probability of all ancestral GO
terms anc(i) of a given term/node i are large, assuming that, conditional on the
data, all predictions are independent:

pi = ∏
j∈anc(i)

p̂ j (18)

• OR estimates the probability that the node i is annotated at least for one of the de-
scendant GO terms, assuming again that, conditional on the data, all predictions
are independent:

1− pi = ∏
j∈desc(i)

(1− p̂ j) (19)

6.2 Cascaded logistic regression
Instead of modeling class-conditional probabilities, as required by the Bayesian ap-
proach, logistic regression can be used instead to directly model posterior probabili-
ties. Considering that modelling conditional densities is in most cases difficult (also
using strong independence assumptions as shown in Section 5.1), the choice of logistic
regression could be a reasonable one. In [118] the authors embedded in the logistic
regression setting the hierarchical dependencies between terms. By assuming that a
random variable X whose values represent the features of the gene g of interest is as-
sociated to a given gene g, and assuming that P(Y = y|X = x) factorizes according to
the GO graph, then it follows:

P(Y = y|X = x) = ∏
i
P(Yi = yi|∀ j ∈ par(i) Yj = y j,Xi = xi) (20)

with P(Yi = 1|∀ j ∈ par(i) Yj = 0,Xi = xi) = 0. The authors estimated P(Yi = 1|∀ j ∈
par(i) Yj = 1,Xi = xi) with logistic regression. This approach is quite similar to fitting
independent logistic regressions, but note that in this case only examples of proteins
having all parents GO terms are used to fit the model, thus implicitly taking into account
the hierarchical relationships between GO terms.
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6.3 Bayesian network-based methods
These methods are variants of the Bayesian network approach proposed in [12] (Sec-
tion 5.1): the GO is viewed as a graphical model where a joint Bayesian prior is put
on the binary GO term variables yi. The authors proposed four variants that can be
summarized as follows:

• The BPAL is a belief propagation approach with asymmetric Laplace likelihoods.
The graphical model has edges directed from more general terms to more specific
terms. Differently from [12] the distribution of each SVM output is modeled as
an asymmetric Laplace distribution, and a variational inference algorithm, that
solves an optimization problem whose minimizer is the set of marginal proba-
bilities of the distribution, is used to estimate the posterior probabilities of the
ensemble [189].

• The BPALF approach is similar to BPAL, but with edges inverted and directed
from more specific terms to more general terms.

• The BPLR is a heuristic variant of BPAL, where in the inference algorithm, the
Bayesian log posterior ratio for Yi is replaced by the marginal log posterior ratio
obtained from the logistic regression (LR).

• The BPLRF is equal to BPLR but with reversed edges.

6.4 Projection-based methods
A different approach is represented by methods that directly use the calibrated values
obtained from logistic regression (step 3 of the overall scheme of the reconciliation
methods) to find the closest set of values that are consistent with the ontology. This
approach leads to a constrained optimization problem. The main contribution of the
Obozinski et al. work [118] is represented by the introduction of projection reconcilia-
tion techniques based on isotonic regression [10] and the Kullback-Leibler divergence.

The Isotonic regression method tries to find a set of marginal probabilities pi that
are close to the set of calibrated values p̂i obtained from the logistic regression. The
euclidean distance is used as a measure of closeness. Hence, considering that the “rec-
onciliation property” requires that pi ≥ p j when (i, j) ∈ E, this approach yields the
following quadratic program:

minpi,i∈I ∑
i∈I

(pi− p̂i)
2

s.t. p j ≤ pi, (i, j) ∈ E (21)

This problem is the classical isotonic regression problems that can be solved using an
interior point solver or also approximated algorithm when the number of edges of the
graph is too large [31].

Considering that we deal with probabilities, a natural measure of distance between
probability density functions f (x) and g(x) defined with respect to a random variable x
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is represented by the Kullback-Leibler divergence D fx||gx :

D fx||gx =
∫

∞

−∞

f (x) log
(

f (x)
g(x)

)
dx (22)

In the context of reconciliation methods we need to consider a discrete version of the
Kullback-Leibler divergence, yielding the following optimization problem:

minpDp̂||p = minpi,i∈I ∑
i∈I

p̂i log
(

p̂i

pi

)
s.t. p j ≤ pi, (i, j) ∈ E (23)

The algorithm finds the probabilities closest to the probabilities p̂ obtained from logis-
tic regression according to the Kullback-Leibler divergence and obeying the constraints
that probabilities cannot increase descending the hierarchy underlying the ontology.

The extensive experiments exploited in [118] show that, among the reconciliation
methods, isotonic regression is the most generally useful. Across a range of evaluation
modes, term sizes, ontologies and recall levels, isotonic regression yields consistently
high precision. On the other hand, isotonic regression is not always the “best method”,
and a biologist with a particular goal in mind may apply other reconciliation methods.
For instance, with small terms usually Kullback-Leibler projections achieve the best
results, but considering average ”per term” results heuristic methods yields precision
at a given recall comparable with projection methods and better than that achieved with
Bayes-net methods.

This ensemble approach achieved excellent results in the prediction of protein func-
tion in the mouse model organism, demonstrating that hierarchical multilabel meth-
ods can play a crucial role for the improvement of protein function prediction perfor-
mances [118]. Nevertheless the approach suffers from some drawbacks. Indeed the
paper focuses on the comparison of hierarchical multilabel methods, but it does not
analyze impact of the concurrent use of data integration and hierarchical multilabel
methods on the overall classification performances. Moreover, potential improvements
could be introduced by applying cost sensitive variants of hierarchical multilabel pre-
dictors, able to effectively calibrate the precision/recall trade-off at different levels of
the functional ontology.

7 True Path Rule hierarchical ensembles
These ensemble methods exploit at the same time the downward and upward relation-
ships between classes, thus considering both the parent-to-child and child-to-parent
functional links (Fig. 2 b).

The True Path Rule (TPR) ensemble method [183, 179] is directly inspired by the
true path rule that governs both GO and FunCat taxonomies. Citing the curators of
the Gene Ontology [73]: “An annotation for a class in the hierarchy is automatically
transferred to its ancestors, while genes unannotated for a class cannot be annotated for
its descendants”. Considering the parents of a given node i, a classifier that respects
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the true path rule needs to obey the following rules:{
yi = 1 ⇒ ypar(i) = 1
yi = 0 ; ypar(i) = 0. (24)

On the other hand, considering the children of a given node i, a classifier that respects
the true path rule needs to obey the following rules:{

yi = 1 ; ychild(i) = 1
yi = 0 ⇒ ychild(i) = 0. (25)

From (24) and (25) we observe an asymmetry in the rules that govern the assignments
of positive and negative labels. Indeed, we have a propagation of positive predictions
from bottom to top of the hierarchy in (24), and a propagation of negative labels from
top to bottom in (25). Conversely, negative labels cannot propagate from bottom to top,
and positive predictions cannot propagate from top to bottom.

The “true path rule” suggests algorithms able to propagate “positive” decisions
from bottom to top of the hierarchy, and negative decisions from top to bottom (Fig. 11)
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Figure 11: The asymmetric flow of information suggested by the true path rule.

7.1 The True Path Rule ensemble algorithm
The TPR algorithm puts together the predictions made at each node by local ”base”
classifiers to realize an ensemble that obeys the “true path rule”.

The basic ideas behind the method can be summarized as follows:

1. Training of the base learners: for each node of the hierarchy a suitable learning
algorithm (e.g. a multi-layer perceptron or a support vector machine) provides a
classifier for the associated functional class.
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2. In the evaluation phase the trained classifiers associated to each class/node of
the graph provide a local decision about the assignment of a given example to a
given node.

3. Positive decisions, that is annotations to a specific functional class, may prop-
agate from bottom to top across the graph: they influence the decisions of the
parent nodes and of their ancestors in a recursive way, by traversing the graph
towards higher level nodes/classes. Conversely, negative decisions do no affect
decisions of the parent node (that is they do not propagate from bottom to top,
eq. 24).

4. Negative predictions for a given node (taking into account the local decision of
its descendants) are propagated to the descendants, to preserve the consistency
of the hierarchy according to the true path rule, while positive decisions do not
influence decisions of child nodes (eq. 25).

The ensemble combines the local predictions of the base learners associated to each
node with the positive decisions that come from the bottom of the hierarchy, and with
the negative decisions that spring from the higher level nodes. More precisely, base
classifiers estimate local probabilities p̂i(g) that a given example g belongs to class θi,
but the core of the algorithm is represented by the evaluation phase, where the ensemble
provides an estimate of the “consensus” global probability pi(g).

It is worth noting that instead of a probability, p̂i(g) may represent a score asso-
ciated to the likelihood that a given gene/gene product belongs to the functional class
i.

Let us consider the set φi(g) of the children of node i for which we have a positive
prediction for a given gene g:

φi(g) =
{

j : j ∈ child(i), ŷ j = 1
}

(26)

The global consensus probability pi(g) of the ensemble depends both on the local pre-
diction p̂i(g) and on the prediction of the nodes belonging to φi(g):

pi(g) =
1

1+ |φi(g)|

(
p̂i(g)+ ∑

j∈φi(g)
p j(g)

)
. (27)

The decision ŷi(g) at node/class i is set to 1 if pi(g) > t, and to 0 otherwise (a natural
choice for t is 0.5), and only children nodes for which we have a positive prediction
can influence their parent. In the leaf nodes the sum of eq. 27 disappears and eq. 27
becomes pi(g) = p̂i(g). In this way positive predictions propagate from bottom to
top, and negative decisions are propagated to its descendants when for a given node
ŷi(g) = 0.

The bottom-up per level traversal of the tree assures that all the offsprings of a given
node i are taken into account for the ensemble prediction. For the same reason we can
safely set the classes belonging to the subtree rooted at i to negative, when ŷi is set to
0. It is worth noting that we have a two-way asymmetric flow of information across the
tree: positive predictions for a node influence its ancestors, while negative predictions
influence its offsprings.
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The algorithm provides both the multilabels ŷi and an estimate of the probabilities
pi that a given example g belongs to the class i = 1, . . . ,m.

7.2 The cost-sensitive variant
Note that in the TPR algorithm there is no way to explicitly balance the local prediction
p̂i(g) at node i with the positive predictions coming from its offsprings (eq. 27). By
balancing the local predictions with the positive predictions coming from the ensemble,
we can explicitly modulate the interplay between local and descendant predictors. To
this end a weight w, 0 ≤ w ≤ 1 is introduced, such that if w = 1 the decision at node i
depends only by the local predictor, otherwise the prediction is shared proportionally to
w and 1−w between respectively the local parent predictor and the set of its children:

pi = w p̂i +
1−w
|φi| ∑

j∈φi

p j (28)

This variant of the TPR algorithm is the weighted True Path Rule (TPR-w) hi-
erarchical ensemble algorithm: by tuning the w parameter we can modulate the pre-
cision/recall characteristics of the resulting ensemble. More precisely, for w→ 0 the
weight of the parent local predictor is small, and the ensemble decision mainly depends
on the positive predictions of the offsprings nodes (classifiers). Conversely, w→ 1 cor-
responds to a higher weight of the parent predictor; then less weight is given to possible
positive predictions of the children, and the decision depends mainly on the local/parent
base classifier. In case of a negative decision all the subtree is set to zero, causing the
precision to increase. Note that for w→ 1 the behaviour of TPR-W becomes similar to
that of HTD (Section 4).

A specific advantage of the TPR-w ensembles is the capability of tuning precision
and recall rates, through the parameter w (28). For small values of w the weight of
the decision of the parent local predictor is small, and the ensemble decision depends
mainly by the positive predictions of the offsprings nodes (classifiers), and higher val-
ues of w correspond to a higher weight of the “parent” local predictor, with a resulting
higher precision. In [179] the author shows that the w parameter highly influences
the precision/recall characteristics of the ensemble: low w values yield a higher recall,
while high values improve the precision of the TPR-w ensemble.

Recently Chen and Hu proposed a method that applies the TPR-w hierarchical
strategy, but using composite kernel SVMs as base classifiers, and a supervised clus-
tering with over-sampling strategy to solve the imbalance data set learning problem,
showed that the proper selection of base learners, as well as unbalance-aware learn-
ing strategies can further improve the results in terms of hierarchical precision and
recall [46].

The same authors proposed also an enhanced version of the TPR-w strategy to
overcome a limitation of this bottom-up hierarchical method for AFP. Indeed for some
classes at the lower levels of the hierarchy, the classifier performances are sometimes
quite poor, due to both noisy data and the relatively low number of available anno-
tations. More precisely, in the basic TPR ensemble, the probabilities p j computed
by the children of the node i (28) contributes in equal way to the probability pi com-
puted by the ensemble at node i, independently of the accuracy of the predictions made
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by its children classifiers. This “unweighted” mechanism may generate error propa-
gation of the errors across the hierarchy: a poor performance child classifier may for
instance with high probability predict as positive a negative example and this error may
propagate to its parent node and recursively to its ancestor nodes. To try to alleviate
this possible bottom-up error propagation in [47] Chen and Hu proposed an improved
TPR ensemble (TPR-w weighted ), based on classifier performance. To this end they
weighted the contribution of each child classifier on the basis of their performance
evaluated on a validation data set, by adding to (28) another weight ν j

pi = w p̂i +
1−w
|φi| ∑

j∈φi

ν j · p j (29)

where ν j is computed on the basis of some accuracy metric A j (e.g. the F-score)
estimated for the child classifiers associated with node j:

ν j =
A j

∑k∈φi Ak
(30)

In this way the contribution of “poor” classifier is reduced, while “good” classifiers
weight more in the final computation of pi (29). Experiments with the “Protein Fate”
subtree of the FunCat taxonomy with the yeast model organism show that this approach
improves prediction with respect to the “vanilla” TPR-w hierarchical strategy [47].

7.3 Advantages and drawbacks of TPR methods
While the propagation of negative decisions from top to bottom nodes is quite straight-
forward and common to the hierarchical Top-Down algorithm, the propagation of pos-
itive decisions from bottom to top nodes of the hierarchy is specific to the TPR algo-
rithm. For a discussion of this item, see Appendix C.

Experimental results show that TPR-w achieves equal or better results than the
TPR and Top-down hierarchical strategy, and both hierarchical strategies achieve sig-
nificantly better results than Flat classification methods [178, 42]. The analysis of the
per-level classification performances shows that TPR-w, by exploiting a global strategy
of classification, is able to achieve a good compromise between precision and recall,
enhancing the F-measure at each level of the taxonomy [179].

Another advantage of TPR-w consists in the possibility of tuning precision and
recall by using a global strategy: large values of the w parameter improve the precision,
and small values the recall.

Moreover TPR and TPR-w ensembles provide also a probabilistic estimate of the
prediction reliability for each functional class of the overall taxonomy.

The decisions performed at each node of the hierarchical ensemble are influenced
by the positive decisions of its descendants. More precisely, the analyses performed
in [179] showed that:

• Weights of descendants decrease exponentially w.r.t their depth. As a conse-
quence the influence of descendant nodes decays quickly with their depth.
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• The parameter w plays a central role in balancing the weight of the parent classi-
fier associated to a given node with the weights of its positive offsprings: small
values of w increase the weight of descendant nodes, large values the weight of
the local parent predictor associated to that node.

• The effect on the overall probability predicted by the ensemble is the result of
the choice of the w parameter, the strength of the prediction of the local learners
and of its descendants.

These characteristics of TPR-w ensembles are well-suited for the hierarchical clas-
sification of protein functions, considering that annotations of deeper nodes are likely
to have less experimental evidence than higher nodes. Moreover, by enforcing the
strength of the descendant nodes through low w values, we can improve the recall
characteristics of the overall system (at the expense of a possible reduction in preci-
sion).

Unfortunately the method has been conceived and applied only to the FunCat tax-
onomy, structured according to a tree forest (Section 11), while no applications have
been performed using the GO, structured according to a directed acyclic graph (Sec-
tion 11).

8 Ensembles based on decision trees
Another interesting research line is represented by hierarchical methods base on in-
ductive decision trees [128]. The first attempts to exploit the hierarchical structure of
functional ontologies for AFP simply used different decision tree models for each
level of the hierarchy [86], or investigated a modified decision tree model, in which
the assignment to a node is propagated toward the parent nodes [50], by extending the
classical C4.5 decision tree algorithm for multiclass classification.

In the context of the predictive clustering tree framework [23], Blockeel et al. pro-
posed an improved version which they applied to the prediction of gene function in the
yeast [25].

More recent approaches, always based on modified decision trees, used distance
measure derived from the hierarchy, and significantly improved previous methods [185].
The authors showed that separate decision tree models are less accurate than a single
decision tree trained to predict all classes at once, even when they are built taking into
account the hierarchy.

Nevertheless the previously proposed decision tree-base methods achieve often re-
sults not comparable with state-of-the-art hierarchical ensemble methods. To overcome
this limitation Schietgat et al. showed that ensembles of hierarchical multilabel deci-
sion trees are competitive with state-of-the-art statistical learning methods for DAG-
structured prediction of protein function in S. cerevisiae, A. thaliana and M. musculus
model organisms [151]. A further work explored the suitability of different ensem-
ble methods based on predictive clustering trees, ranging from global ensembles that
learn ensembles of predictive models, each able to predict the entire structure of the
hierarchy (i.e. all the GO terms for a given gene) and local ensembles that train an
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entire ensemble as a classifier for each branch of the taxonomy. Recently a novel ap-
proach used PPI network autocorrelation in hierarchical multi-label classification trees
to improve gene function prediction [164].

In [121], methods related to decision trees, in the sense that interpretable classifica-
tion rules to predict all functions at all levels of the GO hierarchy, have been proposed,
but using an Ant Colony optimization classification algorithm to discover classification
rules.

Finally, bagging and random forest ensembles [30] have been applied to the AFP in
yeast, showing that both local and global hierarchical ensemble approaches perform
better than the single model counterparts in terms of predictive power [90].

9 The hierarchical classification alone is not enough
Several works showed the in protein function prediction problems we need to consider
several learning issues [69, 153, 129]. In particular in [140] the authors showed that
even if hierarchical ensemble methods are fundamental to improve the accuracy of the
predictions, their mere application is not enough to assure state-of-the-art results if
we at the same time do not consider other important learning issues related to AFP.
Indeed in [42] it has been shown a significant synergy between hierarchical classifi-
cation, data integration methods and cost-sensitive techniques, highlighting that hier-
archical ensemble methods should be designed taking into account different learning
issues essential for the AFP problem.

9.1 Hierarchical methods and data integration
Several works, and the recently published results of the CAFA 2011 (Critical Assess-
ment of Functional Annotation) challenge showed that data integration plays a central
role to improve the predictions of protein functions [117, 129, 52, 99, 161].

Indeed, high-throughput biotechnologies make available increasing quantities of
biomolecular data of different types, and several works pointed out that data integration
is fundamental to improve the accuracy in AFP [69].

According to [117], we may subdivide the main approaches to data integration for
AFP in four groups:

1. Vector subspace integration

2. Functional association networks integration

3. Kernel fusion

4. Ensemble methods

Vector Space Integration. This approach consists in concatenating vectorial data to
combine different sources of biomolecular data [58]. For instance, [124] concatenate
different vectors, each one corresponding to a different source of genomic data, in order
to obtain a larger vector that is used to train a standard SVM. A similar approach has
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been proposed by [76], but each data source is separately normalized in order to take
into account the data distribution in each individual vector space.

Functional association networks integration. In functional association networks,
different graphs are combined to obtain the composite resulting network [84, 49]. The
simplest approaches adopt conjunctive/disjunctive techniques [106], that is respectively
adding an edge when in all the networks two genes are linked together or when a link
between the two genes is present in at least one functional network, or probabilistic
evidence integration schemes [172].

Other methods differentially weight each data source using techniques ranging
from Gaussian Random fields [175], to Naive-Bayes integration [115], constrained
linear regression [114], or by merging data taking into account the GO hierarchy [113],
or by applying XML-based techniques [108].

Kernel fusion. These techniques at first construct a separated Gram matrix for each
available data source using appropriate kernels representing similarities between genes/gene
products. Then, by exploiting the closure property with respect to the sum and other
algebraic operators, the Gram matrices are combined to obtain a “consensus” global
integrated matrix.

Besides combining kernels linearly with fixed coefficients [124], one may also use
semidefinite programming to learn the coefficients [100]. As methods based on semi-
definite programming do not scale well to multiple data sources, more efficient methods
for multiple kernel learning have been recently proposed [162, 130]. Kernel fusion
methods, both with and without weighting the data sources, have been successfully
applied to the classification of protein functions [101, 104, 41, 198]. Recently a novel
method proposed an enhanced kernel integration approach by which the weights are
iteratively optimized by reducing the empirical loss of a multi-label classifier for each
of the labels simultaneously, using a combined objective function [198].

Ensemble methods. Genomic data fusion can be realized by means of an ensemble
system composed by learners trained on different ”views” of the data and then combin-
ing the outputs of the component learners. Each type of data may capture different and
complementary characteristics of the objects to be classified and the resulting ensemble
may obtain better prediction capabilities through the diversity and the anti-correlation
of the base learner responses.

Some examples of ensemble methods for data combination include “late integra-
tion” of kernels trained on different sources [124], Naive Bayes integration [169] of
the outputs of SVMs trained with multiple sources [76], and logistic regression for
combining the output of several SVMs trained with different biomolecular data and
kernels [118].

Recently, in [137] the authors showed that simple ensemble methods, such as
weighted voting [53, 88] or Decision Templates [96] give results comparable to state-
of-the-art data integration methods, exploiting at the same time the modularity and
scalability that characterize most ensemble algorithms. Another work showed that en-
semble methods are also resistant to noise [136].
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Using an ensemble approach, biomolecular data differing for their structural char-
acteristics (e.g. sequences, vectors, graphs) can be easily integrated, because with
ensemble methods the integration is performed at the decision level, combining the
outputs produced by classifiers trained on different datasets [132, 133, 135].

As an example of the effectiveness of the integration of hierarchical ensemble meth-
ods with data fusion techniques, in [42] six different sources of yeast biomolecular data
have been integrated, ranging from protein domain data (PFAM BINARY and PFAM
LOGE) [66], gene expression measures (EXPR) [72], predicted and experimentally sup-
ported protein-protein interaction data (STRING and BioGRID) [163, 188] to pairwise
sequence similarity data (SEQ. SIM.). Kernel fusion integration (sum of Gram matri-
ces) has been applied, and pre-processing has been performed using the the HCgene R
package [180].

Table 2 summarizes the results of the comparison across about two hundreds of
FunCat classes, including single-source and data integration approaches together with
both flat and hierarchical ensembles.

Table 2: Comparison of the results (average per-class F-scores) achieved with single
sources and multi-source (data fusion) techniques. FLAT, HTD, HTD-CS, HB (HBAYES),
HB-CS (HBAYES-CS), TPR and TPR-W ensemble methods are compared with and with-
out data integration. In the last row the number in parentheses refers to the percent
relative increment in F-score performance achieved with data fusion techniques with
respect to the best single source of evidence (Biogrid).

METHODS FLAT HTD HTD-CS HB HB-CS TPR TPR-W
SINGLE-SOURCE

BIOGRID 0.2643 0.3759 0.4160 0.3385 0.4183 0.3902 0.4367
STRING 0.2203 0.2677 0.3135 0.2138 0.3007 0.2801 0.3048
PFAM BINARY 0.1756 0.2003 0.2482 0.1468 0.2407 0.2532 0.2738
PFAM LOGE 0.2044 0.1567 0.2541 0.0997 0.2847 0.3005 0.3160
EXPR. 0.1884 0.2506 0.2889 0.2006 0.2781 0.2723 0.3053
SEQ. SIM. 0.1870 0.2532 0.2899 0.2017 0.2825 0.2742 0.3088

MULTI-SOURCE (DATA FUSION)
KERNEL FUSION 0.3220(22) 0.5401(44) 0.5492(32) 0.5181(53) 0.5505(32) 0.5034(29) 0.5592(28)

Data fusion techniques improve average per class F-score across classes in FLAT
ensembles (first column of Table 2), and significantly boost multilabel hierarchical
methods (columns HTD, HTD-CS, HB, HB-CS, TPR, TPR-W of Table 2).

Fig. 12 depicts the classes (black nodes) where Kernel Fusion achieves better re-
sults than the best single-source data set (BIOGRID). It is worth noting that the number
of black nodes is significantly larger in TPR-W (Fig. 12 b) w.r.t. FLAT methods (Fig. 12
a).

Hierarchical multilabel ensembles largely outperform FLAT approaches [76, 118],
but Table 2 and Fig.12 also reveal a synergy between hierarchical ensemble methods
and data fusion techniques.

34



Hierarchical ensemble methods ISRN Bioinformatics

 

00

01

01.01

01.01.03 01.01.06

01.01.06.05

01.01.09

01.02 01.03

01.03.01

01.03.01.03

01.03.04 01.03.16

01.03.16.01

01.04 01.05

01.05.02

01.05.02.04 01.05.02.07

01.05.03 01.05.25

01.06

01.06.02

01.06.02.01

01.07

01.07.01

01.20

02

02.01 02.10 02.11 02.13

02.13.03

02.19 02.45

10

10.01

10.01.02 10.01.03

10.01.03.05

10.01.05

10.01.05.01 10.01.05.03

10.01.05.03.01

10.01.09

10.01.09.05

10.03

10.03.01

10.03.01.01

10.03.01.01.03 10.03.01.01.09 10.03.01.01.11

10.03.01.03

10.03.02 10.03.03 10.03.04

10.03.04.05

10.03.05

11

11.02

11.02.01 11.02.02 11.02.03

11.02.03.01

11.02.03.01.01

11.02.03.04

11.04

11.04.01 11.04.02 11.04.03

11.04.03.01

11.06

12

12.01

12.01.01

12.04

12.04.01

12.07 12.10

14

14.01 14.04 14.07

14.07.02 14.07.03 14.07.04 14.07.05 14.07.11

14.10 14.13

14.13.01

14.13.01.01

16

16.01 16.03

16.03.01 16.03.03

16.07 16.19

16.19.03

16.21

16.21.07

18

18.02

18.02.01

18.02.01.01

20

20.01

20.01.01

20.01.01.01

20.01.10 20.01.15 20.01.21

20.03

20.03.22

20.09

20.09.01 20.09.04 20.09.07

20.09.07.03 20.09.07.27

20.09.13 20.09.14 20.09.16

20.09.16.09

20.09.16.09.03

20.09.18

20.09.18.09

20.09.18.09.01

30

30.01

30.01.05

30.01.05.01 30.01.05.05

30.01.05.05.01

32

32.01

32.01.01 32.01.03 32.01.07 32.01.09

32.07

34

34.01

34.01.01

34.01.01.01 34.01.01.03

34.11

34.11.03

34.11.03.07

40

40.01

41

41.01

41.01.01

42

42.01 42.04

42.04.03

42.10

42.10.03 42.10.05

42.16 42.25

43

43.01

43.01.03

43.01.03.05 43.01.03.09

(a)

00

01

01.01

01.01.03 01.01.06

01.01.06.05

01.01.09

01.02 01.03

01.03.01

01.03.01.03

01.03.04 01.03.16

01.03.16.01

01.04 01.05

01.05.02

01.05.02.04 01.05.02.07

01.05.03 01.05.25

01.06

01.06.02

01.06.02.01

01.07

01.07.01

01.20

02

02.01 02.10 02.11 02.13

02.13.03

02.19 02.45

10

10.01

10.01.02 10.01.03

10.01.03.05

10.01.05

10.01.05.01 10.01.05.03

10.01.05.03.01

10.01.09

10.01.09.05

10.03

10.03.01

10.03.01.01

10.03.01.01.03 10.03.01.01.09 10.03.01.01.11

10.03.01.03

10.03.02 10.03.03 10.03.04

10.03.04.05

10.03.05

11

11.02

11.02.01 11.02.02 11.02.03

11.02.03.01

11.02.03.01.01

11.02.03.04

11.04

11.04.01 11.04.02 11.04.03

11.04.03.01

11.06

12

12.01

12.01.01

12.04

12.04.01

12.07 12.10

14

14.01 14.04 14.07

14.07.02 14.07.03 14.07.04 14.07.05 14.07.11

14.10 14.13

14.13.01

14.13.01.01

16

16.01 16.03

16.03.01 16.03.03

16.07 16.19

16.19.03

16.21

16.21.07

18

18.02

18.02.01

18.02.01.01

20

20.01

20.01.01

20.01.01.01

20.01.10 20.01.15 20.01.21

20.03

20.03.22

20.09

20.09.01 20.09.04 20.09.07

20.09.07.03 20.09.07.27

20.09.13 20.09.14 20.09.16

20.09.16.09

20.09.16.09.03

20.09.18

20.09.18.09

20.09.18.09.01

30

30.01

30.01.05

30.01.05.01 30.01.05.05

30.01.05.05.01

32

32.01

32.01.01 32.01.03 32.01.07 32.01.09

32.07

34

34.01

34.01.01

34.01.01.01 34.01.01.03

34.11

34.11.03

34.11.03.07

40

40.01

41

41.01

41.01.01

42

42.01 42.04

42.04.03

42.10

42.10.03 42.10.05

42.16 42.25

43

43.01

43.01.03

43.01.03.05 43.01.03.09

(b)

Figure 12: FunCat trees to compare F-scores achieved with data integration (KF) to the
best single-source classifiers trained on BIOGRID data. Black nodes depict functional
classes for which KF achieves better F-scores. (a) FLAT, (b) TPR-W ensembles.

9.2 Hierarchical methods and cost-sensitive techniques
According to [183, 43], cost-sensitive approaches boost predictions of hierarchical
methods when single-sources of data are used to train the base learners. These re-
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Figure 13: Comparison of hierarchical precision, recall and F-score among different
hierarchical ensemble methods using the best source of biomolecular data (BIOGRID),
Kernel Fusion (KF), and Weighted Voting (WVOTE) data integration techniques. HB
stands for HBAYES.

sults are confirmed when cost-sensitive methods (HBAYES-CS – Section 5.3.2, HTD-CS
– Section 4 and TPR-W – Section 7.2) are integrated with data fusion techniques, show-
ing a synergy between multilabel hierarchical, data fusion (in particular kernel fusion),
and cost-sensitive approaches (Fig. 13) [42].

Per-level analysis of the F-score in HBAYES-CS, HTD-CS, and TPR-W ensembles
shows a certain degradation of performance w.r.t. the depth of nodes, but this degra-
dation is significantly lower when data fusion is applied. Indeed, the per-level F-score
achieved by HBAYES-CS and HTD-CS when a single source is used consistently de-
creases from the top to the bottom level, and it is halved at level 5 w.r.t. to the first
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level. On the other hand, in the experiments with Kernel Fusion the average F-score at
level 2, 3 and 4 is comparable, and the decrement at level 5 w.r.t. level 1 is only about
15% (Fig. 14). Similar results are reported also with TPR-W ensembles.
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Figure 14: Comparison of per level average precision, recall and F-score across the five
levels of the FunCat taxonomy in HBAYES-CS using single data sets (single) and kernel
fusion techniques (KF). Performance of “single” are computed by averaging across all
the single data sources.

In conclusion, the synergic effects of hierarchical multilabel ensembles, cost-sensitive,
and data fusion techniques significantly improve the performance of AFP. Moreover,
these enhancements allow to obtain better and more homogeneous results at each level
of the hierarchy. This is of paramount importance, because more specific annotations
are more informative, and can get more biological insights about the functions of genes.

9.3 Different strategies to select “negative” genes
In both GO and FunCat only positive annotations are usually available, while negative
annotations are very reduced. More precisely, in the GO only about 2500 negative
annotations are available, and surely this amount does not allow a sufficient coverage
of negative examples

Moreover, some seminal works in functional genomics pointed out that the strategy
of choosing negative training examples does affect the classifier performance [15, 104,
156, 195].

In [42] two strategies for choosing negative examples have been compared: the
Basic (B) and the Parent Only (PO) strategy.
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Figure 15: Comparison of average per-class F-score between Basic and PO strate-
gies. (a) FLAT ensembles; (b) Hierarchical cost-sensitive strategies: HTD-CS (squares),
TPR-W (triangles), HBAYES-CS (filled circles). Abscissa: per-class F-score with base
learners trained according to the Basic strategy; ordinate: per-class F-score with base
learners trained according to the PO strategy.

According to the B strategy, the set of negative examples are simply those genes g
that are not annotated for class ci, that is:

NB = {g : g /∈ ci} (31)

The PO selection strategy chooses as negatives for the class ci only those examples
that are non annotated to ci but are annotated for a parent class. More precisely, for a
given class ci corresponding to node i in the taxonomy, the set of negative examples is:

NPO = {g : g /∈ ci, g ∈ par(i)} (32)

Hence, this strategy selects negative examples for training that are in a certain sense
“close” to positives. It is easy to see that NPO ⊆ NB, hence this strategy selects for
training a large set of generic negative examples, possibly annotated with classes that
are associated with faraway nodes in the taxonomy. Of course, the set of positive
examples is the same for both strategies.

The B strategy worsens the performance of hierarchical multilabel methods, while
for FLAT ensembles there is no clear trend. Indeed in Fig. 15, comparing the F-
scores obtained with B to those obtained with PO, using both hierarchical cost-sensitive
(Fig. 15 (a)) and FLAT (Fig. 15 (b)) methods. Each point represents the F-score for a

38



Hierarchical ensemble methods ISRN Bioinformatics

specific FunCat class achieved by a specific method with B (abscissa) and PO (ordi-
nate) strategy for the selection of negative examples. In Figure 15 (a) most points lie
above the bisector independently of the hierarchical cost-sensitive method being used.
This shows that hierarchical methods gain in performance when using the PO strat-
egy as opposed to the B strategy (p-value = 2.2× 10−16 according to the Wilcoxon
signed-ranks test). This is not the case for FLAT methods (Fig. 15 (b)).

These results can be explained by considering that the PO strategy takes into ac-
count the hierarchy to select negatives, while the B strategy does not. More precisely,
FLAT methods having no information about the hierarchical structure of classes, may
fail to distinguish negative examples belonging to very distant classes, thus resulting in
a high false positive rate, while hierarchical methods, which know the taxonomy, can
use the information coming from other base classifiers to prevent a local base learner
from incorrectly classifying “distant” negative examples.

In conclusion these seminal works show that the strategy to choose negative ex-
amples exerts a significant impact on the accuracy of the predictions of hierarchical
ensemble methods, and more research work is needed to explore this topic.

10 Open problems and future trends
In the previous section we showed that different learning issues should be considered to
improve the effectiveness and the reliability of hierarchical ensemble methods. Most of
these issues and others related to hierarchical ensemble methods and to AFP represent
challenging problems that have been only partially considered by previous work. For
these reasons we try to delineate some of the open problem and research trends in the
context of this research area.

For instance the selection strategies for negative examples have been only partially
explored, even if some seminal works show that this item exerts a significant impact
on the accuracy of the predictions [15, 104, 156, 42]. Theoretical and experimental
comparison of different strategies should be performed in a systematic way, to assess
the impact of the different strategies on different hierarchical methods, considering also
the characteristics of the learning machines used as base learners.

Some works showed also the cost-sensitive strategies are needed to significantly
improve predictions, especially in a hierarchical context [42], but new research could
be considered for both applying or designing cost-sensitive base learners and to de-
velop novel hierarchical ensemble unbalance-aware. Cost-sensitive methods have been
applied to both the single base learners and also to the overall hierarchical ensemble
strategy [179, 42], and recently a hierarchical variant of SMOTE (Synthetic Minority
Over-sampling Technique) [45] has been applied to hierarchical protein function pre-
diction, showing very promising results [47]. In principle classical “balancing” strate-
gies should be explored to improve the accuracy and the reliability of the base learners
and hence of the overall hierarchical classification process. For instance, random un-
dersampling or oversampling techniques could be applied: the former augments the
annotations by exactly duplicating the annotated proteins, whereas the latter randomly
takes away some unannotated examples [13]. Other approaches could be considered
such as heuristic resampling methods [95], or embedding resampling methods into
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data mining algorithms [77], or ensemble methods tailored to imbalanced classifica-
tion problems [165, 202, 71].

Since functional classes are unbalanced, precision/recall analysis plays a central
role in AFP problems, and often drives “in vitro” experiments that provide biological
insights about specific functional genomics problems [69]. Only a few hierarchical
ensemble methods, such as HBAYES-CS [43] and TPR-W [179] can tune their preci-
sion/recall characteristics through a single global parameter. In HBAYES-CS, by incre-
menting the cost factor α = θ

−
i /θ

+
i we introduce progressively lower costs for positive

predictions, thus resulting in an increment of the recall (at the expenses of a possibly
lower precision), In TPR-W, by incrementing w we can reduce the recall and enhance
the precision. Parametric versions of other hierarchical ensemble methods could be
developed, in order to design ensemble methods with “tunable” precision/recall char-
acteristics.

Another important issue that should be considered in the design of novel hierar-
chical ensemble methods is the incompleteness of the available annotations and its
impact on the performance of computational methods for AFP. Indeed the success-
ful application of supervised and semi-supervised machine learning methods to these
tasks requires a gold standard for protein function, i.e. a trusted set of correct exam-
ples, but unfortunately the annotations is incomplete and undergoes frequent updates,
and also the GO is frequently updated. Some seminal works showed that on the one
hand current machine learning approaches are able to generalize and predict novel bi-
ology from an incomplete gold standard and on the other hand incomplete functional
annotations adversely affect the evaluation of machine learning performance [80]. A
very recent work addressed these items by proposing methods based on Weak-label
learning specifically designed to replenish the functions of proteins under the assump-
tion that proteins are partially annotated. More precisely two new algorithm have been
proposed: ProWL, Protein Function prediction with Weak-label learning, which can
recover missing annotations by using the available relevant annotations, that is a set
of trusted annotations for a given protein, and ProWL-IF, Protein Function prediction
with Weak-label learning and Knowledge of Irrelevant Function, by which also irrele-
vant functions, i.e. functions that cannot be associated with the protein of interest are
exploited to replenish the missing functions [196, 197]. The results show that these
items should be considered in future works for hierarchical multi-label predictions of
protein functions in model organisms.

Another issue is represented by the reliability of the annotations. Usually only
experimental evidence is used to annotate the proteins for training AFP methods, but
most of the available annotations are computationally predicted annotations without
any experimental validation [74]. To at least partially exploit this huge amount of
information, computational methods able to take into account the different reliability of
the available annotations should be developed and integrated into hierarchical ensemble
algorithms.

A quite neglected item is the interpretability of the hierarchical models. Neverthe-
less the generation of comprehensible classification models is of paramount importance
for biologists in order to provide new insights about the correlation of protein features
and their functions [68]. A first step in this direction is represented by the work of
Cerri et al. that exploits the advantages of grammar-based evolutionary algorithms to
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incorporate prior knowledge with the simplicity of genetic algorithms for optimization
problems in order to produce interpretable rules for hierarchical multi-label classifica-
tion [34].

Other issues depend on “strength” or the general rule that relates the predictions
made by the base learner at a given term/node of the hierarchy with the predictions
made by the other base learners of the hierarchical ensemble. For instance the TPR
algorithm (Section 7) weights the positive predictions of deeper nodes with an expo-
nentially decrement with respect to their depth (Sect. 11), but other rules (e.g. linear or
polynomial) could be considered as the basis for the development of new algorithms
that put more weight on the decisions of deep nodes of the hierarchy. Other enhance-
ments could be introduced with the TPR-W algorithm (Section 7.2): indeed we can note
that positive children of a node at level i of the hierarchy have the same weight, inde-
pendently of the size of their hanging subtree. In some cases this could be useful, but
in other cases it could be desirable to directly take into account the fact that a positive
prediction is maintained along a path of the tree: indeed this witnesses for a positive
annotation of the node at level i.

More in general, in the spirit of a work recently proposed [42], the analysis of
the synergy between the issues introduced above could be of great interest to better
understand the behaviour of hierarchical ensemble methods.

Finally we introduce some problems that could open new and interesting research
lines in the context of hierarchical ensemble methods.

At first an important issue could be represented by the design and development of
multi-task learning strategies [192] able to exploit the relationships between functional
classes already during the learning phase, in order to establish a functional connection
between learning processes associated to hierarchically related classes of the functional
taxonomy. In this way just during the training of the base learners, the learning pro-
cesses will be dependent on each other (at least for nearby nodes/classes), enabling
”mutual learning” of related classes in the taxonomy.

A second, to my knowledge not explored learning issue is represented by the meta-
integration of hierarchical predictions. Considering that there is no ”killer” hierar-
chical ensemble method, a meta-combination of the hierarchical predictions could be
explored to enhance the overall performances.

A last issue is represented by multi-species predictions in a hierarchical context.
By exploiting homology relationships between proteins of different species we could
enhance the prediction for a particular species by using predictions or data available
for other species. This is a common practice with e.g. sequence-based methods, but
novel research is needed to extend this homology-based approach in the context of
hierarchical ensemble methods for multi-species prediction. It is worth noting that
this multi-species approach yields to big-data analysis with the associated problems of
scalability of existing algorithms. A possible solution to this last problem could be
represented by distributed parallel computation [75], or by the adoption of secondary
memory-based computational techniques [109]
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11 Conclusions
Hierarchical ensemble methods represent one of the main research lines for AFP. Their
two-steps learning strategy introduces a high modularity in the prediction system: in
the first step different base learners can be trained to individually learn the functional
classes, and in the second step different algorithms can be chosen to hierarchically
combine the predictions provided by the base classifiers. The best results can be ob-
tained when the global topology of the ontology is exploited, and when both top-down
and bottom-up learning strategies are applied [76, 118, 179, 43].

Nevertheless a hierarchical learning strategy alone is not enough to achieve state-
of-the-art results for AFP. Indeed we need to design hierarchical ensemble methods in
the context of the learning issues strictly related to the AFP problem.

The first one is represented by data fusion, since each source of biomolecular data
may provide different and often complementary information about a protein and an
integration of data fusion methods with hierarchical ensembles is mandatory to improve
AFP results.

The second one is represented by the cost-sensitive techniques needed to take into
account the usually small number of positive annotations: data unbalance-aware meth-
ods should be embedded in hierarchical methods to avoid solutions biased toward low
sensitivity predictions.

Other issues, ranging from the proper choice of negative examples to the reliabil-
ity and the incompleteness of the available annotation, the balance between local and
global learning strategies and the meta-integration of hierarchical predictions have been
only partially addressed in previous work. More in general, the synergy between hier-
archical ensemble methods, data integration algorithms, cost-sensitive techniques and
other related issues is the key to improve AFPmethods and to drive experiments aimed
at discovering previously unannotated or partially annotated protein functions [42].

Indeed, despite their successful application to protein function prediction in differ-
ent model organisms, as outlined in Section 9, there is large room for future research
in this challenging area of computational biology.

In particular the development of multi-task learning methods to jointly learn related
GO terms in a hierarchical context, and the design of multi-species hierarchical algo-
rithms, able to scale with millions of proteins, represent a compelling challenge for the
computational biology and bioinformatics community.

Appendix

A. Gene Ontology and FunCat
The two main taxonomies of gene functional classes are represented by the Gene On-
tology (GO) [167], and The Functional Catalogue (FunCat) [146]. In the former the
functional classes are structured according to a directed acyclic graph, i.e. a DAG
(Fig. 17), while the latter through a forest of trees (Fig. 18). The GO is composed by
thousands of functional classes, and it is set out in three separated ontologies: ”Biolog-
ical Processes”, ”Molecular Function” and ”Cellular Component” (Fig. 16). Indeed a

42



Hierarchical ensemble methods ISRN Bioinformatics

Figure 16: The Gene Ontology

gene can participate to specific biological processes (e.g. cell cycle, metabolism, nu-
cleotide biosynthesis) and at the same time can perform specific molecular functions
(e.g. catalytic or binding activities, that occur at the molecular level) in specific cellular
components (e.g. mitochondrion or rough endoplasmic reticulum).

GO: the Gene Ontology

The Gene Ontology (GO) project began as a collaboration between three model organ-
ism databases, FlyBase (Drosophila), the Saccharomyces Genome Database (SGD)
and the Mouse Genome Database (MGD), in 1998. Now it includes several of the
world’s major repositories for plant, animal and microbial genomes. The GO project
has developed three structured controlled vocabularies (ontologies) that describe gene
products in terms of their associated biological processes, cellular components and
molecular functions in a species-independent manner (Fig. 16). Biological Process
(BP) represents series of events accomplished by one or more ordered assemblies
of molecular functions that exploit a specific biological function. For instance lipid
metabolic process or tricarboxylic acid cycle. Molecular Function (MF) describes ac-
tivities that occur at the molecular level, such as catalytic or binding activities. An
example of MF is glycine dehydrogenase activity or glucose transporter activity. Cel-
lular Component (CC) represents just parts or components of a cell, such as organelles
or physical places or compartments in which a specific gene product is located. An
example is the endoplasmic reticulum or the rybosome.

The ontologies of the GO are structured as a directed acyclic graph (DAG) G =<
V,E >, where V = {t|terms of the GO} and E = {(t,u)|t,u ∈ V}. Relations between
GO terms are also categorized in three main groups:

• is-a (subtype relations): if we say the term/node A is a B, we mean that node A
is a subtype of node B. For example, mitotic cell cycle is a cell cycle, or lyase
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activity is a catalytic activity.

• part-of (part-whole relations): A is part of B means that whatever A exists, it
is part of B, and the presence of A implies the presence of B. For instance,
mitochondrion is part of cytoplasm.

• regulates (control relations): if we say that A regulates B we mean that A directly
affects the manifestation of B, i.e. the former regulates the latter.

While is-a and part-of are transitive, regulates is not. Moreover in some cases regula-
tory proteins are not expected to have the same properties as the proteins they regulate
and hence predicting regulation may require other data and assumptions than predicting
function similarity. For these reasons usually in AFP regulates relations (that however
are a minority of the existing relations) are usually not used.

Each annotation is labeled with an evidence code, that indicates how the annotation
to a particular term is supported. They are subdivided in several categories ranging
from experimental evidence codes, used when experimental assays have been applied
for the annotation, e.g. Inferred from Physical Interaction (IPI) or Inferred from Mu-
tant Phenotype (IMP) or Inferred from Genetic Interaction (IGI), to author statement
codes, such as Traceable Author Statement (TAS), that indicate that the annotation was
made on the basis of a statement made by the author(s) in the cited reference, to com-
putational analysis evidence codes, based on an in silico analyses manually reviewed
(e.g. Inferred from Sequence or Structural Similarity (ISS)). For the full set of available
evidence codes, please see the GO web site (http://www.geneontology.org).

A GO graph for the yeast model organism is represented in Fig. 17. It is worth
noting that, despite the complexity of the represented graph, Fig. 17 does not show all
the available terms and the relationships involved in the GO BP ontology with the yeast
model organism.

FunCat: the Functional Catalogue

The FunCat taxonomy started with Saccharomyces cerevisiae genome project at MIPS
(http://mips.gsf.de/): at the beginning, FunCat contained only those categories
required to describe yeast biology [110, 111], but successively its content has been
extended to plants to annotate genes from the Arabidopsis thaliana genome project
and furthermore to cover prokaryotic organisms and finally animals too [146].

The FunCat represents a relatively simple and concise set of gene functional classes:
it consists of 28 main functional categories (or branches) that cover general fields like
cellular transport, metabolism and cellular communication/signal transduction. These
main functional classes are divided into a set of subclasses with up to six levels of in-
creasing specificity, according to a tree-like structure that accounts for different func-
tional characteristics of genes and gene products. Genes may belong at the same time to
multiple functional classes, since several classes are subclasses of more general ones,
and because a gene may participate in different biological processes and may perform
different biological functions.

Taking into account the broad and highly diverse spectrum of known protein func-
tions, the FunCat annotation scheme covers general features, like cellular transport,
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Figure 17: GO BP DAG for the yeast model organism (realized through the HCGene
software [180], involving more than 1000 terms and more than 2000 edges

metabolism and protein activity regulation. Each of its main 28 functional branches is
organized as a hierarchical, tree like structure, thus leading to a tree forest with hun-
dreds of functional categories.

Differently from the GO, the FunCat is more compact and does not intend to clas-
sify protein functions down to the most specific level. From a general standpoint it can
be compared to parts of the Molecular Function and Biological Process terms of the
GO system.

One of the main advantages of FunCat is its intuitive category structure. For in-
stance, the annotation of yeast uses only 18 of the main categories and less than 300
distinct categories (Fig. 18), while the Saccharomyces Genome Database (SGD) [48]
uses more than 1500 GO terms in its yeast annotation. Indeed FunCat focuses on the
functional process and in part to the molecular function, while GO aims at represent-
ing a fine granular description of proteins that provides annotations with a wealth of
detailed information. However, to achieve this goal, the detailed description offered by
GO leads to a large number of terms (e.g. the ontology for biological processes alone
contains more than 10000 terms), and such a huge amount of terms is very difficult to
be handled for annotators. Moreover, we may have a very large number of possible as-
signments, that may lead to erroneous or inconsistent annotations. FunCat is simpler:
its tree structure, compared with the DAG structure of the GO, leads to both simple
procedures for annotation, and less difficult computational-based classification tasks.
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Figure 18: FunCat tree for the yeast model organism (realized through the HCGene
software [180]. A “dummy” root node has been added to obtain a single tree from the
tree forest.

In other words, it represents a well-balanced compromise between extensive depth,
breadth and resolution but without being too granular and specific.

It is worth noting that both FunCat and GO ontologies undergo modifications be-
tween different releases, and at the same time the annotations are also subjected to
changes, since they represent the results of the knowledge of the scientific community
at a given time. As a consequence, predictions resulting e.g. in false positives for
a given release of the GO may become true positive in future releases, and more in
general we should keep in mind that the available annotations are always partial and
incomplete and depend on the knowledge available for the species under study. Nev-
ertheless, even if some works pointed out the inconsistency of current GO taxonomies
through the analysis of violations of terms univocality [187], GO and FunCat are con-
sidered the ground truth to evaluate AFPmethods, since they represent the main effort
of the scientific community to organize a commonly accepted taxonomy of protein
functions [74]

B. AFP performance assessment in a hierarchical context
In the context of ontology-wide protein function prediction problems, where negative
examples are usually a lot more than positives, accuracy is not a reliable measure to as-
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sess the classification performance. For this reason the classical F-score is used instead,
to take into account the unbalance of functional classes. If T P represents the positive
examples correctly predicted as positive, FN, the positive examples incorrectly pre-
dicted as negative and FP the negatives incorrectly predicted as positives, then the
precision P, and the recall R are:

P =
T P

T P+FP
R =

T P
T P+FN

(33)

The F-score F is the harmonic mean between precision and recall:

F =
2 ·P ·R
P+R

(34)

If we need to evaluate the correct ranking of annotated proteins with respect to
a specific functional class, a valuable measure is represented by the area under the
receiving operating characteristic curve (AUC). A random ranking corresponds to
AUC ' 0.5, while values close to 1 correspond to near optimal ranking, i.e. AUC = 1
if all the annotated genes are ranked before the unannotated ones.

In order to better capture the hierarchical and sparse nature of the protein function
prediction problem, we also need specific measures that estimate how far a predicted
structured annotation is from the correct one. Indeed, functional classes are structured
according to a direct acyclic graph (Gene Ontology) or to a tree (FunCat), and we need
measures to accommodate not just “exact matches” but also “near misses” of different
sorts.

For instance, correctly predicting a parent or ancestor annotation, while failing to
predict the most specific available annotation should be “partially correct”, in the sense
that we can gain information about the more general functional characteristics of a
gene, missing only its most specific functions.

More precisely, given a general taxonomy G representing the graph of the func-
tional classes, for a given gene/gene product x consider the graph P(x)⊂ G of the pre-
dicted classes and the graph C(x) of the correct classes associated to x, and let be l(P)
the set of the leaves (nodes without children) of the graph P. Given a leaf p ∈ P(x), let
be ↑ p the set of ancestors of the node p that belong to P(x), and given a leaf c ∈C(x),
let be ↑ c the set of ancestors of the node c that belong to C(x), the Hierarchical Pre-
cision (HP), Hierarchical Recall (HR) and Hierarchical F-score (HF) are defined as
follows [186]:

HP =
1

|l(P(x))| ∑
p∈l(P(x))

max
c∈l(C(x))

| ↑c ∩ ↑ p|
| ↑ p|

HR =
1

|l(C(x))| ∑
c∈l(C(x))

max
p∈l(P(x))

| ↑c ∩ ↑ p|
| ↑c|

HF =
2 ·HP ·HR
HP+HR

(35)

In the case of the FunCat taxonomy, since it is structured as a tree, we can simplify
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HP, HR and HF as follows:

HP =
1

|l(P(x))| ∑
p∈l(P(x))

|C(x) ∩ ↑ p|
| ↑ p|

HR =
1

|l(C(x))| ∑
c∈l(C(x))

| ↑c ∩P(x)|
| ↑c|

HF =
2 ·HP ·HR
HP+HR

(36)

An overall high hierarchical precision is indicative that the predictor is able to de-
tect the most general functions of genes/gene products. On the other hand a high aver-
age hierarchical recall indicates that the predictors are able to detect the most specific
functions of the genes. The hierarchical F-measure expresses the correctness of the
structured prediction of the functional classes, taking into account also partially cor-
rect paths in the overall hierarchical taxonomy, thus providing in a synthetic way the
effectiveness of the structured hierarchical prediction.

Another variant of hierarchical classification measure is represented by the Hier-
archical F-measure proposed by Kiritchenko et al. [87]. Let P(x) the set of classes
predicted in the overall hierarchy for a given gene/gene product x, and C(x) the corre-
sponding set of “true” classes. Then the Hierarchical Precision HPK and the Hierarchi-
cal recall HRK according to Kiritchenko are defined as:

HPK = ∑
x

|P(x)∩C(x)|
|P(x)|

HRK = ∑
x

|P(x)∩C(x)|
|C(x)|

(37)

Note the these definitions do not explicitly consider the paths included in the predicted
subgraphs, but simply the ratio between the number of common classes and respec-
tively the predicted (HPK) and the true classes (HRK). The Hierarchical F-measure
HFK is the harmonic mean between HPK and HRK :

HFK =
2 ·HPK ·HRK

HPK +HRK
(38)

C. Effect of the propagation of the positive decisions in TPR ensem-
bles
In TPR ensembles a generic node at level k is any node whose distance from the root
is equal to k. The posterior probability computed by the ensemble for a generic node
at level k is denoted by qk. More precisely qk denotes the probability computed by the
ensemble and q̂k the probability computed by the base learner local to a node at level k.
Moreover we define q j

k+1 as the probability of a child j of a node at level k, where the
index j ≥ 1 refers to different children of a node at level k. From (28) we can derive
the following expression for the probability qk computed for a generic node at level k
of the hierarchy [179]:

qk(g) = w · q̂k(g)+
1−w
|φk(g)| ∑

j∈φk(g)
q j

k+1(g) (39)
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To simplify the notation we can introduce the following expression to indicate the
average of the probabilities computed by the positive children nodes of a generic node
at level k:

ak+1 =
1
|φk| ∑

j∈φk

q̂ j
k+1 (40)

and we can introduce similar notations for ak+2 (average of the probabilities of the
grandchildren), and more in general for ak+ j (descendants at level j of a generic node).
By extending these definition across levels, we can obtain the following theorem:
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Figure 19: (a) Plot of f (w) = (1−w)m, while varying m from 1 to 10. (b) Plot of
g(w) = w(1−w) j, while varying j from 1 to 10. The integers j refer to internal nodes
at distance j from the reference node at level k

Theorem 2 (Influence of positive descendant nodes) In a TPR-w ensemble, for a generic
node at level k, with a given parameter w,0≤w≤ 1, balancing the weight between par-
ent and children predictors, and having a variable number larger or equal than 1 of
positive descendants for each of the m lower levels below, the following equality holds
for each m≥ 1:

qk = wq̂k +
m−1

∑
j=1

w(1−w) jak+ j +(1−w)mak+m (41)

For the full proof see [179].
Theorem 2 shows that the contribution of the descendant nodes decays exponen-

tially with their depth and depends critically on the choice of the w parameter. To get
more insights into the relationships between w and its effect on the influence of positive
decisions on a generic node at level k (Theorem 1), Fig. 19 (a) shows the function that
governs the decay of the influence of leaf nodes at different depths m, and Fig. 19 (b)
the function responsible of the influence of nodes above the leaves.
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