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Universitätsmedizin
Berlin, Germany

0000-0002-0736-9199

5th Giorgio Valentini
Dipartimento di Informatica
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Abstract—We present heterogeneous-node2vec, a novel method
that leverages the well-known node2vec algorithm to enable the
generation of random-walk samples in a heterogeneous context.
Specifically, we propose a strategy to bias the random walk,
enabling type-aware transitions between different node and edge
types. We evaluate the proposed technique on node-label pre-
diction tasks, applied to various real-world, complex networks.
A comparison with state-of-the-art techniques for heterogeneous
graph embedding demonstrates that our strategy achieves com-
petitive results for node-label prediction. This evidences that
graph representation methods based on heterogeneous random-
walk sampling can attain strong performance on standard
supervised tasks when the sampling procedure incorporates the
semantic information defined by the type heterogeneity of entities
within the graph. This approach provides an effective and
scalable solution for representing and learning from complex
heterogeneous graphs.

Index Terms—machine learning, graphs and networks, algo-
rithms for data and knowledge management

I. INTRODUCTION

The use of heterogeneous graphs has become a ubiquitous
model for representing interactions between typed entities in
complex networks. A natural problem associated with the
analysis of knowledge encoded in these typically massive
structures is their condensed and efficient representation. To
this aim, Network Representation Learning (NRL) seeks to
embed complex networks into low-dimensional vector spaces
while preserving their structural properties. The representation

* This work was supported by National Center for Gene Therapy and Drugs
Based on RNA Technology—MUR (Project no. CN 00000041) funded by
NextGeneration EU program

of nodes and edges as vectors enables the application of
machine learning models for various supervised and unsu-
pervised tasks, including node classification, link prediction,
visualization, and clustering.

Most of the studies in the literature have focused on the
analysis of homogeneous graphs. However, recent efforts have
shifted toward the representation of more general hetero-
geneous networks, that is, graphs whose nodes and edges
are characterized by different types. Research in this area,
commonly referred to as Heterogeneous Graph Representa-
tion Learning (HGRL) or Multi-relational Learning, aims to
produce low-dimensional representations that capture both
the structural properties of the network and the semantic
relationships induced by the heterogeneous components of the
graph.

Among the main HGRL strategies in the literature, four
primary research directions stand out.

Factorization methods work by approximating the graph’s
structural information (usually encoded by the adjacency or
Laplacian matrix) into a low-dimensional vector space. The
idea is to factorize a large, sparse matrix that represents
relationships between nodes (or edges) into smaller matrices,
where each row or column corresponds to a low-dimensional
embedding of a graph entity. These methods aim to preserve
the most important structural or semantic information of the
graph. Despite being effective, these techniques are generally
not scalable to large graphs.

Graph Neural Networks (GNNs) compute vectorial repre-
sentations of graph nodes by leveraging deep neural network



encoders, which recursively aggregate information from the
neighborhoods of nodes [9], [11], [17], [26], [29], [30]. While
highly effective, these methods face scalability challenges,
especially when applied to large-scale graphs. Moreover, the
embeddings produced by GNNs are typically tailored to a
specific predictive task, limiting their generalizability across
different prediction tasks.

Relational-learning approaches use contrastive learning to
embed entities and relationships into low-dimensional space
by representing relations as operators that combine the rep-
resentations of their extreme entities [1], [23], [25], [27].
While effective, these models may not fully capture the
graph’s structural nuances, such as higher-order connections
or intricate dependencies between nodes. Additionally, since
these models are often tailored to a specific predictive task
(e.g., link prediction), they may not generalize well across
multiple tasks or datasets without additional fine-tuning.

Random-Walk (RW) based methods represent entities and
relations by sampling the neighborhood of nodes using a
biased path generated according to a stochastic process [5],
[10], [12], [15], [31]. Sampled random walks are then input
into shallow neural networks to obtain vector representations
of the graph components [14]. Inspired by word embedding
strategies used in the natural language processing field, this
representation technique aims to preserve the neighborhoods
of nodes and edges as defined by the samples generated
through the random walks.

In the context of homogeneous networks, DeepWalk [16]
is a seminal approach that generates simple random walks
starting from each node in the graph. This method is extended
in node2vec [10], where random walks are generated based
on second-order random walks, which can be parameterized
to create biased node neighborhoods that mimic local (BFS)
or global (DFS) visit patterns.

In this work, we propose a novel heterogeneous-node2vec
method for learning node embeddings in complex het-
erogeneous networks. Heterogeneous-node2vec extends the
node2vec algorithm to handle heterogeneous graphs by in-
corporating the semantic information induced by node/edge
types into the random walk generation process. The method
is defined in an efficient and flexible manner, allowing for
the definition of diverse sampling strategies that exploit the
structural and semantic properties of the target graphs.

Our work makes the following contributions:
• We introduce heterogeneous-node2vec, a type-aware ran-

dom walk-based sampling strategy that incorporates
node/edge type information in the generation of vectorial
graph representations.

• We propose a simple and flexible sampling strategy
implementation that allows for customizable represen-
tations, depending on both the input network and the
predictive task. For instance, it can focus on a specific
node/edge type or manage under-represented node/edge
types effectively.

• We provide an efficient implementation of heterogeneous-
node2vec that preserves the scalability of homogeneous

methods.
• We conduct node-label prediction experiments on real-

world graphs, demonstrating how heterogeneous vectorial
representations can enhance the performance of standard
predictive tasks.

II. METHODS

Let G = (V,E) be a heterogeneous multigraph where ϕ :
V → Σϕ denotes the function defining the type of a node,
and ψ : E → Σψ denotes the function defining the type of an
edge.

A. heterogeneous-node2vec Random Walk Generation

Along the generation process of a random walk, let Xt

denote the node visited at step t, and Et+1 the edge traversed
from the node Xt to the node Xt+1. Transition probabilities
from a node visited by a random walk will be defined
according to a second-order random walk. Namely, consider
a random walk currently residing at node Xt = v, coming
from node Xt−1 = r through the edge Et = erv. If x
is a neighbor of v, heterogeneous-node2vec computes the
transition probability of stepping to Xt+1 = x through an
edge Et+1 = evx in a way that is proportional to the function
π̂rvx,ervevx

as follows:

π̂rvx,ervevx = Φsc · αpq · wevx (1)

P
(
Xt+1 = x,Et+1 = evx|Xt = v,Xt−1 = r, Et = erv

)
= π̂rvx,ervevx

/C, (2)

where π̂rvx,ervevx
denotes the unnormalized transition prob-

ability and C is a normalization constant. The function
π̂rvx,ervevx (equation 1) is the product of three terms: the
weight wevx over the edge evx connecting v and x; the
function αpq , defined as in node2vec, and accounting for the
structural properties of the network; and the function Φsc,
which accounts for the semantic properties of the network
and depends on both the type of the nodes and the type of the
edges involved in the transition.

More precisely, function αp,q depends only on the hop-
distance drx between nodes r and x and is defined as:

αp,q(r, x) =


1
p if drx = 0

1 if drx = 1
1
q if drx = 2

, (3)

The hyperparameters p (return/inward) and q (in-
out/explore) control the random walk’s behavior biasing
the walk towards a depth-first search (DFS)-like (p ≫ q)
exploration or towards a breadth-first search (BFS)-like
exploration (p≪ q).

On the other hand, the function Φsc is the product of two
parametric functions βs and γc, which depend respectively on
the type of the nodes and the type of the edges involved in
the transition:



Φsc(v, x, erv, evx) = βs(v, x) · γc(erv, evx), (4)

The multiplicative structure of the function Φsc decouples
the contribution to the transition probability from changes in
the node types (βs) and the edge types (γc) along the second-
order random walk. More precisely, βs and γc bias the walk
according to the following user-defined parameters: s, the
node-type switching weight, biasing the second-order random
walk according to node-type transitions; and c, the edge-type
switching weight, biasing the walk according to the node and
edge types.

Note that different definitions of βs and γc allow the
construction of customized switching strategies that can bias
the walk to favor specific node/edge type transitions.

In particular, we defined the two strategies detailed in the
following.

1) Special Switching Strategy: In several real-world appli-
cations, predictive tasks focus on a specific subset of node
types. To handle this scenario, we can partition the set of node
types into two subsets: special node-types (those of interest)
and non-special ones. Based on this partition, a special node-
type switching strategy defines transition probabilities that
either promote or demote switching between the special and
non-special nodes. For instance, by defining the function βs
as:

βs(v, x) =

{
1
s if ϕ(x) is special
1 otherwise,

(5)

transitions into nodes with special types are either promoted
(s < 1) or demoted (s > 1). It is important to note that
various strategies of this type can be constructed following
this schema. Similarly, a special edge-type switching strategy
can be defined, where transitions are promoted or demoted
based on the presence of edges with special types.

2) Generic Switching Strategy: This strategy biases tran-
sitions in such a way that random walks either maintain or
swap node and edge types during the traversal in a generic
way, i.e. without considering any special node. That is, we
have a “switch” any time we move from a node or edge type
to any other node or edge type. This behavior can be achieved
by defining:

βs(v, x) =

{
1
s if ϕ(v) ̸= ϕ(x)

1 otherwise
(6)

where the parameter s can be adjusted to either preserve
node types (s > 1) or switch them (s < 1) along the random
walk. Similarly, the function γc can be defined to control the
preservation (c > 1) or switching (c < 1) of edge types along
the random walk.

Both special and generic switching strategies can be espe-
cially useful in predictive tasks involving node and edge types
that are underrepresented in the heterogeneous network. These
strategies can bias the random walk to favor or limit transitions

to specific node and edge types, even when these types are
less frequent compared to others. We outline that node2vec is
a particular case of heterogeneous-node2vec, when s = 1, i.e.,
when we have no type-aware switching.

B. Node Vector Representation
The random walks generated according to the strategies

described in Section II-A are used as input to a neural
network architecture that produces vector representations for
the network nodes. To achieve this, we use the Skipgram
model [14], a widely adopted technique that has demonstrated
its promise in learning node representations. In particular,
early studies [10], [16] showed that Skipgram, especially when
combined with negative sampling, effectively captures network
structure, even for infrequent nodes; this is a key advantage
over approaches like CBOW. Additionally, Mikolov et al. [14]
provided a comprehensive comparison between Skipgram and
CBOW for word embeddings, where Skipgram consistently
performed better in capturing fine-grained contextual relation-
ships—a finding that has been successfully translated to the
graph domain.

In our graph-based context, the Skipgram architecture con-
sists of a single hidden layer trained to predict the neighbor-
hood of a target node across a random walk sample in a given
graph. The neighborhood of a target node v, also referred to
as its context, comprises the nodes that appear within a fixed-
size window around v in the generated random walk path. The
objective of the Skipgram model is to maximize the probability
of predicting the context nodes, given a target node. This
probability is computed using the softmax function applied
to the product of the vector representations of the target and
context nodes.

C. heterogeneous-node2vec Implementation
heterogeneous-node2vec is implemented using the efficient

random walk generation provided by the GRAPE Python
library [3], which supports both first-order and second-order
random walk generation. It achieves high efficiency by utiliz-
ing compact data structures and an optimized Rust implemen-
tation, with Python bindings for ease of use.

The sampling process in heterogeneous-node2vec can be
implemented optimally when the functions associated with the
switching strategy depend solely on the types of the nodes
involved in the transition, and not on the direction of the
transition. This is the case for both the generic switching
strategy and the special switching strategies defined in 5 and
6, respectively.

According to these strategies, the function βs can be
precomputed and incorporated into the edge weights as a
multiplicative factor. This precomputation ensures that using
heterogeneous-node2vec with either the generic or special
switching strategies does not introduce additional space or
time complexity compared to the original node2vec algorithm.

III. DATA AND EXPERIMENTAL SET-UP

To empirically evaluate the quality of the vector represen-
tations obtained with heterogeneous-node2vec, we utilized the



benchmark framework proposed in [28], which enables the
comparison of various Heterogeneous Graph Representation
Learning (HGRL) algorithms.

Specifically, we employed the four heterogeneous graphs
provided by the authors (subsection III-A) and performed a
node-label prediction task. The framework supplies a labeled
node set for each benchmark graph along with an evaluation
pipeline, ensuring an objective and fair comparison of node-
label prediction performance across methods.

The evaluation pipeline for node-label prediction involves
five stratified holdouts (provided by the authors), with an
80:20 train:test split. For each holdout, a linear support vector
machine (SVM) [6] is trained on the embeddings of the
training nodes. The micro-F1 and macro-F1 scores are then
computed on the test nodes.

Finally, the results across the five holdouts are averaged to
obtain the overall micro-F1 and macro-F1 scores, providing a
robust measure of performance.

Using the evaluation pipeline and the train-test splits pro-
vided by the authors, we conducted two sets of experiments.

The first experiment (subsection IV-A) assesses the impact
of incorporating semantic information into the second-order
random walk sampling process. This evaluation focuses on
understanding how the random walk bias induced by using the
node-type information influences the quality of the generated
embeddings.

The second experiment (subsection IV-B) evaluates
heterogeneous-node2vec by comparing its performance against
several state-of-the-art HGRL methods. This compari-
son provides insights into the competitive advantages of
heterogeneous-node2vec in heterogeneous graph representa-
tion learning.

A. Datasets

1) Freebase Network: The Freebase network is derived
from the collaborative knowledge base Freebase1, which con-
tains relations across domains such as books, films, music,
sports, people, locations, organizations, and businesses. Each
node is associated with a unique type but does not have
attributes. Edge types are determined by the types of their
endpoint nodes.

Freebase is the largest graph used in the experiments in
terms of node cardinality, comprising 12,164,758 nodes and
62,982,566 edges. It also exhibits the highest diversity in types,
featuring eight distinct node types connected by 36 edge types.
Both node and edge types are distributed unevenly, with two
specific types dominating significantly over the others.

2) DBLP Network: The DBLP network is derived from
the well-known DBLP dataset2, which collects bibliographical
information on computer science publications. It ranks second
in terms of node cardinality (1,989,077 nodes) but contains
the largest number of edges (258,850,593 edges), resulting in
the highest mean node degree among the networks.

1http://www.freebase.com
2https://dblp.org

This dataset, constructed by [28], is an attributed multi-
graph where node types include authors, phrases, venues,
and years, connected by six distinct edge types. Nodes are
attributed with 300-dimensional feature vectors. Each phrase
node is linked to the authors, venues, and year nodes associ-
ated with the paper from which the phrase originated.

Attributes for phrase and paper nodes were generated by
aggregating the word2vec representations of their constituent
words. For author, venue, and year nodes, attributes were
obtained by aggregating the feature vectors of their related
papers (e.g., papers authored by an individual, published in a
specific venue, or within a given year). Additionally, a small
subset of authors has been categorized into 12 research groups
spanning four research areas through a web mining process,
which is used for the node-label prediction task.

3) Yelp Network: The Yelp network represents relation-
ships among reviews (phrases), businesses, locations, and
star ratings, extracted from the Yelp dataset3. The network
contains 82,465 nodes and 30,542,675 edges, with four node
types and four edge types.

A notable characteristic of this network is the over-
representation of one node type. Specifically, phrase nodes
dominate the graph, accounting for approximately 91% of
all nodes. Similarly, edge types are largely dominated by the
phrase-context-phrase type, which constitutes 91% of
the total edges.

4) PubMed Network: The PubMed network is constructed
from the PubMed database4, comprising four node types:
genes, diseases, chemicals, and species. All nodes are ex-
tracted from PubMed articles using the AutoPhrase algo-
rithm [18], typed using bioNER [19], and further filtered by
human experts. Each node in the network is attributed.

Among the benchmark networks, PubMed is the smallest,
containing 63,109 nodes and 244,986 edges. Compared to
other datasets, PubMed exhibits a more balanced distribution
of node types, edge types, and (disease) labels.

IV. RESULTS AND DISCUSSIONS

A. Node Label Prediction: Switching Parameter Sensitivity

In this section, we empirically evaluate the relationship
between the switching parameter in heterogeneous-node2vec
and the performance of the node-label prediction task. To
avoid confounding effects, we focus solely on node-type
heterogeneity. We conduct experiments by fixing the return
parameter 1/p = 0.25 and the outward parameter 1/q = 4,
while varying the value of the (generic or special) node-type
switching parameter βs in the range [10−1, 102]. This analysis
aims to assess whether the semantic information induced by
node types impacts the quality of the graph representation.

Figure 1 illustrates the effect of the switching parameter
s on the Macro/Micro-F1 values obtained in the node-label
prediction task across all benchmark networks, comparing the
generic (left column) and special (right column) switching

3https://www.yelp.com/dataset/challenge
4https://www.ncbi.nlm.nih.gov/pubmed/



TABLE I
NODE TYPE DISTRIBUTION AND BASIC DEGREE STATISTICS IN THE

BENCHMARK HETEROGENEOUS NETWORK.

Degree
Graph Node type distribution mean min max
Freebase music 0.466 14.52 1 1,086,802

book 0.228 3.73 1 131,957
people 0.130 5.17 1 130,116
location 0.060 9.35 1 684,726
film 0.051 11.36 1 100,825
business 0.041 11.15 1 445,716
organization 0.013 7.85 1 174,646
sports 0.011 19.289 1 1,170,520

DBLP author 0.8880 188.68 1 71,861
phrase 0.1094 739.55 1 294,453
venue 0.0026 981.97 1 54,396
year 0.00004 58742.77 1 385,014

Yelp phrase 0.9088 761.57 1 121,333
business 0.0906 357.14 78 3,625
location 0.0005 191.64 1 2,443
stars 0.0001 830.44 4 2,239

Pubmed chemical 0.420 8.04 1 7,272
disease 0.319 7.48 1 18,714
gene 0.215 6.83 1 2,474
species 0.045 5.69 1 1,008

strategies. Special nodes are those highlighted in bold in Table
I.

Using the generic switching strategy (Figure 1, left column),
we observe a decline in performance for Freebase and DBLP
as the switching probability βs = 1/s increases. Conversely,
Yelp and PubMed show an opposite trend, with performance
improving as βs increases. This behavior can be attributed to
the degree distribution of labeled nodes within the networks.
In Freebase and DBLP, labeled nodes (e.g., book in Freebase
and author in DBLP) exhibit relatively lower mean degrees
compared to other node types (see Table I). As a result,
promoting heterogeneity through generic switching may lead
to random walks that fail to adequately capture the local
topological neighborhoods of these labeled nodes.

In contrast, for networks where the labeled nodes have
higher mean degrees and are more interconnected (e.g., Yelp
and PubMed), incorporating node-type heterogeneity through
the generic switching strategy proves beneficial, as it enriches
the representation by exploring diverse neighborhoods.

Under the special switching strategy (Figure 1, right col-
umn), the behavior differs. Higher biases toward special-type
nodes (1/s > 1) enhance performance in Freebase and Yelp
but degrade it in DBLP and PubMed. This variation likely
relates to the proportion of special nodes within the network.
When special nodes represent a small fraction of the overall
network (e.g., Freebase and Yelp), emphasizing these nodes in
the sampling process yields a more informative representation,
as it ensures the inclusion of relevant nodes in the random
walk.

However, when the special nodes are over-represented (e.g.,
author nodes in DBLP), biasing the walks toward these

nodes leads to an over-concentration within a subset of the net-
work. This confinement restricts the walk’s ability to explore
diverse contexts, reducing the accuracy of the representation
for these nodes. Similarly, in PubMed, where node types are
more balanced, excessive focus on special nodes disrupts the
network’s overall structural representation, leading to dimin-
ished performance.

We emphasize that, in both cases, leveraging semantic
information significantly enhances the quality of the final
representation. Consequently, a careful selection of this pa-
rameter can markedly improve the prediction performance of
traditional homogeneous random walk (RW)-based embedding
techniques. Note that by setting 1/s = 100 in Fig. 1,
heterogeneous-node2vec boiled down to the classical node2vec
algorithm.

B. Node Label Prediction. Comparison with state-of-the-art
HGRL methods

To demonstrate the effectiveness of heterogeneous-node2vec
compared to state-of-the-art techniques, we adopted the exper-
imental setup published in [28] and described in Section III,
ensuring a fair comparison with the following methods for
node-label prediction in heterogeneous graphs:

• Random walk-based embedding methods: metapath2vec
[5], PTE [22], Aspem [20], HIN2Vec [7], and HEER [21];

• GCN-based embedding methods: R-GCN [17], HAN
[24], HGT [13], and MAGNN [8];

• Relational learning neural methods: TransE [2], DistMult
[27], ConvE [4], and ComplEx [23].

The results for the node-label prediction task are summa-
rized in Table II, where heterogeneous-node2vec-special refers
to the special node-type switching strategy, where the special
node-type is the one targeted by the node-label prediction task.
In the table, for both the heterogeneous-node2vec settings, we
report only the values obtained by the two extreme values of
the node-type switching parameter 1/s = 0.1, 100. To avoid
confounding effects, the edge-type switching parameter is set
to 1/c = 1.

Results highlight the superiority of heterogeneous-node2vec
across all graphs except DBLP. These findings indicate that
the proposed heterogeneous random walk (RW) approach ef-
fectively captures both the structural and semantic information
embedded in the graphs.

Among the two node-type switching strategies, the spe-
cial node-type switching strategy achieved the best overall
results. However, the generic type switching strategy also
outperformed competing heterogeneous graph representation
learning (HGRL) methods on average. By carefully tuning
the 1/s parameter, both strategies yield results that are either
superior to or on par with state-of-the-art methods.

V. CONCLUSIONS

In this paper, we introduced heterogeneous-node2vec, a
biased second-order random walk strategy that leverages the
well-known node2vec algorithm for heterogeneous graph em-
bedding.



TABLE II
PERFORMANCE METRIC FOR THE NODE-LABEL PREDICTION TASK ON THE BENCHMARK GRAPHSA .

Node label prediction (Macro-F1 & Micro-F1)
Model DBLP Yelp Freebase Pubmed

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
heterogeneous-node2vec generic
1/s = 0.1 30.09 37.53 5.07 23.85 36.46 54.70 11.89 14.10
1/s = 100 28.23 38.03 5.52 24.73 31.06 51.93 13.87 16.10
1/c = 0.1 26.91 31.71 5.09 23.96 35.62 54.18 9.68 13.22
1/c = 100 27.01 34.14 5.20 24.09 27.79 50.47 11.53 15.85

heterogeneous-node2vec special
1/s = 0.1 31.67 41.26 5.09 23.96 33.34 53.25 18.84 21.58
1/s = 100 26.55 33.82 6.11 24.73 38.93 55.45 8.77 11.67
1/c = 0.1 30.96 38.18 5.08 23.91 29.08 51.71 13.82 17.40
1/c = 100 25.83 33.65 6.08 24.73 35.70 54.77 9.90 12.55

node2vec 29.04 37.22 5.09 23.96 36.04 54.71 11.93 15.85
metapath2vec 43.85 55.07 5.16 23.32 20.55 46.43 12.90 15.51
PTE 43.34 54.53 5.10 23.24 10.25 39.87 09.74 12.27
HIN2Vec 12.17 25.88 5.12 23.25 17.40 41.92 10.93 15.31
AspEm 33.07 43.85 5.40 23.82 23.26 45.42 11.19 14.44
HEER 09.72 27.72 5.03 22.92 12.96 37.51 11.73 15.29

R-GCN 09.38 13.39 5.10 23.24 06.89 38.02 10.75 12.73
HAN 07.91 16.98 5.10 23.24 06.90 38.01 09.54 12.18
MAGNN 06.74 10.35 5.10 23.24 06.89 38.02 10.30 12.60
HGT 15.17 32.05 5.07 23.12 23.06 46.51 11.24 18.72

TransE 22.76 37.18 5.05 23.03 31.83 52.04 11.40 15.16
DistMult 11.42 25.07 5.04 23.00 23.82 45.50 11.27 15.79
ComplEx 20.48 37.34 5.05 23.03 35.26 52.03 09.84 18.51
ConvE 12.42 26.42 5.09 23.02 24.57 47.61 13.00 14.49
A In each graph, the highest-performing result is emphasized using bold font, while the second-best performance is indicated with underlined text.

Empirical results—reported in subsection IV-A—highlight
the advantages of incorporating node and edge heterogeneity
into graph embedding techniques. Traditional methods like
node2vec and DeepWalk, originally designed for homoge-
neous graphs, can be applied to heterogeneous networks
but often fail to capture the diversity of node types and
relationships, resulting in suboptimal performance in practi-
cal scenarios. In contrast, many state-of-the-art methods for
heterogeneous graphs are highly dependent on specific graph
characteristics, rely on large and non-scalable neural network
architectures, or produce embeddings tailored to specific pre-
dictive tasks. heterogeneous-node2vec addresses these limita-
tions by introducing type-aware second-order random walks,
providing a scalable and flexible alternative that captures both
the topological structure and semantic diversity of graphs.

The embeddings generated by heterogeneous-node2vec
are task-agnostic, enabling application to various down-
stream tasks. Comparison with state-of-the-art methods
across multiple benchmark datasets—reported in subsection
IV-B—demonstrates that heterogeneous-node2vec offers effec-
tive strategies for balancing the exploration of graph hetero-
geneity, based on the graph’s topological characteristics and
the relative distribution of node types.

In particular, we show that increasing heterogeneity in
random walks enhances representation by emphasizing rela-
tionships between diverse node types in more evenly dis-
tributed networks, such as Freebase and PubMed, thereby
enriching the semantic understanding of the graph. In datasets

with less evenly distributed nodes, such as Yelp, promoting
homogeneity in the walks improves performance by focusing
on specific target node types. This is especially beneficial when
addressing underrepresented nodes or edges in the graph.

However, excessive focus on specific node types can result
in overly homogeneous embeddings that fail to capture the
broader network structure, thus limiting representation capa-
bilities. Therefore, carefully tuning the switching parameters
(s and c) is critical for optimizing performance, as shown
by our results, which are competitive with respect to state-
of-the-art methods for heterogeneous graphs. Additionally,
heterogeneous-node2vec exhibits time complexity comparable
to its homogeneous counterpart, node2vec, making it scalable
for large networks.

While heterogeneous-node2vec demonstrates strong perfor-
mance, its full potential remains underexplored. Future work
will focus on analyzing the interplay between node/edge
type distributions and model parametrization, incorporating
techniques to automatically learn and dynamically update
the switching strategies for even more robust and adaptive
representations; furthermore, we plan to also consider edge
prediction tasks, and to extend the heterogeneous-node2vec
strategy to dynamic heterogeneous graphs.

CODE AND DATA AVAILABILITY

heterogeneous-node2vec is implemented us-
ing the GRAPE library [3] and available at
https://github.com/AnacletoLAB/hetnode2vec ensmallen.
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Fig. 1. Node-label prediction: macro-F1 (left axis - continuous line) and
micro-F1 (right-axis - dashed line) values obtained for varying values of the
βs parameter. Plots in the first column depict the variation of the performance
metrics when the generic switching strategy is used; the second column shows
the results obtained when using the special switching strategy. In each plot,
different scales are used for the left (macro-F1) and right (micro-F1) axis.
The plots referring to the same graph use the same macro-F1 and micro-F1
scales to allow a comparison between the generic and the special node-type
switching strategy.

The datasets and the benchmark pipeline used in the
experiments follow the experimental set-up proposed in [28]
and are available from https://github.com/yangji9181/HNE.
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