Modular Deep Neural Networks with residual connections for
predicting the pathogenicity of genetic variants
in non coding genomic regions

Federico Stacchietti[0009-0009—-1945-134X] \[arco Nicolini![0009-0008—5137-2361] T eonardo
Chimirr12 [0000700027691278518]’ Peter N. RObiIlSOIl2 [0000700027073679199]’ Elena
Casiraghil,SA,S[0000700037202477572], and GiOI‘giO Valentinil,3[0000700027569473919]
L AnacletoLab, Dipartimento di Informatica, Universita degli Studi di Milano, Italy
2 Berlin Institute of Health at Charite Universitaetsmedizin Berlin, Germany
3 ELLIS - European Lab for Learning and Intelligent Systems, Milan Unit
4 Department of Computer Science, Aalto University, Espoo, Finland
5 Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory,
Berkeley, CA, United States
{federico.stacchietti, giorgio.valentini}@unimi.it

Abstract. Predicting pathogenic single nucleotide variants (SN'Vs) in non-coding regions of
the human genome presents a significant challenge for the extreme class imbalance between
pathogenic “positive” variants and physiological “negative” ones, since most machine learning
methods are biased toward predicting negative examples. We designed two “block-shaped”
tabular-DNN architectures: a Modular Block-Deep Neural Network (MoB-DNN) and a tab-
ular Residual Network (T-ResNet), able to address the class imbalance problem through
a mini-batch balancing strategy. We employed a hierarchical optimization approach to ef-
ficiently tune hyper-parameters related to training procedure, architecture, batch size, and
mini-batch balancing ratio. Our experimental results demonstrate that T-ResNet outper-
forms and MoB-DNN shows competitive performance with a state-of-the-art hyper-ensemble
method, suggesting that residual connections provide significant advantages for capturing
complex patterns in non coding regions of the human genome.

Keywords: Deep and modular neural models - Residual connections - Pathogenic variant
prediction

1 Introduction

The detection of pathogenic variants responsible for genetic diseases is a fundamental challenge
in precision medicine [16]. Among approximately 8,000 Mendelian disorders, i.e. genetic diseases
caused by mutations at a single genetic locus, the causative gene mutation remains unknown in more
than 50% of cases [5]. While disease-associated variants in protein-coding regions of the genome
have been extensively studied [14, 3], pathogenic variants in non-coding regions, responsible for a
significant proportion of Mendelian disorders, remain largely unknown [8]. In particular, predicting
pathogenic single nucleotide variants (SNVs) in non-coding regions is an open problem. These
variants constitute only a tiny fraction compared to the vast number of physiological genetic variants
in the human genome. This extreme class imbalance presents a significant challenge for machine
learning approaches, as the number of positive (pathogenic) variants is vastly outnumbered by
negative (physiological) ones [22].

2 F. Stacchietti et al.

In literature, several machine learning based methods, ranging from Support Vector Machines,
to Random Forests, to Neural Networks have been proposed, but most of them fail to correctly
predict pathogenic variants, being biased to predict negative examples [18, 12,25, 11]. Some meth-
ods [21, 6] achieve reasonable results by handling the high imbalance through subsampling and
oversampling techniques. Recent methods adopted approaches based on the the effect of SNVs to
identify non-coding promoter variants which dysregulate gene expression, thus providing insights
into the deleteriousness of SN'Vs in promoter regions [13]. More in general several methods have been
developed to infer the regulatory code directly from genomic sequence [2,15], but the prediction of
the pahogenicity or the effects of non-coding genetic variants remains an open challenge [20].

Other approaches [21, 6] improve performance by mitigating class imbalance through subsam-
pling and oversampling techniques.

In particular, HyperSMURF [21], a method nowadays considered as the state-of-the-art model
specifically designed to detect deleterious SNV under extreme class imbalance in the dataset, lever-
ages a hyper-ensemble approach and couples subsampling techniques, to reduce the number of neu-
tral (“negative”) variants, and oversampling algorithms, to increase the representation of pathogenic
(“positive”) variants. This enables the model to effectively handle the inherent data imbalance. To-
day, it is the machine learning core module of Genomizer, a state of the art tool for the diagnosis
of genetic diseases [22].

In this work, we investigate the applicability of Deep Neural Networks (DNNs) for predicting
pathogenic SN'Vs. From a machine learning perspective, the genetic, epigenetic, and conservation-
based features used for pathogenic SNV prediction are represented in tabular (structured) for-
mat [18, 6]. This format poses challenges due to several factors, most notably the presence of hybrid
variable types. While traditional models such as random forests are naturally suited to handle
such structured data, recent research has also focused on developing deep learning models for
tabular data [4]. Inspired by these works, we designed two modular tabular-DNN architectures,
each composed of repetitive blocks of layers of equal size. Their modularity facilitates hierarchical
hyper-parameter tuning and architectural optimization, while mini-batch balancing techniques help
mitigate the class imbalance in pathogenic variant prediction. A comparison with HyperSMURF [21]
demonstrates the effectiveness of our approach.

2 Methods

We designed two deep “block-shaped” neural models for their relatively simplicity and modularity
that make them easily tunable using appropriate model selection procedures. The idea is to construct
DNNs composed by repetitive blocks of the same size, using at the same time mini-batch balancing
techniques to allow the model to learn the pathogenic variants, largely underrepresented in the
available genetic data. More precisely we considered the two following deep learning models:

1. MoB-DNN: a Modular Blocks-Deep-NN, a deep neural network composed by block modules,
i.e. set of layers having the same number of hidden neurons.

2. T-ResNet: a ResNet model (borrowed from Convolutional Neural Networks (CNNs) for image
processing [9]), working on tabular data, composed by groups of blocks connected by residual
connections.

Both models are trained with a tabular SNV-dataset D = {x%, y'}"_,, being n the sample-size,
x! € Rk, the vector storing k& Mendelian features and y* € {0,1} the label associated to the i‘"
genetic variant. All the features are first normalized by standard scaling.

Modular DNN genetic variants 3

2.1 MoB-DNN: A Modular Block-Deep Neural Network.

MoB-DNN is a modular deep neural network designed for ease of use, featuring a relatively small
number of hyper-parameters that facilitate model selection.
Its overall architecture is constituted by sequential blocks, all sharing the same structure, i.e.
each block is composed by 3 layers (Fig. 1): 1. Linear layer; 2. Activation Layer; 3. Dropout layer.
More precisely, MoB-DNN computes the following function, where x € R” is the k-dimensional
vector of the SNV features, z € R%, and d is the dimension, shared by all blocks, of the hidden
layers:

z = Input_layer(x) (1)
Block(z) = Dropout(Act _layer(Linear _layer(z))) (2)
MoB-DNN(x) = Class_layer(Blocky(Blockn_1(. .. (Blocki(Input_layer(x)))))) (3)

where the Input layer transforms the input vector of the SNV features into a d-dimensional vector
given in input to the first Block, and Class _layer estimates the probability that the SNV variant
is pathogenic:

— Input_layer : RF — R?
— Block : RY — R4
— Class_layer : R - R

The activation layer Act layer introduces non-linearity in the prediction through the ReL U func-
tion [1], and the Dropout layer regularizes the neural network [23].

Notably, all blocks maintain the same hidden dimension d, allowing the overall blocks to be
optimized by tuning a single hyper-parameter.

2.2 T-ResNet: Tabular ResNet.

The T-ResNet model is structurally similar to the MoB-DNN model, but explicitly incorporates
residual connections, borrowed from CNN for image processing [9]. Residual connections help miti-
gate the vanishing gradient problem commonly encountered in deep neural network architectures by
adding a direct connection between the input and output of specific sequences of layers. More pre-
cisely, if F'(x) € RY represents the output of a set of layers with input = € R%, a residual connection
can be implemented by simply summing the input with the output:

res(x) = F(z)+x (4)

T-ResNet is structured into repetitive modules called groups. Each group consists of consecutive
blocks, where each block is identical to the MoB-DNN block, maintaining a uniform hidden dimen-
sion d. A single residual connection spans the entire group, meaning the input to a group is directly
added to its output, effectively creating a shortcut across multiple layers.

Formally, the T-ResNet model consists of the following modular components:

— Input layer : RF — R?
— Block : R? — R? (Linear + ReLU + Dropout)
— Group : RY — R? (sequence of multiple Blocks + residual connection)

4 F. Stacchietti et al.

‘/ Pathogenicity \‘
_ score /

Output to
Classification layer the next block

BlockiN Dropout
X layer
Block 2
Activation
T layer
Block 1
T Linear
layer
Input layer

. T Input from
Positional the previous block

Mendelian features

Fig.1: High-level scheme of the MoB-DNN model. On the left a scheme of the overall modular model
including N blocks. On the right the structure of each block, composed by a sequence of Linear, Activation
and Droupout layers.

— Class layer : R — R

Given an input vector z € R¥, the T-ResNet model computes the following functions, with inter-
mediate representation z € R%:

z = Input_layer(z) (5)
Block(z) = Dropout(ReLU (Linear(z))) (6)
Group(z) = Block(Block(. .. Block(z))) + z (7)

number of blocks per group

T-ResNet(z) = Class_layer (Groupn (Groupn_1(. .. (Group,(Input _layer(z)))))) (8)

The dimension d is maintained constant across all hidden layers, and each group contains an
identical number of blocks. Fig. 2 illustrates the high-level scheme of the T-ResNet architecture.

As an example, if the T-ResNet model has 4 groups with 3 blocks per group, the resulting
network consists of 12 blocks in total, with residual connections between the four groups.

By introducing residual connections, T-ResNet facilitates more effective gradient propagation
during training, alleviating issues commonly encountered in deep neural network architectures,
such as vanishing gradient effects. Again, its modularity diminishes the number of architectural
parameters to be optimized.

Modular DNN genetic variants 5

e
‘,/ Pathogenicity Y
S score /

- Output to
Classification layer the next group

Block N

A

Group 2 @ Block N (D

Block N
Group 1 \ /

Input from
Input layer the previous group,

Positional
Mendelian features

Fig. 2: High-level scheme of the T-ResNet model. On the left a scheme of the overall modular model including
N groups. On the right the structure of each group, composed by several blocks.

2.3 Mini-Batch Balancing Strategy.

Given the extreme class imbalance in our dataset (negative-to-positive ratio on the order of 10%),
standard training procedures tend to overfit negative examples. To counteract this, we implemented
a mini-batch balancing strategy that ensures a comparable number of positive and negative examples
in each mini-batch.

More precisely, let D be the dataset containing n examples, with the subset of positives denoted
as P C D, where |P| = n4, and the subset of negatives as N C D, where |[N| = n_. A mini-batch
B of size |M| = m is constructed by sampling:

— my positive examples, drawn with replacement from P using a uniform distribution.
— m_ negative examples, drawn without replacement from N using a uniform distribution.

The degree of imbalance in B is controlled by the ratio r of negative examples to the total
mini-batch size:
m_
r=———, suchthat m_+my =m. (9)
m_ + m.,.
The ratio r ranges within 0 < r < 1, where » = 0.5 indicates perfect balancing, while r = 0.9
implies that 90% of the mini-batch consists of negatives.

6 F. Stacchietti et al.

Since the number of positive examples is limited, we sample them with replacement to allow
for sufficiently small values of r (i.e., a larger proportion of positives) even for large m. Conversely,
negative examples are sampled without replacement to ensure a more extensive coverage of the
available negative examples across training iterations.

3 Results

3.1 Datasets

For training and testing our neural models, we used a dataset including more than 14 million single
nucleotide variants included in the non coding regions of the human genome, previously prepared
and analyzed in [22]. Therein, only 406 were pathogenic, thus resulting in an imbalance between
pathogenic (positive) and physiological (negative) SNVs of about 1 : 35,000. Each SNV is char-
acterized by 26 numerical features that include genomic attributes downloaded from public data
bases (UCSC, NCBI and others). The main features represent conservation scores, transcriptional,
regulation and epigenomic features (e.g. DN Ase features, histone methylation and acetylation, tran-
scription factor binding sites), and other features relevant to assess the potential pathogenicity of
the genetic variants (see [22] for more details).

3.2 Hyper-parameter optimization

In order to optimize hyper-parameter configurations and maintain computational efficiency, both
DNNs and HyperSMURF models were optimized by applying a grid search strategy within a cross-
validation framework. First, the full dataset was stratified and split into a stratified external holdout,
with 80% of the positive and negative instances assigned to the training set and 20% to the test
set. The external training set was further used to run an internal 5-fold stratified cross-validation
and the best hyper-parameter configurations were chosen by maximizing the mean AUPRC scores
across the internal validation folds.

For optimizing the neural network models (both MoB-DNN and T-ResNet), due to the high
number of hyper-parameters to be tuned, we adopted a hierarchical optimization approach (Sec-
tion 3.3). In contrast, the HyperSMURF models underwent a single comprehensive grid search to
determine the best hyper-parameter settings (Section 3.4).

3.3 DNNSs hyper-parameter optimization procedure

Hierarchical Hyper-parameter Optimization. The advantage of the proposed DNN models lies in
their modularity, which significantly reduces the number of architectural hyper-parameters to op-
timize. However, deep neural networks involve a large set of hyper-parameters, some of which are
crucial yet often overlooked. Beyond evaluating DNNs for SNV pathogenicity classification, this
work aims to determine whether a hierarchical and computationally efficient optimization proce-
dure can yield promising results.

We defined a three-step hierarchical optimization process: (1) hyper-parameters optimization
related to the training procedure, which are often preset and overlooked in literature; (2) by fixing
the selected training hyper-parameters set, further selection of a set of optimal architectural hyper-
parameters; (3) having narrowed the range of architectural hyper-parameters, final selection of the
optimal batch size and mini-batch balancing ratio.

Modular DNN genetic variants 7

Preliminary selection of learning hyper-parameters on data subsamples. Given the sub-
stantial computational cost that a hyper-parameter optimization via grid-search would require, we
implemented a preliminary hyper-parameter selection procedure on a data subsample. To this aim,
we created five datasets, each containing all the positive samples and 500,000 randomly selected
negative samples. Each subsample was split into stratified train and validation sets (75:25 train:test
ratio) and the optimal hyper-parameters were chosen by applying grid search to maximize the mean
AUPRC over the five validation sets.

The aim of this phase was to analyze the effect of (often overlooked) model-training hyper-
parameters to discard evidently suboptimal configurations at an early stage, thereby mitigating
computational costs. In particular, by training simple MoB-DNN architectures (comprising 3-5
blocks with 128-256 units per layer), we set the learning rate to 1073, and we set a linear decay
learning rate scheduling. We also chose to apply the Adam optimization algorithm and set the batch
size to 8,192 with a negative/positive ratio per batch of 0.8. Training continued until 100 epochs
(with early stopping implemented), and we applied a dropout rate of 0.3.

Convergence analysis showed that the best test AUPRC scores were achieved within 30 to 50
epochs, with minimal improvement beyond this range. Thus, we chose to set a minimum of 30
epochs and a maximum of 50, applying early stopping with a patience of 10 to prevent overfitting
while maintaining computational efficiency.

The same hyper-parameters were also used for the T-ResNet architecture.

Additionally, we consistently employed the Rectified Linear Unit (ReLU) activation function and
the Cross Entropy Loss function due to their well-established effectiveness in deep neural network
classification tasks [10,17].

Selection of the model architecture. Once the training hyper-parameters were chosen, the
second step applied the grid search procedure detailed in Section 3.2 to narrow the range of optimal
architectural hyper-parameters, i.e. we applied a 5-fold internal cross-validation on the full training
set.

For the MoB-DNN architecture, we explored configurations varying in depth (number of blocks)
and width (number of hidden units per linear layer in a block). Specifically, the following architec-
tural parameters were examined for the MoB-DNN model: number of blocks in {3,5,7,9,11}; and
number of units per linear layer in a block (hidden layer size) in {64, 128,256, 512}.

For T-ResNet, we explored all combinations of the following architectural hyper-parameters:
number of groups in {3,5,7,9}; number of blocks per group in {1,2,3}; and number of units per
layer in {128, 256,512}.

Selecting the configurations that achieved the highest mean AUPRC across the internal val-
idation sets, we can narrow the set of architectural hyper-parameters to explore. These sets of
hyper-parameters were then considered in the next step for batch size and mini-batch balancing
optimization.

For the MoB-DNN model the best architectural hyper-parameters were a number of blocks equal
to 3 or 7, and a number of units per layer equal to 256 or 512. For the T-ResNet model, the set
of architectural parameters included a number of groups equal to 3 or 5, a number of blocks per
group equal to 1 or 3, a number of units per hidden layer equal to 128.

Refinement of the models with respect the batch size and the mini-batch imbalance.
After the architectural selection described above, we performed a further refinement step focusing
on batch-related hyper-parameters: the batch size and the mini-batch balancing ratio (see Section

8 F. Stacchietti et al.

g
g

. . d: 256, b:3
w256, o J N —— o aaa mszies, | r00s
. . d: 512, b:7
522, o I m 3, ros
d: 512, b: 3
d: 256, b: 3
. . d: 512, b: 3
0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8
AUPRC Score AUPRC Score

=
B

d: 128, g:5, bg: 1

: m: 32768, r: 0.95
. m: 32768, r: 0.5
. m: 32768, r:0.5
. m: 32768, r: 0.95
0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8
AUPRC Score AUPRC Score

Fig.3: AUPRC of top 5 configurations for MoB-DNN and T-ResNet models obtained by internal cross-
validation on the training set. First row refers to the MoB-DNN, second row to T-ResNet. (a) Best 5
MoB-DNN models resulting from the selection of the model architecture; (b) Best 5 T-ResNet models
resulting from the selection of the model architecture; (c) Best 5 MoB-DNN models resulting from the
further selection of the batch size and the ratio of the mini-batch balancing; (d) Best 5 T-ResNet models
resulting from the further selection of the batch size and the ratio of the mini-batch balancing. Error bars
represent the standard deviation. d: number of neural units for each layer, b: number of blocks, ¢g: number of
groups, bg: number of blocks per group, m: batch size, m mini-batch balancing (negative-to-positive ratio).

2.3). Using the selected architectural hyper-parameters, we run the final grid search by internal
cross-validation on the training set, to evaluate the following search spaces for both MoB-DNN
and T-ResNet: batch size in {1024,8192, 32768}; and mini-batch balancing (negatives/positives) in
{0.50,0.8,0.95}.

Figure 3 shows the top 5 configurations by average AUPRC across the 5 folds of the internal
cross-validation.

Note that MoB-DNN and T-ResNet without mini-batch balancing and with a relatively small
mini-batch size (1024) cannot learn anything (their AUPRC is close to 0). By enlarging the mini-
batch size to 32,768, we can obtain better results, e.g. AUPRC of 0.454 for MoB-DNN;, since the
larger size improves the probability of including some positives in the mini-batch. Nevertheless, the
results are relatively poor with respect to the same models trained using mini-batch balancing.

3.4 HyperSMURF hyper-parameter Selection

HyperSMURF hyper-parameters were tuned using grid search to maximize the mean AUPRC com-
puted by internal cross-validation (Section 3.2).

Modular DNN genetic variants 9

np: 50, fp: 10
r: 50, ntree: 50

np: 50, fp: 5
r: 100, ntree: 100

np: 50, fp: 10
r: 50, ntree: 100

np: 50, fp: 5
r: 100, ntree: 50

np: 100, fp: 2|
r: 100, ntree: 10

0.3 0.4 0.5 0.6 0.7 0.8
AUPRC Score

Fig.4: AUPRC of top 5 configurations for the HyperSMURF models. Configuration labels: np: number of
partitions, fp: oversampling factor, r: undersampling ratio, ntree: number of trees.

The hyper-parameter search space was chosen based on the hyper-parameter optimization results
reported by authors of [21] using the same dataset. In particular, the grid search space was defined
as follows.

— Number of partitions (np): each partition includes all positive examples and a unique sub-
set of negatives (i.e., a maximum of N_/np negatives); we tested the following values: np €
{50,100, 150}.

— Qversampling factor for positive examples (fp): if Ny is the number of positives, the cardinality
of the over-sampled positive set, obtained through the SMOTE algorithm [7], is ny = Ny +
(fp x N,); we tested the following values: fp € {2,5,10, 15,20}.

— Negative to positive ratio (r): this parameter controls the number of negatives in each parti-
tion. The number of negatives is min(r x ny, N_/np); We tested the following values: r €
{2, 3,10, 50,100}.

— Number of trees (ntree) in each random forest; we tested with ntree € {10,50, 100}.

All other HyperSMURF and random forest settings were kept at their defaults. The top 5
configurations are shown in Figure 4.

3.5 Results on the Test Set

The AUPRC scores on the external test set across all top & = 5 configurations for each type of
model ranged between approximately 0.5 and 0.6, reflecting the challenges posed by the highly
imbalanced dataset. Note that AUROC values are always larger than 0.9 for all the considered
models, but we reported only AUPRC results, since this metric is better suited to evaluate very
imbalanced data [19].

In Table 1, we present the final results obtained from the best configurations for each model
type. Notably, T-ResNet achieved the highest Test AUPRC of 0.624, followed by HyperSMURF with
0.581, and MoB-DNN with 0.561. The difference in favor of T-ResNet is always statistically signifi-
cant (Wilcoxon paired rank sum test, a = 10~%). This outcome is particularly striking considering
that our dataset is tabular in nature, a domain where tree-based methods such as HyperSMURF

10 F. Stacchietti et al.

np: 50, fp: 5
r: 100, ntree: 50.0)

d: 512 b: 7
m: 32768 r: 0.5

d: 128 g: 3 b: 3]
m: 32768 r: 0.95|

IET

a

np: 50, fp: 5|
r: 100, ntree: 100.0|

d: 512 b: 3
m: 32768 r: 0.5

128 g: 5 b: 3}
: 32768 r: 0.95f

3

d: 256 b: 3
m: 8192 r: 0.95

d: 128 g: 3 bg: 3]
m: 32768 r: 0.5

np: 50, fp: 10)
r: 50, ntree: 50.0)

Model Configuration
Model Configuration
Model Configuration

np: 50, fp: 10)
r: 50, ntree: 100.0f

d: 512 b: 3
m: 8192 r: 0.95|

d:1289: 5 b: 3
m: 32768 r: 0.5

np: 100, fp: 2 d: 256 b: 3

r: 100, ntree: 10.0|

d: 128 g: 5 bg: 1
0.564 0.523 52968 1 0.8 0.574

m: 32768 r: 0.95)

05 052 054 056 058 06 062 064 05 052 054 056 058 06 062 064 05 052 054 056 058 06 062 064
AUPRC Score AUPRC Score AUPRC Score

Fig.5: Comparison of the AUPRC results on the test set for the 5 best models of (a) HyperSMURF, (b)
MoB-DNN and (c) T-ResNet. Configuration labels: np: number of partitions, fp: oversampling factor, r:
undersampling ratio, ntree: number of trees, d: number of neural units for each layer, b: number of blocks,
g: number of groups, bg: number of blocks per group, m: batch size, = mini-batch balancing (negative-to-
positive ratio)

are traditionally expected to have an edge over deep learning models. The ResNet’s superior per-
formance suggests that the use of residual layers is an important addition compared to MoB-DNN
models.

4 Conclusions

Our results show that well-tuned deep neural networks can be competitive with state-of-the-art
methods to predict pathogenic variants in non coding regions of the human genome. Moreover
balancing techniques are crucial to achieve competitive results in this challenging problem, where
the number of “negative” physiological genetic variants largely outnumber “positive” pathogenic
SNVs.

These findings pave the way for further research, such as integrating ensemble methods with deep
neural network models, to potentially enhance predictive performance beyond current benchmarks.

Model Type Best Model Config Test AUPRC
T-ResNet N. Units: 128, N. Groups: 3, Blocks per Group: 3, Batch Size: 32,768, Neg/Pos Ratio: 0.95 0.624
HyperSMURF N. Partitions: 50, Oversampling factor: 5, Undersampling ratio: 100, N. Trees: 50 0.581
MoB-DNN N. Blocks: 7, N. Units: 512, Batch Size: 32,768, Neg/Pos Ratio: 0.5 0.561

Table 1: AUPRC scores for the best configuration of each model type on the test set.

Beyond raw performance, deep networks offer several key advantages over traditional tree-based
methods. Indeed, deep network architectures can be more easily integrated with other neural net-
work models, like transformer models [24], enabling the creation of hybrid systems that leverage
the strengths of both architectures for multi-modal data, including nucleotide sequence data and
tabular genomic and epigenomic features for the prediction of pathogenic single nucleotide variants
in non coding regions of human genome.

Modular DNN genetic variants 11

Acknowledgments. This work was supported by National Center for Gene Therapy and Drugs Based
on RNA Technology—MUR (Project no. CN _00000041) funded by NextGeneration EU program, and by
FAIR (Future Artificial Intelligence Research) project, funded by the NextGenerationEU program within the
PNRR-PE-AI scheme (M4C2, Investment 1.3, Line on Artificial Intelligence) - AIDH — FAIR - PE0000013.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to the
content of this article.

Codebase. The MoB-DNN and T-ResNet models code and scripts to reproduce the experiments are
available from GitHub: https://github.com/AnacletoLAB/T-ReMM-FFNN.

References

10.

11.

12.

13.

14.

. Agarap, A.: Deep learning using rectified linear units (relu). CoRR abs/1803.08375 (2018), http:

//arxiv.org/abs/1803.08375

. Avsec, Z., Agarwal, V., Visentin, D., et al.: Effective gene expression prediction from sequence by in-

tegrating long-range interactions. Nat Methods 18, 1196-1203 (2021). https://doi.org/10.1038 /s41592-
021-01252-x

Bend], J., Musil, M., Stourac, J., Zendulka, J., Damborsky, J.and Brezovsky, J.: Predictsnp2: A unified
platform for accurately evaluating snp effects by exploiting the different characteristics of variants in
distinct genomic regions. PLOS Computational Biology €100496 (2016)

Borisov, V., Leemann, T., Sefsler, K., Haug, J., Pawelczyk, M., Kasneci, G.: Deep neural networks and
tabular data: A survey. IEEE Transactions on Neural Networks and Learning Systems 35(6), 7499-7519
(2024). https://doi.org/10.1109/TNNLS.2022.3229161

Boycott, K., Rath, A., Chong, J., et al.: International cooperation to enable the diagno-
sis of all rare genetic diseases. The American Journal of Human Genetics 100(5), 695—
705 (2017). https://doi.org/https://doi.org/10.1016/j.ajhg.2017.04.003, https://wuw.sciencedirect.
com/science/article/pii/S0002929717301477

Caron, B., Luo, Y., Rausell, A.: Ncboost classifies pathogenic non-coding variants in mendelian diseases
through supervised learning on purifying selection signals in humans. Genome Biology 20(1), 32 (Feb
2019). https://doi.org/10.1186/s13059-019-1634-2, https://doi.org/10.1186/s13059-019-1634-2
Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: Synthetic Minority Over-sampling Tech-
nique. Journal of Artificial Intelligence Research 6, 321-357 (2002)

Edwards, S.L., Beesley, J., French, J.D.; Dunning, A.M.: Beyond gwass: illuminating the dark road
from association to function. American Journal of Human Genetics 93 5, 779-97 (2013)

He, K., Zhang, X., Ren, S., Sun.J.: Deep residual learning for image recognition. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) pp. 770-778 (2016), https://api.
semanticscholar.org/CorpusID: 206594692

Hu, X., Niu, P., Wang, J., Zhang, X.: A dynamic rectified linear activation units. IEEE Access 7,
180409-180416 (2019)

Huang, Y.F., Gulko, B., Siepel, A.: Fast, scalable prediction of deleterious noncoding vari-
ants from functional and population genomic data. Nature Genetics 49, 618-624 (2017).
https://doi.org/10.1038 /ng.3810

Tonita-Laza, 1., McCallum, K., Xu, B., Buxbaum, J.D.: A spectral approach integrating functional
genomic annotations for coding and noncoding variants. Nat Genet 48(2), 214-20 (Feb 2016).
https://doi.org/10.1038/ng.3477

Jaganathan, K., Ersaro, N., Novakovsky, G., et al.: Predicting expression-altering promoter mutations
with deep learning. Science p. eads7373 (2025). https://doi.org/10.1126/science.ads7373

Kumar, P., Henikoff, S., Ng, P.: Predicting the effects of coding non-synonymous variants on protein
function using the sift algorithm. Nat Protoc. 4(7), 1073-81 (2009)

12

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

F. Stacchietti et al.

Linder, J., Srivastava, D., Yuan, H., et al.: Predicting RNA-seq coverage from DNA sequence as a
unifying model of gene regulation. Nat Genet 57, 949-961 (2025). https://doi.org/10.1038 /s41588-024-
02053-6

Maddirevula, S., Kuwahara, H., Ewida, N., et al.: "analysis of transcript-deleterious variants
in mendelian disorders: implications for rna-based diagnostics". Genome Biol 21(145) (2020).
https://doi.org/10.1186/s13059-020-02053-9

Mao, A., Mohri, M., Zhong, Y.: Cross-entropy loss functions: Theoretical analysis and applications. In:
International conference on Machine learning. pp. 23803-23828. PMLR (2023)

Rentzsch, P., Witten, D., Cooper, G., Shendure, J., Kircher, M.: Cadd: predicting the deleterious-
ness of variants throughout the human genome. Nucleic Acids Res. 47(D1), D886-D894 (2019).
https://doi.org/10.1093 /nar/gky1016

Saito, T., Rehmsmeier, M.: The Precision-Recall Plot Is More Informative than the ROC
Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 10(3) (2015).
https://doi.org/10.1371/journal.pone.0118432

Sasse, A., Ng, B., Spiro, A., et al.: Benchmarking of deep neural networks for predicting per-
sonal gene expression from DNA sequence highlights shortcomings. Nat Genet 55, 2060-2064 (2023).
https://doi.org/10.1038/s41588-023-01524-6

Schubach, M., Re, M., Robinson, P.N., Valentini, G.: Imbalance-aware machine learning for predict-
ing rare and common disease-associated non-coding variants. Scientific Reports 7(1), 2959 (2017).
https://doi.org/10.1038,/s41598-017-03011-5

Smedley, D., Schubach, M., Jacobsen, J.O., Kohler, S., Zemojtel, T., Spielmann, M., Jager, M.,
Hochheiser, H., Washington, N.L., McMurry, J.A., Haendel, M.A., Mungall, C.J., Lewis, S.E., Groza,
T., Valentini, G., Robinson, P.N.: A Whole-Genome Analysis Framework for Effective Identification
of Pathogenic Regulatory Variants in Mendelian Disease. The American Journal of Human Genetics
99(3), 595-606 (sep 2016). https://doi.org/10.1016/j.ajhg.2016.07.005, http://linkinghub.elsevier.
com/retrieve/pii/S0002929716302786

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way
to prevent neural networks from overfitting. Journal of Machine Learning Research 15(56), 1929-1958
(2014), http://jmlr.org/papers/vi5/srivastaval4a.html

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.:
Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. p. 6000-6010. NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)
Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants with deep learning-based sequence
model. Nature Methods 12(10), 931-934 (Aug 2015). https://doi.org/10.1038 /nmeth.3547, http://dx.
doi.org/10.1038/nmeth.3547

