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Abstract. The annotation and characterization of tissue-specific cis-regulatory elements
(CREs) in non-coding DNA represents an open challenge in computational genomics. Several
prior works show that machine learning methods, using epigenetic or spectral features directly
extracted from DNA sequences, can predict active promoters and enhancers in specific tissues
or cell lines. In particular, very recently deep-learning techniques obtained state-of-the-art re-
sults in this challenging computational task. In this study, we provide additional evidence that
Feed Forward Neural Networks (FFNN) trained on epigenetic data and one-dimensional con-
volutional neural networks (CNN) trained on DNA sequence data can successfully predict
active regulatory regions in different cell lines. We show that model selection by means of
Bayesian optimization applied to both FFNN and CNN models can significantly improve deep
neural network performance, by automatically finding models that best fit the data. Further,
we show that techniques applied to balance active and non-active regulatory regions in the
human genome in training and test data may lead to over-optimistic or poor predictions.
We recommend to use actual imbalanced data that was not used to train the models for
evaluating their generalization performance.

1 Introduction

Non-coding DNA regions, which include 98% of the human genome, are that part of DNA that does
not encode for structural proteins and enzymes. A subset of those regions, so-called cis-regulatory
elements (CREs) determine spatiotemporal patterns of gene expression [1,2] and therefore play
a key role in the control of transcription. CREs are involved in the development of different cell
types/tissues, in the timing and intensity of gene expression during the cell life, in the dynamical
response to changes in physiological conditions through interactions with DNA-binding transcrip-
tion factors (TFs), and in the focal alteration of chromatin structure [3]. Genome-wide association
studies (GWAS) discovered thousands of variants associated with diseases and traits enriched in



non-conding sequences, and several lines of research show that genetic variants in regulatory regions
may be deleterious or directly involved in genetic diseases [4,5].

A great deal of research work has been devoted to the identification of CREs and to their
cell-specific activation status. Such studies are essential to dissect the mechanisms underlying the
modulation of gene expression and to understand the functional impact of genetic variants on
human diseases. Indeed, the effect of genetic variants in non-coding regions is strongly related to
the prediction of active regulatory regions (e.g. nucleosome-free regions that are accessible by TFs).
Conversely, if a genetic variant, even if potentially deleterious/functionally constrained (e.g. high
conservation), is located in an inactive DNA region, it is less likely to be pathogenic.

Thus, great effort has been undertaken to map TF binding sites and histone modifications
across cell types and tissues [6,7,8,9,10]. In particular, the ENCODE project [8] identified promoters
and enhancers in 147 cell types using a wide range of high-throughput technologies, while the
FANTOM project employed CAGE (Cap Analysis of Gene Expression) technologies to broaden
the spectrum of considered samples, including 1,816 human and 1,016 mouse samples [11,12]. The
Roadmap Epigenomics Consortium [13] studied the epigenomic landscape of 111 representative
primary human tissues and cell-lines. However, the experimental identification of CREs is still
expensive and time consuming, and, despite the great deal of research effort devoted to this task,
the problem is still open.

The use of computational methods, and in particular machine learning approaches, can be a
crucial tool to identify the location and activation status of these regions. To this aim, initial
approaches, due to the reduced set of reliable annotations, applied unsupervised learning tech-
niques [14,15] to data from the ENCODE project [8]. However, their low accuracy (around 26%)
in predicting enhancer [16], pushed the development of more sophisticated supervised learning
models, such as random-forest methods [17] and AdaBoost-based models [18]. The subsequent
availability of large-scale and high-resolution CREs provided by the FANTOM5 Consortium [11]
enabled the development of ensembles of both support vector machines [19] and deep learning mod-
els [20,21,22,23], which model complex systems and capture high-level patterns from data, when an
underlying, non-obvious structures are present. Examples of promising deep learners applied in reg-
ulatory genomics [24] for identifying CREs from sequence data, are DeepEnhancer [20] (Section 3)
and BiRen [25]. On the other side, PEDLA [26], a deep hybrid method, achieve high generaliza-
tion performance across different samples by learning on heterogeneous datasets (i.e. epigenomic,
sequence, and conservation data). DECRES [21] is a notable FFNN model that out-performs state-
of-the-art unsupervised works when predicting enhancers, promoters, and their activity in a spe-
cific human cell-line. Exploiting annotation data from FANTOM [27] and epigenomic features from
ENCODE [8], it extends the FANTOM enhancer atlas of 16,988 bidirectionally transcribed loci,
therefore providing the most complete annotation of CREs in the human genome so far. However,
the experimental setup used to train and test DECRES distorts the actual distribution of the data.
Indeed, authors not only balance the training set, which is quite common when dealing with highly-
unbalanced data, but they also compute performance on a balanced test set, which may provide
a biased evaluation. In this work, we concentrate on the prediction of the activity state of CREs
(Section 2), and we present results (Section 4) obtained by two deep neural network models, a
FFNN and a CNN (Section 3), whose optimal hyper-parameters have been selected by Bayesian
optimization. Moreover, we provide a comparative evaluation to highlight the effects of different
balancing schemes (Section 4).



2 Dataset

The models were trained and tested on genomic regions of transcriptionally active enhancer and
promoters downloaded from FANTOM5 [11] and matched features collected by Yifeng Li et. al [21]
from ENCODE [8] for four cell lines (GM12878, HelaS3, HepG2, K562).

Yifeng Li et. al [21] defined six different classes, active enhancers (A-E), active promoters (A-
P), active exons (A-X) and their inactive counterparts (I-E, I-P, I-X), using thresholds on tags
per million (TPM) values of the Cap Analysis of Gene Expression (CAGE) data set downloaded
from the FANTOM5 database. Classes of active and inactive exons were defined based on exon
transcription levels from RNA-seq data downloaded from ENCODE1. Finally, an unknown class
(UK) labels regions sampled from the genome, but excluding those regions overlapping FANTOM
CAGE tags, exons and DNaseI peaks. The employed genomic regions and thresholds, as well as
the considered features, are the same as those used in [21]. To train and test FFNN methods (see
section 3), the feature set consisted of histone modification and TF binding ChIP-seq, DNase-seq,
FAIRE-seq, and ChIA-PET data from ENCODE [8]2. Further, CpG islands and phastCons scores
were included in the feature set by computing the mean value of the feature signal which falls within
200-bps bins centered at each labeled region.

To train and test CNN methods (see section 3), we used sequence data obtained from the human
reference genome GRCh37/hg193 from the UCSC repository data set4. In particular, each genomic
region is represented by a sequence of 200 one-hot encoded nucleotides. To automate the coding
process we developed an UCSC genome downloader5. Thus, for each cis-regulatory element, we have
two different representations: the (1) a set of numeric features suitable for training FFNN models
[28], and (2) nucleotide sequences to be processed with CNN models [29]. To provide some insights
into the data distributions, we show projections of the training matrix for one of the cell lines
(GM12878) with the two principal components computed by t-SNE [30] for the epigenomic data set
(figure 1-A,B) and MCA [31]6 for sequence data (figure 1-C,D). A high level of entanglement among
classes is shown in the t-SNE decomposition for task “IE vs IP” (column A in fig. 1), therefore
we expect that CNNs will provide better predictions for this task. t-SNE and MCA plots for tasks
“AE+AP vs ELSE” (shown, respectively, in columns B and D in fig. 1) show that the classes are
relatively well separated. Hence, we expect that our models will reach good performance in such
classification tasks.

1 ENCODE Data at ftp://hgdownload.cse.ucsc.edu/goldenPath/hg$19$/encodeDCC.
2 ENCODE Data at ftp://hgdownload.cse.ucsc.edu/goldenPath/hg$19$/encodeDCC; ENCODE fold-

change values are described here https://sites.google.com/site/anshulkundaje
3 https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/
4 https://genome.ucsc.edu/
5 https://github.com/LucaCappelletti94/ucsc_genomes_downloader
6 For computing Multiple Correspondence Analysis we used the python package available at https://

github.com/esafak/mca
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Fig. 1: Decomposition of one of the hold-outs of cell line GM12878. A, B: epigenomic data projected on
the two principal components computed by TSNE; C, D: sequence data projected on the two principal
components computed by MCA. Top row: training set; bottom row: test set. A, C: Inactive Enhancers vs
Inactive Promoters classification task; B, D: Active Enhancers and Promoters vs anything else classification
task.

3 Methods

The identification of active regulatory regions can be modeled as a binary classification task. To
perform our experiments, we used FFNN [28] for processing epigenomic data, while sequence data
were analyzed using CNN [29]. For each method (FFNN and CNN) we developed a “fixed” base-
line model, and an “optimized” model, with hyper-parameters selected by Bayesian optimization7.
Therefore, we obtained four different models, which we call fixed-FFNN, fixed-CNN, Bayesian-
FFNN and Bayesian-CNN (the presented models were developed using Keras [32] with the Tensor-
Flow backend [33].).

Bayesian Optimization. When designing a neural network (NN) for a given classification task,
the choice of architecture (number of layers, neurons and activation functions) and setting of learn-
ing hyper-parameters (e.g. optimizer algorithm, batch size, learning rate) are critical for achieving
reliable and high performances. At the state-of-the-art, no well-accepted nor unified method for
finding the appropriate hyper-parameters for a given task has been defined, and model selection
is generally performed either manually or automatically by methods such as “Grid search”, which
exhaustively searches in the hyper-parameter space, or “random search” [34], which evaluates only
a random sequence of hyper-parameter combinations. In this work, we exploit “Bayesian Optimiza-
tion” (BO) [35], since it has proven to be an effective and cost efficient solution to hyper-parameter
optimization. Briefly, the idea is that the “objective function”, characterized by high cost for the
evaluation of each point of a bounded domain, can be approximated by building a probabilistic
model (the “surrogate function”) which is relatively cheaper to query. Optimization can then be
performed by substituting the objective with the surrogate function. As the surrogate function

7 https://scikit-optimize.github.io/

https://scikit-optimize.github.io/


fixed-FFNN Bayesian-FFNN

Units Activation Units hyper-parameters

16 ReLU {256, 128, 64, 32, 16, 8, 4, 2}
4 ReLU {128, 64, 32, 16, 8, 4, 2}
2 ReLU {64, 32, 16, 8, 4, 2}
1 Sigmoid 1

Parameters fixed-FFNN Bayesian-FFNN

LR 0.5 [0.1, 0.5]
LR decay 0.1 [0.01, 0.2]
L2 reg. 0.0 [0, .., 0.001, .., 0.1]

Batch size 32 [32, .., 100, .., 256]
Optimizer SGD SGD

Max no. epochs 64 [32, 1000]

Table 1: The architecture (left) and learning parameters (right) of the fixed-FFNN and the Bayesian-
FFNN models. The hyper-parameter space explored by BO is shown in square brackets (continuous interval)
or curly brackets (finite set). Selected values are in bold. LR stands for learning rate.

represents an “a priori” distribution of the objective function, given some observations obtained
by evaluation of the objective, it is possible to exploit Bayes’s rule to generate an “a posteriori”
estimation of the (objective) function and then update the probabilistic model (surrogate function).
Candidates for the observations are suggested through an appropriate “Acquisition function”[36]
which uses the information gained by the probabilistic model (estimated by the n already observed
points) for suggesting the next n + 1 candidate. Depending on the task, it is possible to select
the most appropriate acquisition function from a wide array of choices. A common trait of these
functions is that they all act upon the criteria of “exploration versus exploitation”, so that the
sequence of suggested points will provide a better overlook of the objective function (exploration)
or a better identification of its maximum/minimum (exploitation).

Fixed-FFNN and Bayesian-FFNN. We designed a baseline fixed-FFNN whose architecture
is composed by three cascading fully-connected layers (with 16, 4 and 2 neurons, respectively) with
the Rectified Linear Unit (ReLU) [37] activation function. A final layer structured as a single neuron
with sigmoid activation function acts as output layer, computing the final binary predictions. During
network training, weight values were adjusted using a Stochastic Gradient Descent technique with a
relatively small value for the batch size hyper-parameter (32), learning rate 0.5, learning rate decay
of 0.1, l2 regularizer of 0.0, no momentum, and a maximum of 64 epochs.

Starting from fixed-FFNN, we developed Bayesian-FFNN by automatic model selection. Instead
of using the computationally expensive grid search as in [21], where it is used to set the number of
hidden layers - from 0 to 3, the number of their units - from 0 to a maximum of 256, 128, 64 neurons
in the first, second and third layer, respectively, the initial learning rate, and the l2-regularization
amount in continuous intervals not reported by the authors, we use Bayesian optimization [38]
to maximize the mean AUPRC computed over the validation sets of 10 internal hold-outs (see
4). More precisely, Bayesian optimization chooses the network architecture from the same search
space as that used in [21], while the other hyper-parameters are equal to those of fixed-FFNN. The
fixed-FFNN and Bayesian-FFNN models are summarized in table 1. In particular, we note that the
chosen number of layers in Bayesian-FFNN was often equal to that of fixed-FFNN, the number of
chosen units was always bigger than that of fixed-FFNN, and the learning parameters were often
selected in the lower spectrum of the continuous search interval, except for the maximum number
of epochs.

Fixed-CNN and Bayesian-CNN. To analyze raw DNA sequence data, we used 1D Con-
volutional Neural Networks. Like for FFNN models, we firstly developed a fixed model to assess
whether this approach effectively recognizes active regulatory regions. After obtaining promising



fixed-CNN Bayesian-CNN

Layers Type Units Kernel Activation Notes Layers Type Units Kernel Notes

3 Conv 64 5 ReLU - 3 CBM 64 5 -
1 MP - - - size 2 1 MP - - Size 2
3 Conv 128 3 ReLU - 1 CBM {32, 64, 128} {5, 10} -
1 MP - - - size 2 1 MP - - Size 2
3 Conv 128 3 ReLU - 1 Flatten - - -
1 AP - - - - 1 Dense {10, 32, 64} - -
1 Dropout - - - P. 0.5 1 Dropout - - P. 0.1
2 Dense 10 - ReLU - 1 Dense {10, 32, 64} - -
1 Dropout - - - P. 0.5 1 Dropout - - P. 0.1
1 Dense 1 - Sigmoid - 1 Dense 1 - -

Table 2: Architecture of the fixed-CNN (left)and Bayesian-CNN (right) models. Square brackets show the
explored hyper-parameter space. Selected values are in bold. MP refers to max-pooling 1D layer, AP refers
to average-pooling 1D layer and CBM refers to a convolutional layer with batch normalization.

results, we aimed at improving performance by automatically selecting the CNN model parameters
through Bayesian optimization. The fixed-CNN model is outlined in the left of table 2. The core of
the network is composed of three consecutive blocks, each consisting of three (consecutive) convo-
lutional layers followed by one 1-dimensional max/average pooling layer. The number of units in
the three convolutional layers of each block, as well as the filter sizes, are fixed. A filter size of 5
for the first three convolutional layers was chosen as this represents a reasonable motif size. As for
the FFNN models, all neurons in each layer have ReLU activation function with the exception of
the output layer, where the output neuron has sigmoid activation. The Nadam algorithm [39] was
used to adjust weight values, learning rate was set to 0.002, and batch size set to 100 examples.

Considering that the fixed-CNN architecture has many weights that need to be set, we applied
Bayesian optimization to simplify its architecture. We maximized the mean AUPRC computed
over the validation sets of 10 internal hold-outs to choose the number of blocks from 1 to 3, and to
choose, for each layer, a number of units lower than that of the fixed-CNN model. In table 2, the
architecture of the fixed-CNN model is shown, together with the meta-structure of the Bayesian-
CNN model. Again, the Nadam algorithm was used to estimate the weight values, the learning rate
is set to 0.002, and the batch size to 100.

DeepEnhancer. We compared our Bayesian-CNN model with the five DeepEnhancer networks
[20], which are 1D-CNNs with one-hot encoded sequence data for distinguishing enhancers from
background sequences. With DeepEnhancer, the best performing model is 4conv2pool4norm [20]
which consists of four convolutional layers, each one followed by a batch normalization operation.
In the second and fourth layer, batch normalization is followed by a max-pooling layer. The first
two convolutional layers contain 128 kernels of shape 1 × 8, while the other convolutional layers
contain 64 kernels with shape 1 × 3. They are followed by two dense layers, with 256 and 128
neurons respectively, interleaved with a dropout layer (ratio 0.5), while a final 2-way softmax layer
computes the classification probability results. The ReLU activation function is employed in the
dense layers. To distinguish the activity state of enhancers versus promoters we used the network
structure and hyper-parameters of the 4conv2pool4norm model [20], but modified the output layer
by substituting the 2 output neurons (with softmax activation) with one single output neuron with



a sigmoid activation function to generate the final binary predictions, in line with our FFNN and
CNN models.

4 Experimental Results

Fig. 2: A: Comparison of deep neural network models with fixed parameters and Bayesian optimized pa-
rameters. The plotted AUPRC (left) and AUROC (right) are averaged over cell lines. Black bars represent
standard deviations. B: Comparison of the mean AUPRC obtained by Bayesian-FFNN (left) and Bayesian-
CNN (right) among the three different balancing setups for each the five classification tasks. C: Average
AUPRC compared across the different experimental setups. For each experimental setup (columns) and task
(rows), we report the AUPRC averaged with respect to the Bayesian optimized FFNN and CCN models
and the four cell lines. Bold text highlights significantly best results according to Wilcoxon rank sum tests
at 0.01 significance level between full-balanced and unbalanced experimental settings; both unbalanced and
full-balanced significantly outperform the balanced setting. D: Comparison between Bayesian-CNN and
DeepEnhancer. The plotted AUPRC (Left) and AUROC (Right) are averaged across multiple hold-out.

Experimental setup. For each of the cell lines described in Section 2, we tested our methods on
the five dichotomic tasks introduced in [21]: Inactive Enhancers vs Inactive Promoters (IE vs IP),
with average imbalance ratio (AIR) equal to 2.57 (the imbalance ratio is measured as the ratio of
the cardinalities of the higher represented and the lower represented class); Active Promoters vs
Inactive Promoters (AP vs IP), with AIR = 7.70; Active Enhancers vs Inactive Enhancers (AE vs



IE) with AIR = 22.32; Active Enhancers vs Active Promoters (AE vs AP) with AIR = 7.17; Active
Enhancers and Promoters vs anything else ((AE + AP) vs ELSE) with AIR = 18. Note that the
five classification tasks have different class imbalance ratios, with ratios ranging from 2.5 to 38.5.

All classification tasks are executed using 10 randomly generated (external) hold-outs, each
composed by splitting the data set into training (containing 70% of samples) and test set (containing
30% of samples). Classification tasks involving model selection were performed using additional 10
internal hold-outs (with the same proportion, 70%-30%, of train and test samples). The internal
hold-outs are generated by randomly splitting each training set 10 times, thus forming 10 (internal)
training and validation sets, used in Bayesian Optimization to select the best model by maximizing
performance (AUPRC) on the validation sets. Training features are normalized using MinMax
scaling between 0 and 1. The same normalization is applied on validation and test sets.

Performance is measured by using both Area Under the Receiver-Operating Curve (AUROC)
[40] and Area Under the Precision-Recall Curve (AUPRC) [41] metrics computed over all test sets
in the 10 hold-outs. While AUROC is a de-facto standard for evaluating classifier performance,
AUPRC is more suitable when dealing with unbalanced data sets [42,43,44].

To investigate the effects of class balancing in training and test set data, all experiments were
repeated three times with the following balancing setups: 1) “full-balanced” setup (proposed in [21]):
training and test set are randomly sampled with respectively 70% and 30% of samples. The training
set is then randomly downsampled to at most 3000 samples per class. This provides a balanced
training set. The 30% of samples in the test set are also randomly downsampled to generate a
corresponding test set with proportion of A-E:A-P:A-X:I-E:I-P:I-X:UK=1:1:1:2:2:1:10, according
to the setup proposed in [21]. Note that the described test set subsampling greatly reduces class
imbalance for all available cell lines. 2) “balanced” setup: only the training set is balanced as
described in 1); 3) “unbalanced” setup: any balancing is avoided, maintaining the imbalance that
characterizes the original class distribution.

Bayesian optimization improves prediction performance of FFNN and CNN models.
To investigate whether automatic model selection can improve performance we assessed the

two FFNN learning models (using epigenomic features) and the two CNN models (based only on
sequence) for the five classification tasks, by using the unbalanced setup. For each combination of
model/task/data set, mean AUPRC and AUROC computed over the 10 repetitions and over the
cell lines are shown in Figure 2 A. Performance of “fixed” and “Bayesian” models on each task
were compared by applying Wilcoxon signed rank tests (at 0.01 significance level) [45,46,47] to
detect statistically significant differences in the mean values of the classifiers’ AUPRC and AUROC
distributions. For AUPRC, Wilcoxon test showed a statistically significant difference in means
between Bayesian-FFNN and fixed-FFNN in all tasks. We remark that Bayesian-FFNN achieved
a better AUPRC value than fixed-FFNN for all AUPRCs computed over all hold-outs, tasks, and
cell lines, i.e. Bayesian-FFNN outperformed fixed-FFNN in 200 out of 200 comparisons.

Comparing performance of the two CNN models, Bayesian-CNN significantly outperformed
fixed-CNN. Indeed, when looking again at the full list of AUPRC values across hold-outs, tasks,
and cell lines, Bayesian-CNN always outperformed fixed-CNN. Our results show that model selection
by Bayesian optimization improves AUPRC results.

Regarding AUROC results, Bayesian-FFNN scores better average ratings than fixed-FFNN in all
tasks with the exception of “AE+AP vs else”. Also, Wilcoxon tests detected a statistically significant
difference in mean between Bayesian-FFNN and fixed-FFNN in all tasks but one (“AE+AP vs
else”). Considering all AUROC values computed over the 10 hold-outs, five tasks, and four cell lines,
Bayesian-FFNN outperformed the fixed-FFNN 93% of the times (186 out of 200). Comparing CNN



models, we note again that Bayesian-CNN always outperforms fixed-CNN. These results suggest
that Bayesian model selection is a valid aid for improving both AUPRC and AUROC values of
CNN models. This is also true for Bayesian-FFNN, as model selection improved the results in both
AUPRC and AUROC for almost all tests.

The Bayesian FFNNs outperform Bayesian CNNs in tasks where we need to predict active versus
inactive regulatory regions, i.e A-E vs I-E or A-P vs I-E, (Figure 2 B). This is not surpris- ing
as epigenetic features are more informative than pure sequence in predicting whether a regulatory
region is active or not in a specific cell-type. On the contrary, when we need to discriminate between
different types of regulatory regions (i.e. I-E vs I-P or A-E vs A-P) Bayesian CNNs outperform
Bayesian FFNNs, as CNNs seem to extract DNA sequence motifs or characteristics (like GC or
CpG content) that distinguish enhancers from promoters.

Bayesian CNN models show comparable results with state-of-the-art methods. Due
to the very good performance achieved by Bayesian-CNN, we decided to further assess its ca-
pability for detecting active regulatory regions from raw DNA sequences by comparing it with
4conv2pool4norm net, the best performing DeepEnhancer neural network model (section 3, [20]).
Precisely, we used the unbalanced setup and the four cell lines to perform the three classification
tasks involving enhancers (“IE vs IP”, “AE vs IE” and “AE vs AP”). Using 4conv2pool4norm for
these classification tasks is appropriate, as DeepEnhancer networks have been developed for recog-
nizing enhancers against the background genome, and the original authors [20] state that it can be
used for similar tasks.
Both models were assessed using multiple hold-outs. In figure 2-D we show, for each of the three
tasks, the mean AUPRC (left) and the mean AUROC (right). Wilcoxon tests confirmed that
the difference in means of the computed AUPRC and AUROC distributions are statistically sig-
nificant. Looking at individual AUPRC results, Bayesian-CNN outperforms the DeepEnhancer
4conv2pool4norm model 199 times out of 200. For AUROC values, 4conv2pool4norm outper-
forms Bayesian-CNN in only one task. These results suggest that Bayesian optimization is able to
select models competitive with state-of-the-art CREs classifiers. Moreover, we confirm that a CNN
model trained on sequence data may achieve accurate results in the prediction of cis-regulatory
element activity.

Test set balancing may lead to over-optimistic results. In [21], to deal with the data
imbalance that characterizes the prediction of active regulatory regions, the authors balanced both
training and test data. We reproduced this experimental setup that we name “full-balanced”. In
addition, we test a “balanced” setup where we only balance the training set, and we compare both
with the “unbalanced” experimental setup, for which results have been presented so far (see Section
4).

Table 2-C reports the average AUPRC across Bayesian FFNN and CCN models for the three
different balancing techniques. In the last row, average AUPRC values over all tasks are reported
for each balancing setup. Comparing the AUPRCs in table 2-C and in figure 2-B, we note that
the balanced experimental setup is the one with the worst performance in all tasks. Wilcoxon tests
confirm that, on average, the full-balanced setup produces the highest AUPRC scores.

We hypothesize that a reduced performance of the balanced setup may be due to sub-sampling
of the training set for balancing, which requires to discard a relatively large amount of training
samples. This ultimately affects data coverage during training and the neural network may not
be able to effectively learn the intra-class variability, which results in a reduced generalization
capability.



In contrast, the better performance obtained by the full-balanced experimental setup (figure 2-B)
could be the result of a distortion in the distribution of the test data (i.e. artificial increment of the
ratio minority/majority class), thus leading to an over-optimistic estimation of the generalization
capabilities of the predictor. Furthermore, test set balancing is not always feasible or possible, for
instance when predicting the activity of not previously annotated CREs, since in this application
the true labeling is not known.

5 Conclusion

This work showed that Bayesian optimization has the potential of increasing the performance of deep
neural networks trained for predicting active regulatory regions in specific cell lines. Further, results
show that balancing the test set may lead to an over-optimistic estimation of the generalization
performance of the model, while naive balancing of the training data may lead to poor generalization
results. To improve the achieved performance, in future works we aim at enlarging the spectrum of
the optimized learning parameters, as well as their exploration space.
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