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Abstract
Patient similarity networks (PSNs), where patients are represented as nodes and their similarities as weighted edges, are being
increasingly used in clinical research. These networks provide an insightful summary of the relationships among patients and can
be exploited by inductive or transductive learning algorithms for the prediction of patient outcome, phenotype, and disease risk.
PSNs can also be easily visualized, thus offering a natural way to inspect complex heterogeneous patient data, and providing some
level of explainability of the predictions obtained by machine learning algorithms. The advent of high-throughput technologies,
enabling us to acquire high-dimensional views of the same patients (e.g. omics data, laboratory data, imaging data) calls for the
development of data fusion techniques for PSNs in order to leverage this rich heterogeneous information. In this article, we review
existing methods for integrating multiple biomedical data views to construct PSNs, together with the different patient similarity
measures that have been proposed. We also review methods that have appeared in the machine learning literature but have not yet
been applied to PSNs, thus providing a resource to navigate the vast machine learning literature existing on this topic. In particular,
we focus onmethods that could be used to integrate very heterogeneous datasets, includingmulti-omics data as well as data derived
from clinical information and medical imaging.
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Introduction1

In the last decades, medical research has begun to move from a population-2

based perspective to a personalized one, often referred to as Precision3

Medicine, where patients’ biomedical characteristics are leveraged for4

diagnosis, prognosis and choice of appropriate treatment [1, 2]. In this5

context, it is widely accepted that if two patients share similar clinical6

variables and omics profiles, their clinical outcomes should also be similar.7

Pairwise similarities between patients have a natural representation as8

graphs - Patient Similarity Networks (PSN) - where nodes represent9

patients and edges represent the similarity between patients calculated10

using their clinical and/or biomolecular features. In this framework11

unsupervised clustering methods and supervised classification models that12

leverage similarities between patients have been successfully applied to 13

stratify patients and to predict their phenotype or clinical outcome [3, 4, 5, 14

6, 7, 8]. Representing data as graphs provides several advantages, including 15

interpretability and privacy [9], as patient specific information cannot be 16

recovered from the similarity measures. 17

The increasing availability of high-throughput technologies able to 18

generate high-dimensional, distributed biomedical datasets, ranging from 19

multi-omics [8] to imaging [10], clinical and demographic data [11], calls 20

for approaches to mine and aggregate salient information [12] with the 21

ultimate aim of building PSNs integrating such diverse datasets. However, 22

the majority of PSNs that have been proposed are built using only one 23

source of information. At the same time, several methods that can integrate 24
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heterogenous sources of information into graph structures have appeared25

in the past decades in the biomedical and machine learning literature.26

In this article, we review existing methods for integrating multiple27

biomedical data views to construct patient similarity networks. Since the28

type of data being integrated and the specific integration method must29

be coupled with an appropriate choice of similarity measure, we will also30

discuss different similarity measures. Importantly, this paper also reviews31

methods for integrating information into graph structures that appeared32

in the machine learning literature but have not yet been used for PSNs.33

We believe that this will be beneficial for the reader, providing a resource34

to navigate the vast machine learning literature existing on this topic,35

and possibly inspire the use and development of novel techniques of data36

integration for PSNs. Moreover, unlike earlier reviews (see e.g. [13, 14, 15,37

8, 16]), we focus on methods that may be used for patients’ classification38

and clustering that integrate not onlymulti-omics data, but also clinical and39

image sources.40

We propose a taxonomy that groups existing methods for building41

PSNs into threemain categories. PSN-fusionmethods [3, 17, 6] build different42

PSNs, one for each data source, that are then fused together into a single43

PSN. Input data-fusion methods [18, 19, 20, 21] combine the different data44

sources into a single dataset that is then used for building a single PSN.45

Finally,Output-fusion methods [22, 23, 24] build different PSNs, one for each46

data source, that are analysed separately, and results are then combined.47

Other multimodal data-fusion surveys not specific for PSNs have been48

proposed in the bioinformatics field by adopting different taxonomies49

(schematized in Fig. 1, Appendix A). Some taxonomies focus on the50

type of multi-datasets being integrated, thus identifying horizontal51

integration techniques [25] (top of Fig. 1-yellow box) and vertical integration52

techniques [25] (top of Fig. 1-light blue box). While the former fuse53

homogeneous multisets [26], i.e. multimodal datasets where each view54

produces the same data type under different settings, the latter integrate55

the classic heterogeneous [26] multimodal datasets. Vertical integration56

techniques are further classified into methods applying a hierarchical57

(alias multi-staged [27]) integration flow, where ground knowledge about58

the relationships between the different views is considered during the59

integration, and methods applying a parallel (alias meta-dimensional [27])60

integration flow (bottom of Fig. 1-red-dashed box), where each view is61

processed in a similar but independent way. Parallel integration methods62

are the most diffused in literature given their generalizability. For63

this reason several reviews concentrate solely on them and introduce64

taxonomies that distinguish, e.g., model-agnostic versus model-dependent65

methods [28], or exploit an early-intermediate-late taxonomy [29, 30, 31, 27,66

32, 33] (described in detail in Appendix A).67

Anyhow, each review paper focuses on different aspects of the68

multimodal data integration. For example, some works solely focus on69

integrative unsupervised clustering techniques [34] or supervised multi-70

omics prediction models [29, 35, 33], or survey data-fusion techniques that71

are either applied to multi-omics data [36, 26, 27, 25, 16], or that apply72

specific data-fusion techniques (e.g. integrative Bayesian models [37, 13] or73

multimodal neural networks [38]).74

Unlike previous reviews, this work specifically focuses on integrative75

methods for PSN-based models integrating not only multi-omics data, but76

also clinical and imaging sources. Each method is critically described to77

highlight its main advantages and drawbacks, enabling the reader to select78

the most appropriate approach to answer her/his scientific questions.79

Given a set of patients and their corresponding clinical andbiomolecular80

features, the topology of the corresponding PSN depends crucially on how81

the similarity measure is calculated. Therefore, we begin describing the82

similaritymeasurementmethods presented in the literature. Our taxonomy83

of existing methods for building PSNs is described in Sections PSN-fusion84

methods and Input data-fusion and output-fusion methods. Tables 3 - 8 85

summarize the most relevant methods we surveyed. 86

PSN construction 87

The construction of the PSN is a crucial step in PSN analysis models, whose 88

effectiveness mainly depends on the available multimodal datasets from 89

which samples are extracted and on the choice of the measure exploited 90

for pairwise similarity computation between samples. 91

Several kinds of similarity measures have been adopted in literature for 92

PSN construction: classic distance metrics tailored to the data type [39, 40]; 93

kernel functions [41, 42] that substitute distance metrics; “kernels on 94

graphs” methods [43]. In the remainder, we discuss their characteristics. 95

The usage of classic (opportunely inverted) distances or similarity 96

metrics [39, 40] is often preferred when the data types are normalized and 97

homogeneous. As an example, PSNs on continuous, normalized, data have 98

been constructed by using the cosine similarity [44, 5], or the Euclidean [45] 99

or Mahalanobis distance [45]; PSNs on discrete data types have been built 100

by exploiting the Chi-squared distance [3, 6]; binary data has been handled 101

by using the Jaccard distance [46] or many other distance measures (see [47] 102

for a list of 76 metrics and measures specifically designed for binary data). 103

When data-blocks with heterogeneous and/or normalized variable 104

types are available, more articulated schemas [48, 6] have been proposed to 105

integrate different similarity metrics into a uniquemeasure. As an example, 106

in [48] the authors proposed a supervised Cox regression model to initially 107

learn aweight for each variable; the learntweights are then used to compute 108

a similarity score as a weighted sum of individual similarities obtained on 109

each feature by using standard metrics. In this way, different similarity 110

metrics can be used on the different variables based on their type, and 111

the influence of each variable to the global similarity score is weighted on 112

the prediction (e.g. survival time when using a Cox regression model). On 113

the other hand, when dealing with datasets composed by continuous non- 114

normalized variable types, Pai et al. [6] propose computing the average of 115

all the normalized similarities over each variable, where the normalization 116

is essentially a min-max normalization. 117

When dealing with complex problems, literature works often rely 118

on Kernel functions [49] for PSN computation. The rationale behind this 119

choice is based on the assumption that point separability is often improved 120

after a non-linear projection of points into a higher-dimensional space. 121

Kernel functions are particularly appealing in this context since they 122

express pairwise distances in a higher-dimensional space by directly using 123

the (lower-dimensional) input samples, therefore avoiding the expensive 124

explicit computation of a non-linear higher-dimensionalmapping followed 125

by pairwise similarity evaluation (using the well-known kernel-trick). Even 126

in this case the choice of the kernel function must be tailored to the 127

data type which is crucial to obtain reliable results. In this context, PSNs 128

are often computed in literature methods working on biomedical data 129

by using classic parametric normalized linear kernels [30, 50], polynomial 130

kernels, orGaussian kernels [51, 52], whose parameters are tuned to optimize 131

performance. As an example, the prognostic approach presented in [30] 132

obtains a set of unimodal PSNs by applying normalized linear kernels on 133

each of the data-sources containing clinical and multi-omics data sets. In 134

this case, the usage of the same kernel function on different sources is 135

appropriate because they are characterized by the same data type (real- 136

valued data type). 137

In a subsequent work [53], the same authors extend the data set by 138

including categorical and integer data types; therefore, they substitute 139

the linear kernels with a set of kernels tailored on each data type being 140

processed. Of note, the kernels used in [30, 53] are always normalized. 141

This is a crucial characteristic when integrating multiple kernels because 142
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Fig. 1. Schema of the main taxonomies proposed in literature for categorizing multimodal integration methods. Considering the data integration flow, literature works identify two broad classes:
horizontal integration approaches and vertical integration approaches. Horizontal integration approaches fuse multisets (i.e. datasets where each view is acquired by the same source under different
conditions) by independently applying the same process on each view and then pooling the individual results. On the other hand, vertical integration approaches fusemultimodal datasets (i.e. datasets
composed by semantically different views) through more complex techniques, further categorized as hierarchical-vertical integrationmethods and parallel-vertical integration techniques. The former
fuse data views following a hierarchy driven by biological a-priori knowledge while the latter do not exploit knowledge-based dependencies between views. Parallel-vertical integrationmethods are
the most diffused integration methods; they are further classified based on the phase when the data integration-step is performed w.r.t. the model construction (red-dashed box). Thus, methods are
divided in (I) early approaches, which integrate the data types before model construction, (II) late approaches, which integrate the results of models independently built on each data view, and (III)
intermediate approaches where intermediate models are obtained from each view and subsequently integrated. Of note, the latter class of approaches is more dependent on the exploited learning
model, which is the reason why they have been also classified as model-dependentmethods opposed to model-agnosticmethods (blue-dashed boxes). We refer interested readers to Appendix A.

comparable kernel scales are obtained, therefore facilitating the kernel143

integration. Moreover, in the case of kernel-aggregation systems exploiting144

weighted averages of the unimodal kernels, normalization also improves145

the interpretability of the computed integration weights, the latest being146

directly related to the importance of their respective kernel [53].147

A recent advance in the field of PSN analysis is provided by148

unsupervised methods that compute the PSN through the scaled exponential149

Euclidean kernel [3] and its modifications [54, 55]. They essentially apply a150

local normalization of the distance between a central node and any of its151

neighbors, so that distances are independent from the neighborhood scales.152

Their application in the context of unsupervised patient clustering through153

PSN analysis has obtained promising results [3] (see Section SNF-based 154

methods). 155

Given its effectiveness, the scaled Euclidean distance has been extended 156

in [54] to deal with heterogeneous data types containing continuous 157

and boolean variables. More precisely, the similarity on boolean data is 158

measured by using theweightedHamming distancewithweights computed 159

by supervised approaches or pre-set based on existing knowledge. Further, 160

in [55] the authors propose adopting the Chebyshev distance instead of the 161

Euclidean distance. 162

Gliozzo et al. [7] extend to PSNs a previous kernel-based approach 163

originally applied to the semi-supervised analysis of biomolecular networks 164
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[56]. More precisely, the authors obtain promising outcome predictions on165

unimodal PSNs by firstly using the filtered Pearson correlation (by setting166

to zero all negative values) to measure similarities between unimodal gene167

expression profiles, and then applying a random walk kernel to strengthen168

high similarities while diminishing low ones. The neighborhoods identified169

in the obtained PSN are then used to compute a score for each patient,170

which is thresholded to obtain the desired classification. While unimodal171

PSNs are exploited in [7], the works proposed in [57] and [58] exploit172

random-walks to compute similarities in a multimodal setting.173

To improve informativeness, Tables 1 and 2 sketch the similarity174

measures/ methods used for PSN construction by notable literature works175

exploiting multimodal datasets; for each paper we report the data types of176

the different data-sources exploited for the investigation, and the similarity177

measures/methods used for building the corresponding unimodal PSNs.178

Even if a wide range of similarity computation methods has been179

proposed in literature, a consensus on which strategy performs better on180

specific data types and problems in the context of precisionmedicine is still181

lacking. Some tentative experiments have been conducted for determining182

the best performing strategies (see e.g. [59, 60]), but the lack of common183

benchmark datasets prevents an unbiased comparison of the different184

proposed approaches.185

PSN-fusion methods186

PSN-fusion methods have been specifically developed to process a set187

of unimodal PSNs and produce an integrated PSN. In Fig. 2 we sketch188

the generic workflow of the PSN-fusion methods. They start by building189

unimodal PSNs on each data source or data-type (Fig. 2-A). Mind that the190

choice of the similarity measure/kernel function used to build each PSN191

(Section PSN construction) is crucial for obtaining informative unimodal192

PSNs, which would otherwise hamper the achievement of successful193

results. Next, the aggregation of the unimodal PSNs (Fig. 2-B) is performed194

by either Multiple Kernel Learning methods (MKL, Section MKL-based195

methods, Table 3) which run optimization algorithms inherited from the196

machine learning field to find the optimal weights of an additive unimodal197

kernel aggregation, or approaches stemming from the seminal Similarity198

Network Fusion algorithm (SNF - [3], Section SNF-based methods, Table199

4), which use different strategies to diffuse the similarity information200

both between neighboring nodes in each unimodal PSN and between201

correspondingnodes in different PSNs, or other network-based approaches202

(SectionOther PSN-fusion methods and Table 5).203

The integrated PSN may be finally used as input to unsupervised204

clustering methods aiming at, e.g., identifying patients’ subtypes, or205

supervised classification methods predicting, e.g., patients’ risk, prognosis,206

or outcome (Fig. 2-C).207

MKL-based methods208

Inheriting theories and algorithms from the machine learning fields, MKL209

methods [17, 65, 66, 64] view the unimodal PSNs as kernels and propose210

their optimal additive combination, as a weighted sum of the available211

unimodal kernels. In this context, “optimality” refers to either a supervised212

setting or an unsupervised one.213

supervised MKL algorithms (e.g. simpleMKL [17]) exploit a supervised214

classifier model designed to work on the fused kernel. Supervision is215

guaranteed by the availability of a training set composed of samples whose216

labels are known. Such training set is used by the chosen supervised MKL217

method to solve a constrained optimization problem that finds the kernel218

weights and classifier hyper-parameters maximizing the classification219

accuracy on the training set. On the other side, unsupervised MKLmethods220

make no use of labeled samples, but instead solve an optimization problem221

to find the weights that essentially lead to themaximum alignment between 222

the integrated kernel and any of the input unimodal kernels. 223

Recent PSN-fusion methods exploiting a supervised MKL strategy are 224

those presented by [30, 53, 64, 50, 67]. The work proposed in [50] designs 225

specific kernels for each omic type in the TCGA cancer dataset and then 226

computes the kernel weights by using the training set to optimize the fit of 227

a Cox-survival model. 228

All the other works [30, 53, 64, 67] share the use of the kernelized 229

Support Vector Machine (svm) classifiers [68], opportunely modified 230

as defined in [17] and [66] to work on the kernel resulting from an 231

optimal additive sum. In particular, the works proposed by Daemen 232

et al. [30, 53] aggregate specific kernels on each clinical data type and 233

uses a classic svm optimization strategy to derive the optimal weights, 234

while the works proposed in [64] and [67] use the easyMKL algorithm 235

to optimize an svm aggregating multiple kernels defined over multimodal 236

datasets also including opportunely coded imaging sources. More precisely, 237

in [64] authors use the same Gaussian kernels to process both the real 238

CerebroSpinal Fluid (CSF) biomarkers features and the shape and texture 239

features extracted to code Magnetic Resonance Images (MRI). On the 240

other side, the work proposed in [67] improves upon the work presented 241

in [69] and defines specific kernels for the multi-omics data from the 242

TCGA cancer dataset and for the features automatically extracted from 243

histopathological images (see Table 3). The effectiveness of the simpleMKL 244

strategy is witnessed by its several extensions (easyMKL [70], SEMKL [71], 245

SpicyMKL [72]). 246

As expected, our literature search highlighted that SVMs are the most 247

widely used base-learner models in conjunction with MKL in the context 248

of biomedical predictions; however, some authors have also presented 249

MKL methods using Multiple Kernel Fisher Discriminant Analysis (MK- 250

FDA [73]) or Kernel Regularized Discriminant Analysis (KRDA, [74]) as 251

base learners where the single kernel is substituted by multiple kernels. 252

Though these strategies have not been applied on patients’ data, their 253

promising results on the protein sub-cellular localization prediction task 254

[73, 75] suggest they could be good options for developing a multimodal 255

PSN analysis task. 256

Unsupervised MKL approaches are described in the works of [76, 77, 257

52]. The regularized MKL with Locality Preserving Projection algorithm 258

(rMKL-LPP [76]) is an unsupervised, regularized MKL-based clustering 259

approach for the identification of cancer subtypes from multi-omics data. 260

It builds upon the MKL-DR model proposed in [78] to constrain the 261

optimization problembyhandling the “small-sample-size” problems caused 262

by the high dimensionality of the input data-sources and exploits the 263

theories at the base of the locality preserving projection algorithm [79] to 264

find the integrated kernel in a lower-dimensional space that maintains the 265

local neighborhoods relationships. In other words, the model minimizes 266

a function that allows finding both the hyper-parameters of the multiple 267

kernels and their combination weights so that patients that are similar 268

according to “many” input sources (kernels) remain neighbors in the 269

integrated kernel. Further, to avoid restricting the usage of only one kernel 270

per data-source or data-type, authors add a constrained regularization that 271

avoids overfitting, so that multiple kernels can be used for each source 272

without risking to over-fit the data. Similar topological constraints are 273

used by [52] to compute kernel weights such that the resulting integrated 274

kernel maintains the neighborhood-relationship described above, and at 275

same time maximizes the alignment (similarity) to all the input kernels. 276

By contrast, Liu et al. [77] leverage the standard kernel k-means 277

clustering [80], which applies k-means in the kernel space, to a multiple 278

kernel k-means clustering (MKKM) that considers the relationships between 279

all the input kernels. The optimal clusters are found by minimizing a loss 280

that measures the intra-class sample distance as a function of the cluster 281

assignment matrix and the kernel weights. However, differently from other 282
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Table 1. Similarity measures/methods used in literature to build PSNs. For notable works in literature the table reports: the reference of the literature work presenting
a multimodal PSN analysis method (column Reference), the data types (column Data type) of the different sources (column Data) exploiting for the investigation, and the
similarity measures/methods exploited for building the unimodal PSNs.

Reference Data type Data Similarity measure/method

[46] binary ICD-9 diagnosis code Jaccard similarity

[44] continuous, clinical data cosine similarity
categorical, discrete

[5] continuous clinical data cosine similarity
categorical, discrete

[61] continuous mRNA, PPI Pearson correlation

[7] continuous mRNA Pearson correlation

[6]

continuous
clinical variables mean of normalized difference
individual gene normalized difference
genes in pathways/networks Pearson correlation

discrete
categorical-ordinal variable normalized difference
(e.g. tumour stage)
unbinned counts shared incidence
(e.g. mutation data) in a grouped unit
matrix scores chi-square distance
(e.g. response to questionnaire)

[3] continuous mRNA, miRNA, DNA methylation scaled exponential kernel
of Euclidean distance

discrete chi-squared distance
binary agreement-based measure

[54] continuous

binary

mRNA, DNA methylation

somatic mutation

scaled exponential kernel of
weighted Euclidean distance
scaled exponential kernel of
weighted Hamming distance

[62] continuous mRNA, miRNA,
DNA methylation

scaled exponential kernel
of Euclidean distance

[63] categorical, discrete demographic, APOE4 allele status, squared-exponential kernel
MRI

[55] continuous gene expression, kernel of Chebyshev distance
miRNA,
isoform expression

[48] continuous, categorical, discrete clinical data weighted sum of distances
with weight determined by a scaled
Cox regression coefficient

Abbreviations
ICD-9: International Classification of Diseases Version 9; CNV: Copy Number Variation;miRNA: micro RNA;MRI: Magnetic Resonance Imaging;
mRNA: messenger RNA; PPI: Protein-Protein Interaction;

multiple kernel clusteringmodels, theMKKM loss function includes a term283

that promotes the choice of higher weights for uncorrelated kernels.284

SNF-based methods285

PSNs are similarity graphs by definition; therefore, recent promisingworks286

apply graph-based algorithms and theories to integrate them. In particular,287

some authors simply integrate the information from different similarity288

graphs by using graph kernels [57], or by averaging [58, 81].289

On the other side, Similarity Network Fusion (SNF [3]) exploits a 290

nonlinear message-passing algorithm [82] that diffuses the information 291

between all the unimodal PSNs constructed on each data-block until they 292

converge to the integrated PSN. The diffusion process is designed so that 293

the similarity between any two points computed over a specific source is 294

updated and diffused if the two points are neighbors or share common 295

neighbours in the other modalities. SNF has proven to be successful 296

when compared to relevant PSN-fusion methods [83] in the unsupervised 297

clustering task on three real, complex, multi-omics datasets (murine liver - 298
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Table 2. Similarity measures/methods used in literature to build PSNs. For notable works in literature the table reports: the reference of the literature work presenting
a multimodal PSN analysis method (column Reference), the data types (column Data type) of the different sources (column Data) exploiting for the investigation, and the
similarity measures/methods exploited for building the unimodal PSNs.

Reference Data type Data Similarity measure/method

[30, 53] continuous mRNA, clinical normalized linear kernel
categorical, discrete, binary clinical

[64] discrete MRI gaussian kernel
continuous CSF

[51] continuous mRNA, miRNA, CNV, gaussian kernel
DNA methylation,

discrete clinical

[50] continuous, mRNA, miRNA, CNV, linear kernel
DNA methylation, RPPA,

binary, discrete somatic mutations, clinical data

[65] continuous mRNA, CNV, DNA methylation normalized linear kernel,
normalized polynomial kernel,
normalized gaussian kernel

[53] continuous,
categorical (ordinal)

clinical variables absolute difference of values/ranks
of two subjects compared and
rescaled using variable range

categorical (nominal) clinical variables kernel defined using Kronecker
delta function

[57] continuous,
binary

mRNA, RPPA,
somatic mutation

novel graph kernel called SmSPK

Abbreviations
CSF: CerebroSpinal Fluid; CNV: Copy Number Variation;miRNA: micro RNA;MRI: Magnetic Resonance Imaging;mRNA:
messenger RNA; RPPA: Reverse-Phase Protein Arrays.

BXD [84], platelet reactivity [85], and Breast Cancer dataset from TCGA -299

BRCA [86]).300

Several works extended SNF in different ways, thus creating a group of301

algorithms (called SNF-based methods). As an example, Affinity Network302

Fusion (ANF) [87] has been developed to diminish the computational costs303

of SNF, by reducing the iterative integration strategy of SNF to a unique304

step. To this aim, authors design amultigraphwhere each layer corresponds305

to a source-specific PSN, and then apply the one-step random walk kernel,306

where user-defined parameters are the transition probabilities between307

different layers, and the PSN for a specific layer represents the transition308

probabilities between nodes in that layer. When tested on multiple TCGA309

datasets, AFN outperforms SNF both in terms of clustering efficacy and310

computational costs.311

By taking into account that the Euclidean distance metric employed312

in SNF suffers the curse of dimensionality [88] and may affect the results,313

[89] presentedHSNF (hierarchical SNF), which essentially runs SNF several314

times, where each iteration uses a set of unimodal PSNs, generated on each315

data-block by using a randomly sampled feature set. At each iteration, the316

computed PSNs are fused with the integrated network computed in the317

precedent steps through SNF. The method is evaluated by its capacity to318

identify cancer subtypes by applying spectral clustering on the integrated319

matrix. Though outperforming SNF on several cancer datasets, HSNF has320

a higher computational cost because of the iteration of SNF.321

To reduce noise in the integrated network, the Similarity Kernel Fusion322

algorithm (SKF) [90] multiplies the PSN built by using SNF with a matrix323

of weights, where the weight is higher if two samples are included in324

each other neighbourhood. Moreover, different from SNF, a term in the325

iterative update function is added to control the amount of information 326

to be retained from the integrated kernel at the preceding step. When 327

compared to SNF and to a simple average fusion of different kernels, SKF 328

obtains comparable or even better performance in the discovery of cancer 329

subtypes from real cancer datasets. 330

The association-signal-annotation boosted similarity network fusion 331

(ab-SNF) method [54] tries to improve SNF by considering a weighted 332

version of distance measures with the goal to up-weight signal features 333

and down-weight noisy ones. In this work, the weight for continuous 334

variables consists in a p-value computed by the univariate t-test to assess 335

the feature significance in predicting the outcome variable; the weights 336

for binary features, such as mutation data, are obtained by considering 337

prior knowledge from databases (e.g. 1 for features related to cancer and 0 338

otherwise). Given the computed weights, the unimodal PSNs are obtained 339

by using the scaled exponential kernel [3], where the Euclidean distance is 340

substituted by theweighted Euclidean distance, for continuous variables, or 341

the weighted Hamming distance, for binary variables. The use of feature- 342

level weights leads to superior performance in clustering accuracy with 343

respect to SNF on both simulated and real data, while subtypes captured 344

by ab-SNF are significant in terms of patient survival on real cancer data. 345

Other PSN-fusion methods 346

NetDx [6] fuses unimodal PSNs by a simple weighted network sum, where 347

the weights for each network are identified by ridge regression to a target 348

network constructed on the training patients in order to enforce higher 349
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Fig. 2.High-level representation of PSN-fusionmethods. (A) Given a set ofmatrices, each representing the patients vectors acquired from one source, proper similaritymeasures or kernel functions
are used to build a set of unimodal PSNs (one PSN per data-source or data-type); (B) all the PSNs are then fused through either MKL methods, SNF methods or other PSN-fusion approaches;
(C) the integrated PSN is processed either by unsupervised clustering algorithms for solving, e.g., patients’ subtype prediction tasks, or by supervised classifier models for, e.g., patients’ outcome
prediction.

similarities between positive nodes and lower similarities between nodes350

belonging to different classes.351

Some recent integration methods propose integrating the different352

PSNs by using a graph-based construction, and then compute integrated353

similarities by visiting the graph through random walk kernels. As an354

example, [58] propose computing similarities over a multiplex graph355

composed by a collection of PSNs (layers) each built on an individual356

data-block. The different layers share the same set of nodes [91], and357

corresponding nodes in different layers are connected to guarantee358

connectivity across multiple layers, but are considered as different entities359

to avoid disrupting the difference between the multiple views available360

for each node/sample. Then authors use the random walk kernel with361

restart [92] to express the similarities as the probabilities of reaching a node362

in a specific layer when another node in the same or in another layer is 363

used as the starting point of the walk. To account for multimodality, that is 364

with the presence ofmultiple layers, the probability of “jumping” to another 365

layer during the walk is weighted by a parameter λ. The probabilities 366

are computed by an iterative process that continues until a stationary 367

point is reached. RWRNF [58] is an extension of this method that allows 368

connecting multiple layers by also using edges between neighbourhoods of 369

corresponding nodes. The use of many random walks, starting from all the 370

nodes in each layer, adjusts the weights of the multiplex network taking 371

into account its global topology. Finally, an integrated similarity network 372

is computed by averaging corresponding weights across different layers of 373

the network. 374
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Table 3.MKL-based PSN-fusion methods. For each method, the table reports: the name/acronymwith the corresponding reference paper; whether it requires the same
set of patients across all data modalities (i.e. “Matched Samples”); the dataset used to develop and evaluate the approach in the reference paper and the corresponding
sample cardinality and data types composing the dataset; the exploited integration method; the application task and the code availability (with link to the repository and
programming languages for which the code is available).
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The efficacy provided by the use of similarities computed across local375

neighborhoods is proven by its use in simpler unsupervised PSN analysis376

methods. As an example, NEMO (NEighborhood based Multi-Omics377

clustering, [93, 94]) is an unsupervised clustering approach where authors378

use a scaled normalized euclidean kernel to compute similarities, which are379

thenmade symmetric in a way very similar to SNF and are designed to have380

values equal to zero for nodes that are not neighbors. Extensive experiments381

on simulated and real datasets showed the competitive effectiveness and382

efficiency of NEMO with respect to 9 state-of-the-art methods among 383

which one MKL-based method, a spectral clustering method, the classic 384

k-means clustering approach, and 6 clustering methods exploiting an 385

input data-fusion approach (Section Input data-fusion and output-fusion 386

methods). 387

Finally, a noteworthy PSN-fusion method applied for unsupervised 388

patient subtype identification in the TCGA dataset is Multi-view Spectral 389

Clustering Based on Multi-smooth Representation Fusion (MRF-MSC) 390

https://github.com/tastanlab/pamogk
https://ndexbio.org/#/networkset/8a2d7ee9-1513-11e9-bb6a- 0ac135e8bacf
https://github.com/tastanlab/pamogk
http://adni.loni.usc.edu/
http://mixomics.org/tcga-example/
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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[95]. MRF-MSC starts by individually processing each data-block to391

obtain a smoothed similarity matrix where strong/weak similarities392

are strengthened/eliminated; this is obtained by solving a regularized393

optimization problem that computes the similarity matrix in a feature394

space that minimizes the point-reconstruction error while strengthening395

the point groupings. Next, a fused similarity matrix that minimizes the396

weighted distance from all the smoothed source-similarity matrices is397

obtained by integrating a self-weighting method [96] into the distance398

minimization problem. Finally, the clusters in fused similarity networks399

are strengthened by applying the constrained Laplacian rank method and400

Spectral clustering is then applied to solve the clustering problem.401

Input data-fusion and output-fusion methods402

Opposite to PSN-fusion models, the input data-fusion and the output-403

fusion techniques reviewed in this section integrate the information404

available either in the multimodal input data (input data-fusion methods -405

Fig. 3) or in the output computed by a set of individual unimodal PSN-406

analysis models (output-fusionmethods - Fig. 4).407

Input data-fusion methods are schematized in Fig. 3. These approaches408

are based on the assumption that the input samples originally lied in a latent409

(eventually orthogonal) space from which the multiple source-views have410

been generated by unknown projections. This results in data-blocks being411

expressed into separate source-specific spaces that are characterized by: 1)412

an individual source-specific structure generating an individual variability413

within each data-block; 2) a joint sample-specific structure [18] resulting414

in shared variance (collinearities) between data blocks. Therefore, input415

data-fusion methods estimate the embedding that back-projects the input416

data-blocks into a shared latent space minimizing redundancy between417

the data-blocks while maximizing the individual data-block variability. In418

other words, all the methods find the joint components (Fig. 3) allowing419

to capture the greatest amount of shared variance; most of the methods420

also define ways to identify the individual components capturing the source-421

specific variability (Fig. 3).422

Depending on the technique used to project the data into the423

shared latent space, we can distinguish input data-fusion methods into424

PCA-based techniques (Table 6) or Matrix Factorization (MF) or Blind425

Source Separation based methods (Table 7). One advantage of solving426

the information-fusion in a pre-processing phase, i.e. preceding the427

construction of an integrated PSN, is that a standard unimodal PSN-428

analysismodel can be subsequently applied (Fig. 3-B) to deal with clustering429

or supervised classification problems (Fig. 3-C). In particular, the input430

data-fusion methods make the choice of the similarity measure to be used431

for PSN construction particularly easy, since they compute normalized, a-432

dimensional, integrated point representations, whose pairwise similarities433

could be handled by classic measures such as the cosine similarity or434

the inverted euclidean distance. Moreover, a side-effect of the estimated435

embedding is that the estimated component loadings or factors may436

be analyzed for uncovering hidden relationships between variables (data437

analysis task in Tables 6 and 7 and in Fig. 3).438

The strategy applied by output-fusionmethods is sketched in Fig. 4 and439

their experimental design is summarized in Table 8. They apply individual440

PSN pipelines on each data source to obtain individual clustering or441

supervised prediction results (Fig. 4-A and 4-B). All the obtained results are442

then fused by aggregation strategies that, acting as judges, compute a final443

decision by considering all the individual decisions taken by each unimodal444

pipeline.445

Input data-fusion via PCA-based and CCA-based methods 446

In the bioinformatics field, Consensus PCA (CPCA [99]), hierarchical PCA 447

(HPCA [106]), and Multiple Factor Analysis (MFA [107]), are some of 448

the most used PCA-based integrative methods. They achieved interesting 449

results on multimodal datasets including different types of patient data, 450

from omics [18] to images [108, 109, 110]. 451

Their effectiveness is due to their ability to project the data-blocks 452

into a lower dimensional space spanned by not-correlated axis (principal 453

components) maximizing the within-block variances and between-block 454

covariances [111, 112]. By stretching the data along those axis, they induce 455

a natural separability that improves the performance of the downstream 456

algorithms, which aremostly devoted to data-exploration andunsupervised 457

clustering, though some exceptions using supervised clustering exist [20] 458

(Table 6). 459

Thedifference between the three approaches relies on theway the latent 460

space is found. Indeed, while CPCA solves an optimization problem by 461

an iterative algorithm in the set of nonlinear iterative partial least squares 462

methods (NIPALS [113]), HPCA [106] and MFA [107] consecutively apply 463

PCA on respectively: a) each block separately to derive lower-dimensional 464

“stretched” block representations maximizing the within-block variance; 465

b) the concatenation of the obtained block representations to derive a 466

stretched latent space maximizing the between-block covariance. 467

A notable generalization of PCA for multimodal data is JIVE ( Joint and 468

Individual Variation Explained, [18]), which explicitly models each data- 469

blockXi as the sum of a matrix representing the joint structure associated 470

with Xi and shared with other sources, and a matrix representing the 471

source-specific structure characterizing Xi , and residual noise. Given 472

this formulation, authors apply an iterative estimation procedure that 473

minimizes the reconstruction error, while constraining the axis of the joint 474

and individual structures to be orthogonal (that is, the joint and individual 475

structures must be uncorrelated). In practice the estimation iterates over 476

the following two steps: 1) having removed the individual structure, 477

apply a sparse Singular Value Decomposition (SVD) to estimate a lower- 478

dimensional joint structure; 2) having removed the joint structure, apply a 479

sparse SVD to find a lower-dimensional individual structure. Interestingly, 480

JIVE also provides a permutation test to select the optimal ranks for the 481

estimated structures. When experimented on multi-omics data from the 482

glioblastomamultiforme (TCGA-GBM) dataset [18], JIVE showed its ability 483

to effectively uncover the individual and joint data structures, thus leading 484

to a better interpretation of interactions among data types and improving 485

unsupervised classification results. Since the computational complexity of 486

JIVE hampers its applicability, it has been recently reformulated (Angle 487

Based JIVE - aJIVE [97]) by using a hierarchical strategy similar to 488

HPCA, which also produces more intuitive interpretations of the obtained 489

decomposition, especially in the presence of strong collinearities. The 490

effectiveness of aJIVE is witnessed by the promising results obtained when 491

applied to an extract of the TCGA breast cancer dataset from [101] for 492

the (supervised) task of tumor subtype prediction [114]. In particular the 493

estimated joint components and the first five individual components for 494

each data block are used to compose the integrated sample views to train 495

Random Forest classifiers [115]. 496

Opposite to PCA-based integrative models, Canonical Correlation 497

Analysis-based (CCA-based) integrativemodels, e.g. RegularizedGeneralized 498

CCA (RGCCA) [104, 105] and its sparse counterpart Sparse Generalized 499

CCA (SGCCA) [19, 105], find the latent space maximizing the correlation 500

within and between the different data-blocks. They are generally used 501

for exploratory variable analysis since they try to bring all the data 502

blocks to a unique distribution, therefore uncovering hidden relationships 503

between different sources. However, DIABLO [20] has shown that SGCCA 504

is also effective in the context of supervised clustering for patients’ 505
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Table 4. (I) SNF-based PSN-fusion methods. For each method, the table reports: the name/acronym with the corresponding reference paper; whether it requires the
same set of patients across all datamodalities (i.e. “Matched Samples”); the dataset used to develop and evaluate the approach in the reference paper and the corresponding
sample cardinality and data types composing the dataset; the exploited integration method; the application task and the code availability (with link to the repository and
programming languages for which the code is available).
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subtype prediction. In practice, given a multimodal dataset containing N506

samples organized into Y classes, DIABLO firstly creates an extra dummy507

(supervising) data-block where each column is an indicator variable for508

the point-class (1...Y ). Next, it uses SGCCA to maximize the covariance509

between all the data-blocks, including the supervising data-block. Given510

this representation, supervised clusters may be identified either 1) by511

averaging the components across data-blocks, to obtain an integrated512

patient representation that is then used by any supervised clustering 513

algorithm (such as theMaximumCentroids algorithm [116]); 2) by applying 514

the Maximum Centroids algorithm on each projected data-block to obtain 515

individual clustering results, subsequently aggregated via a majority voting 516

algorithm. 517

Though effective in several applications, all the aforementioned PCA- 518

based methods suffer from two main limitations: sensitiveness to outliers 519

http://compbio.cs.toronto.edu/SNF/SNF/Software.html
https://cran.r-project.org/web/packages/SNFtool/index.html
https://github.com/BeautyOfWeb/ANF
https://github.com/guofei-tju/Cancer-subtypes
https://github.com/pfruan/abSNF
https://github.com/Shamir-Lab/NEMO
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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Table 5. (II) Other PSN-fusion methods. For each method, the table reports: the name/acronym with the corresponding reference paper; whether it requires the same
set of patients across all data modalities (i.e. “Matched Samples”); the dataset used to develop and evaluate the approach in the reference paper and the corresponding
sample cardinality and data types composing the dataset; the exploited integration method; the application task and the code availability (with link to the repository and
programming languages for which the code is available).
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and inability of handling missing data. Generalized Integrative PCA520

(GIPCA) [100] has been recently proposed as an extension of Consensus521

PCA for dealing with missingness of some values and of entire views. To522

this aim, eigenvectors are used to explain the intra/inter-block variance by523

neglecting those samples/views with missing values/views.524

Input data-fusion via Matrix Factorization-based methods525

Matrix Factorization (MF) methods [117] embed the points into a latent526

space that minimizes the reconstruction error and whose components527

(factors) are not constrained to be orthogonal (as in PCA) [118, 31, 119]. 528

The most effective and used MF method applied on unimodal data is 529

Non-negative MF (NMF, [120]); it constrains both the component and 530

loading matrices to be non-negative, which makes the approximation 531

purely additive. 532

Given its effectiveness, several works proposed methods where NMF 533

is extended to the integration of multimodal datasets (see Table 7). The 534

most relevant example is joint NMF (jNMF [121]) where multiple NMF 535

problems are solved subject to a shared factor matrix that contains the 536

basis vectors of the shared latent space. However, jNMF is sensitive to 537

https://github.com/realpailab/netdx
https://github.com/Sepstar/RWRF/
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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Fig. 3. Input data-fusion. (A) During the pre-processing phase the data are integrated by either a PCA-based integrative model or a MF-based model. They estimate a shared latent space where
the integrated, normalized point representations express the joint structure underlying all the data blocks plus, eventually, the individual structures characterizing each data block (e.g. JIVE [18],
aJIVE [97], iNMF [98]); (B) a PSN model is then constructed on the integrated profiles by using a classic similarity measure; (C) a clustering or supervised classification model is applied to the
computed PSN.

random noise and confounding effects [98] that are specific to each source,538

and that cannot be detected if a unique shared factor matrix is estimated.539

This affects the accuracy of the common structure estimation computed540

by jNMF [98]. Therefore, integrative Non-negative Matrix Factorization541

(iNMF [98]) uses an approach similar to JIVE, where the factor matrices to542

be estimated are composed both by a shared and a source-specific structure.543

Unsupervised clustering experiments on the TCGA dataset [98, 122] have544

proven the superiority of iNMF with respect to jNMF [121], NMF [123],545

and to integrative Bayesian methods [124, 125].546

Integrative Graph Regularized Non-Negative Matrix Factorization547

for Network Analysis (iGMFNA [126, 127]) proposes improving the548

minimization of the reconstruction error, typical of NMF, by exploiting 549

a graph-view on each data block. Thanks to such representation, the 550

designed iterative optimization minimizes the reconstruction error while 551

maintaining the topology of the graph-views. When compared to jNMF 552

and iNMF to prioritize genes associated with cancer in two TCGA datasets 553

by an unsupervised clustering approach, iGMFNA showed its superior 554

performance. 555

The popular PenalizedNon-negativeMatrix Tri-Factorization (NMTF, 556

[128, 31]) starts from a relational matrix R1,2 containing non-negative 557

elements that represent the strengths of the relationships between objects of 558

two different types, ϵ1 and ϵ2 , whose respective characteristics are defined 559
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by specific constraints, θ1 andθ2 . NMTF finds the decomposition ofR1,2 ,560

subject to constraints θ1 and θ2 , such that:R1,2 ≈ G1S1,2G
T
2 so that561

G1 andG2 are the low-dimensional representations of objects with types,562

respectively, ϵ1 and ϵ2 , and S1,2 is the backbone matrix linking the two563

types.564

NMTF is exploited by [31] in DFMF, where the reliability of the565

integrated low dimensional estimates computed over a multimodal dataset566

is improved by considering all the relational matrices (and corresponding567

constraints) linking the different sources between each other and with568

the patient data. Given all the relational matrices, Ri,j , and respective569

constraints, each Ri,j is decomposed so that each backbone matrix570

represents the latent structure between two data types, the generic low-571

dimensional data representations of objects with a specific type, Gi , is572

bound to be used in the reconstruction of every relational matrix involving573

that type. Thanks to the abundance of information, the proposedmodel can574

also handle missing data and treat sparse relational matrices. Furthermore,575

it does notmake any assumption about the structural properties of relations,576

which can also be asymmetric. DFMF can also be used in a semi-supervised577

setting. During training, the model parameters (i.e. the factorization ranks)578

are learnt, and are then used in a matrix completion problem, where579

unobserved entries in the targetmatrixRi,j are reconstructed for elements580

that were not present in the training set.581

DFMF has been successfully used in the Matrix trifactorization for582

Discovery of Data similarity and Association (MaDDA) algorithm proposed583

by [129] to construct PSNs for unsupervised clustering. In particular,584

given n patients to be partitioned into k clusters, the low-rank matrix585

G ∈ Rn×k estimated through DFMF is viewed as a membership586

matrix relating each patient to the k ranks/groups. After repeating the587

factorization multiple times with different initialization parameters, a final588

consensus matrix is obtained by element-wise averaging all membership589

matrices and then composing a PSN where the similarity between two590

patients (weight of the edge connecting them) represents how many times591

they ended up in the same group.592

Multi-Omics Factor Analysis+ (MOFA+ [130]) is an integrative method593

exploiting Bayesian group factor analysis [51] with regularization to594

impose: (i) a view-wise and factor-wise sparsity, which shrinks to zero the595

loading for the m-th modality and the k-th factor if the latest does not596

explain any variability of them-th view; (ii) a feature-wise sparsity, which597

sets to zero loading on individual features from active factors so that only598

a small number of features “actively” contribute to each factor. MOFA+ can599

handle missing values as well as entirely missing views for some samples;600

moreover, it can cope with heterogeneous data types, which is exactly what601

is needed when dealing with multimodal datasets containing multi-omics,602

clinical, and imaging data.603

Given the successful results of MF-based integrative techniques,604

some authors have included them as a pre-processing step in their605

clustering/classification algorithms. As an example, iCluster+ [123, 131]606

uses NMF to fuse the heterogeneous data-blocks and then clusters the607

integrated views. It also exploits the obtained factor loadings to identify the608

relevant features in the cluster generation.609

Input data-fusion via Blind Source Separation610

In their original formulation, Blind Source Separation (BSS) models were611

defined as an extension of NMF techniques for “recovering unobservable612

source signals s frommeasurementsx (i.e., data), with no knowledge of the613

parameters θ of the generative system x = f(s, θ)” [132].614

Given their documented ability [133, 134, 132] of uncovering hidden615

structures underlying the observed unimodal signals, several BSS models616

have been extended to handle multimodal datasets comprising also617

multisets2 (Table 7), by a further step that estimates the mixing matrix that 618

recombines all the estimated latent sources so as to compute an integrated, 619

more informative signal with no redundancies [135, 136, 132, 21]. 620

Given the lack of information about the mixing process and the 621

source signals, BSS models often differ for the constraints they impose to 622

counter the ill-conditioned problem and obtain essentially unique source 623

estimates [137, 132, 134]. As an example, the well known Independent 624

Component Analysis model (ICA [138]), and its extensions to multimodal 625

data (joint ICA - jICA [139, 140]), to multisets (Independent Vector Analysis 626

- IVA [141]), and to multidimensional sources (Independent Subspace 627

Analysis - ISA [142]), assume a linear (additive) mixture with mutually 628

independent sources and a non-Gaussian distribution of each independent 629

component in the latent space. 630

All the BSS models base their computations on the existence of 631

collinearities between the observed multimodal data components, so that 632

unreliable results may be obtained when this assumption is not satisfied. 633

Some authors [135] circumvent this problem by pre-processing the data 634

with CCA (or its multimodal extension), to obtain a projected data 635

representation along correlated components. 636

The most representative BSS-based multimodal data integration 637

technique is Multidataset Independent Subspace Analysis (MISA [132, 638

21]), which was recently proposed to generalize all the BSS models 639

to the fusion of any kind of multimodal-multisets. Motivated by the 640

definition of multiset, MISA is driven by statistical independence between 641

latent subspaces while assuming correspondence within the subspaces 642

underlying the input multisets. In practice, it firstly removes redundancies 643

by estimating non-orthogonal demixing matrices, projecting each multiset 644

into a respective (intermediate) lower-dimensional space spanned by 645

independent components. The sources from all the computed latent spaces 646

are then combined through another demixing matrix that brings all the 647

data-blocks into a unique shared latent space, resulting in an integrated 648

patient view. The de-mixing matrices are estimated by minimizing the 649

mutual information in the final space, while maximizing the mutual 650

information in the intermediate spaces, so as to capture asmuch correlation 651

as possible. When applied to the integration of the information extracted 652

from Functional Multi-Resonance Imaging (fMRI), Structural Multi- 653

Resonance Imaging (sMRI), and Electroencephalogram (EEG) data, MISA 654

has proven its robustness with respect to high Signal to Noise Ratios 655

(SNR) as well as its ability to produce effective data fusion in different ICA 656

contexts. 657

Output-fusion methods 658

Following Fig. 4, in the context of multimodal PSN analysis the ouput- 659

fusion methods described in this section may be applied to combine 660

the (unsupervised clustering or supervised classification) results (Fig. 4- 661

B) computed by individual PSN analyses applied on each data block (see 662

Fig. 4-A). In Fig. 4-C, the combination of the unimodal results is performed 663

either by some heuristics, or by majority voting, or by using a meta- 664

model that learns from the predictions performed by each unimodal PSN 665

analysis. Output-fusion techniques have been proposed for clustering 666

samples (mainly from the TCGA datasets, see Table 8) to identify patients’ 667

subtypes [22, 144, 23] and for patients’ classification [145, 63] (see Table 8). 668

2 Multisets aremultimodal datasets containingmultiple views acquired
by the same source under different acquisition conditions (e.g.
observation times, experiments, tasks, machines). They are therefore
homogeneous [26] in semantic, type, and dimensionality. Multimodal-
multisets are multimodal datasets acquired by different sources, among
which sources producing multisets.
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Fig. 4. Output-fusion. (A) Unimodal PSNs are constructed for each data-type or data-source, and (B) each one is individually processed to identify clusters or to classify unknown samples;
subsequently, (C) a simple aggregation technique or a meta-model is used to obtain the fused/consensus clustering/classification result.

As an example, in Cluster-of-Cluster-Assignments (COCA [22]),669

authors combine the clustering results individually obtained by NMF [146]670

on each of the six data types of the TCGA datasets. To this aim, the samples671

are coded into vectors composed of indicator variables representing the672

clusters they have been assigned in each modality, so that they can be673

reclustered according to those vectors by Consensus Clustering Plus [147]4674

PINSPlus [144, 23] similarly exploits Consensus Clustering [148] for675

reaching the final partition. In practice, PINS (Perturbation clustering for data676

INtegration and disease Subtyping) starts by applying any classic unsupervised677

clustering algorithm (e.g., k-means) individually on each of the M-th678

datasets. If n is the number of patients, for the m-th dataset (m ∈679

1, . . . ,M ) the clustering result is expressed by a square matrix Cm ∈680

Rn×n , such that Cm(i, j) = 1 if samples i and j fall in the same681

cluster, andCm(i, j) = 0 otherwise. All the resulting matrices are then682

averaged to obtain a consensus matrix S =
∑M

m=1
Cm

M . Even though683

matrix S may highlight that some points do not reach a strong agreement,684

authors consider that S itself may be used as a pairwise similarity matrix685

(since S = 1 for points for which there is a strong agreement, viewed686

as similarity, across all the dataset, and S = 0 otherwise) that is suitable687

4 Given the number of clustersk, ConsensusClustering Plusworks on
a consensus matrix (CMk ) representing “the proportion of clustering
runs in which two items are [grouped] together” [148]. Given CMk

an agglomerative hierarchical consensus clustering using distance of 1-
consensus values is completed andpruned tok groups that are returned
as consensus clusters.

for similarity/distance-based clustering algorithms such as anyHierarchical 688

Clustering algorithm [149], PartitioningAroundMedoids [150], or dynamic 689

tree cut [151]. In their work, authors propose testing different clustering 690

algorithms and then choose the partition that agrees the most with the 691

partitioning of individual data types. 692

Consensus clustering has also been successfully applied by the recently 693

published SUMO [62], an integrative clustering algorithm that starts 694

by computing several unimodal PSNs by using a scaled-normalized 695

Euclidean kernel similar to the one exploited by SNF [3]. SUMO 696

then formulates a constrained NMTF (see Section Input data-fusion 697

via Matrix Factorization-based methods) to find a sparse shared 698

representation of all the samples in the cluster subspace by accounting for 699

the adjacencies observed in all the data types. The NMTF optimization 700

problem is solved by an iterative procedure that is applied several times 701

on several sample subsets to ensure robustness with respect to the initial 702

conditions and to the input data; consensus clustering is then exploited 703

to pool together the clustering results. When compared to the most 704

promising integrative clustering methods (e.g., iCluster [152], MCCA [102], 705

NEMO [94], SNF [3], PINSPlus [23]) SUMO obtained impressive results. 706

TheFuzzy-HierarchicalCLUSTering - FH-Clustmethod [24] interestingly 707

proposes to use fuzzy logic for identifying patients’ prognostic subgroups 708

from multiomics data, resting on the fact that in nature there is often no 709

clear cut between subtypes. Unimodal data are separately analyzed using 710

a fuzzy-based hierarchical clustering approach exploiting a Lukasiewicz 711

valued fuzzy similarity and individual results are then fused through a 712

consensusmatrix. Extensive experiments on 10 cancer datasets fromTCGA 713
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(considering gene expression, miRNA, methylation data) show that FH-714

Clust is competitive with state-of-the-art methods (i.e. k-means, Spectral715

Clustering, LRACluster, PINS, SNF, MCCA).716

Interesting output-fusion approaches aimed at patients’ classification717

are described in [145, 63]. In [145] the authors obtain effective cancer-718

grade and patient-survival classifications for cancer patients represented719

in the TCGA renal (TCGA KIRC) and TCGA ovarian (TCGA OV) datasets720

by using all the data types included in TCGA, including hematoxylin and721

eosin (H&E) stainedwhole-slide images of tissue samples that are processed722

by digital image processing techniques to extract more that 400 features723

per sample. In practice authors firstly individually process each data block724

to apply an internal cross-validation approach to choose 1) the number725

of informative features to be extracted by the minimum Redundancy726

Maximum Relevance (mRMR) method [153] and 2) the best performing 5-727

fold cross classifier among SVM, logistic regression, K-nearest neighbors,728

and Linear Discriminant Analysis. To compose all the predictions from729

the different modalities authors compare the stacked generalization model730

[154], which essentially trains a logistic regression classifier on the obtained731

predictions, to the majority vote strategy. The best results are obtained by732

the stacked prediction model, which leverages the results obtained by any733

of the multimodal predictions, independent from the classifier that is used734

for producing them.735

In [63] authors simply use the average to integrate the different736

prognostic classifications computed over multimodal profiles of suspected737

Alzheimer Disease (AD) patients, with the aim of identifying patients738

who are vulnerable to conversion from mild-cognitive impairment to AD.739

In particular, the squared-exponential kernels are firstly used to build740

unimodal PSNs, and, for each unimodal network, aGaussian process is then741

exploited to assign labels to unknown points based on the nearest known742

points. Finally, the unknown patients’ condition is computed as the average743

over all the unimodal predictions.744

Discussion and Conclusion745

In the context of Precision Medicine, PSNs are gaining momentum given746

their ability to uncover and exploit relationships among patients when747

applied to clustering and classification tasks [9]. According to the state-of-748

the-art surveys describing the application of PSNs for precision medicine749

or health-data processing [9, 45, 157, 158], PSN-based models benefit from750

several advantages; they are: (I) easy to understand, (II) interpretable by751

design, (III) privacy preserving, (IV) competitive or even superior to state-752

of-the-art clustering/classificationmethods, (V) potentially able to integrate753

different data views. In particular, the possibility of using PSN models754

in a multimodal setting is especially relevant in light of the increasing755

availability of digital technologies by means of which huge amount of756

multimodal data can be collected that describe each patient/sample by757

considering different biological/medical views. Moreover, in the past758

few years the increasing availability of cloud technologies allowed us759

to distribute data processing across multiple local servers belonging to,760

e.g. different institutions. In this context, the development of promising761

information integration models would allow the application of a Federated762

Learning strategy [159], where a central server collects, further integrates,763

and eventually processes, the (already) integrated data, or the individual764

PSNs, or the predictions individually computed by local servers located in765

the institutions where the data belong. In this way, the initial processing of766

the sensitive data would be demanded to the local institutions to protect767

patient privacy, and the central server would have access only to pre-768

processed information, thus hiding explicit sensitive data.769

Though in the biomedical context several multimodal approaches770

have already shown their ability to integrate multimodal data to improve771

the results obtained from a single view (unimodal data) [114], and the 772

survey literature about data integration methods for multimodal data is 773

wide [16, 13, 15], in the field of PSN analysis only few methods have 774

already investigated the usage of multimodal data, by building integrated 775

PSNs that exploit both the joint and the individual information from all 776

the available sources. Moreover, no state-of-the-art survey has focused 777

on the role of PSN as a cornerstone for data fusion. In this survey, we 778

aim at filling this gap with the goal of providing interested readers with a 779

comprehensive collection of integrative methods that may be exploited to 780

build PSN approaches efficiently handling multimodal data. 781

Besides an extensive literature search, the integration approaches have 782

been organized into three broad classes on the basis of the type of data 783

that is fused: PSN-fusion, Input data-fusion and Output-fusion methods. 784

More precisely, PSN-fusionmethods may be split into the three sub-classes 785

of MKL, SNF-based and other methods while Input data-fusion approaches 786

comprehend algorithms PCA-based, CCA-based andMF-based. 787

The survey has highlighted the promising results and advantages that 788

characterize the methods belonging to the three classes of our proposed 789

taxonomy. 790

Methods based on PSN-fusion techniques are particularly useful in 791

Network Medicine applications [160], that study human diseases through 792

“systemic” approaches in which diseases are interpreted as perturbations 793

in complex biomolecular networks. In this context, transductive strategies 794

working on individual PSN models [7] would benefit from the application 795

of PSN-fusion approaches, as shown by recent promising results [3, 6]. 796

Methods based on input-data fusion techniques rely on factor analysis 797

models for the removal of data collinearities and the simultaneous 798

enhancement of the individual structure characterizing each view. For this 799

reason, we believe such techniques are particularly usefulwhendealingwith 800

multiviewdata involving follow-up examinations, where themultiple views 801

likely contain correlated information. 802

Output-fusion techniques should be usedwhen the differences between 803

the multimodal views impose the usage of peculiar and specific unimodal 804

PSN models for obtaining individual inferences. This is the case, for 805

example when we need to combine data having substantially different 806

structures, ranging from vectorial to sequence and graph-structured data. 807

Though being effective, our thorough review also evidenced difficulties 808

and drawbacks that harbour from the data-fusion strategy. In particular, 809

PSN-fusion models require to build an individual PSNs on each data-type. 810

This raises the crucial, still open, and often overlooked problem of choosing 811

proper individual similarity measures for building each unimodal PSNs. 812

Indeed, only few methods [60, 161, 162] reported exhaustive comparative 813

evaluations among few distance metrics applied to genetic data. By 814

considering that several problems in Precision Medicine are characterized 815

by non-linearly separable omics data, and given the experimental results 816

we have collected during our literature search, we recommend computing 817

PSNs by exploiting a kernel function. In this context, though several 818

functions have been successfully proposed and used in literature, when 819

dealing with continuous data, we suggest using the scaled exponential 820

kernel of Euclidean distance [3, 62], due to its ability to adapt to different 821

neighborhood sizes. This allows dealing with datasets distributed on 822

complex manifolds where datapoints are not evenly distributed in space, as 823

it often happens in real-world problems. On the other hand, when dealing 824

with simpler data-types with lower dimensionalities and complexities 825

(e.g. clinical data), simpler normalized similarities may be sufficient to 826

appropriately capture the data structure. Clinical datasets usually contain 827

categorical variables, often mixed with numeric features. The former 828

situation can be appropriately addressed by averaging the normalized 829

similarities individually computed on each variable [6], while Chi-squared 830

distances are the most suitable for categorical data [3, 6]. Of note, the 831
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subsequent application of a Random Walk kernel, as proposed by Gliozzo832

et al [7], is a promising step to refine the obtained PSN.833

On the other side, input data-fusion techniques integrate the input834

data by projecting them into a shared space with lower dimensionality,835

thus making these approaches strongly dependent on the chosen final836

dimensionality d.837

While classic approaches have been proposed to automatically set d838

[163, 164, 165, 100], this value is often user-defined after observation of839

the scree plot. However, observing that the optimal latent vector space840

is the one that allows to capture the intrinsic data structure, we instead841

suggest setting d to the intrinsic data dimensionality (id) [166], which is842

the minimum number of parameters needed to represent the data without843

information loss.844

Finally, output-data fusion methods are often too generic or use very845

simple output-aggregation strategies, e.g. average or majority voting, that846

may produce sub-optimal results.847

Generally speaking, our survey evidenced some important open issues848

in the context of data integration methods for PSN that call for the future849

research directions summarized in the following subsection.850

Future Research Directions851

While conducting our survey we noted the need of investigating methods852

for data pre-processing, with the aim of, e.g., detecting and eliminating853

noise with heterogeneous characteristics, collinearities between different854

views, and confoundings that could bias the final results (as per [27]). Indeed,855

only few recently proposed preliminary attempts were able to explicitly856

consider the presence of noise with heterogeneous characteristics [98, 122].857

Moreover, future research should be devoted to the investigation of858

novel multimodal feature-selection algorithms. Indeed, the few methods859

applying a feature selection step exploit either classic univariate statistics,860

or algorithms, such as mRMR [153], that analyze group of features by861

neglecting their multimodal characteristics.862

On the other side, missing data imputation needs deeper investigation863

to handle two types of biomedical data-missingness: 1) missingness of some864

data values in some views; 2) missingness of entire views for some samples.865

While missingness is becoming a common problem in different fields,866

in the bio-medical field few approaches present thorough missing data867

imputation studies [11]. Besides, among the approaches we have surveyed,868

only GIPCA [100] specifically addressed both these types of missingness.869

Finally, given the big-data produced by high-throughput technologies,870

scalability is becoming an important and often overlooked issue, nowadays871

hampering the applicability of several promising tools.872

Though the aforementioned issues are still open, all the surveyed873

strategies have reported promising results that might improve knowledge874

in then field of Precision Medicine. Unfortunately, different similarity875

metrics, experimental setups, and evaluation measures are used for model876

assessment; this hampers an objective comparison between the different877

integration techniques and data analysis models. Furthermore, we found878

no evidence about data integration approaches that should be preferred879

over the others. Instead, the type and semantic of the available data880

type and the specific biomedical question to address should guide the881

choice. An additional open problem regards the identification of the most882

appropriate similarity/distance measure for each biological data modality.883

To the best of our knowledge, only few works tried to investigate this issue884

by comparing different metrics for specific data views and most of them885

are focused on gene expression data [60, 161, 162]. Comprehensive studies886

comparing the usage of different similarity measures in different contexts887

(e.g. when applied to different biological data types and in supervised888

and unsupervised prediction contexts) would provide fruitful insights to889

guide the scientific community towards effective PSN construction. We890

also remark that, though some algorithms are already available as open 891

source packages/repositories (mostly coded using R, Python and Matlab) 892

[16], many others are not, thus slowing down their diffusion and testing by 893

the community. 894

Another interesting research line that should be given attention is 895

represented by the development of Web applications extending, e.g., those 896

presented in [167, 168], for the visual analysis of PSN models. Indeed, the 897

graphical tools can enable the visual comparison of different PSN models 898

realized according to any of the methods discussed in this survey. This 899

in turn can improve the explainability of the computed results and would 900

allow the user to choose the approach mostly suited to her/his needs. 901
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multi-dimensional data Fusion982

SCA - SpinoCerebellar Ataxia983

SGCCA - Sparse Generalized Canonical Correlation Analysis984

SKF - Similarity Kernel Fusion985

sMRI - structural Magnetic Resonance Imaging986

SNF - Similarity Network Fusion987

SNR - Signal to Noise Ratio988

SVD - Singular Value Decomposition989

SVM - Support vector Machine990

TCGA - study name - The Cancer Genome Atlas - link to official study991

abbreviations992

993

Appendix A - Data integration in Medicine:994

previous surveys and taxonomies995

The abundance of multimodal data integration approaches developed in996

the past decade in the biomedical context has motivated many relevant997

surveys [29, 36, 37, 34, 35, 16], which proposed different definitions and998

taxonomies, schematized in Fig. 1.999

In the context of Precision Medicine, multimodal sets are composed1000

of multiple views (or data-blocks) for the same set of patients. They1001

are either multisets, or multimodal datasets [142]. Multisets (top of Fig. 1-1002

yellow box) contain multiple views acquired by the same source under1003

different acquisition conditions (e.g. observation times, experiments, tasks,1004

machines), and are therefore homogeneous [26] in semantic, type, and1005

dimensionality. Conversely,multimodal datasets (alias heterogeneous sets [26],1006

Fig. 1-light blue box) contain data-blocks acquired by different sources, 1007

characterized by different semantics, type and dimensionalities. Among the 1008

latter, multimodal-multiset are datasets acquired by different sources, some 1009

of which are used to produce multisets. 1010

Given their different characteristics, multisets andmultimodal datasets 1011

are generally fused by following different integration flows. Horizontal 1012

integration methods [169, 25] are usually used for multisets because they 1013

equally process all the data-blocks and then pool the obtained results by 1014

e.g. summary statistics [170]. By contrast, vertical integration methods are 1015

used for processing multimodal datasets, which are more articulated and 1016

are usually grouped in the hierarchical-vertical class and the parallel-vertical 1017

class. 1018

Hierarchical-vertical [171, 172, 173] ormulti-staged analysismethods [27] 1019

consider omics data being interrelated by regulatory mechanisms and 1020

exploit such prior knowledge during the integration procedure. Since 1021

these methods are tailored for the treatment of specific data types and 1022

applications and cannot be generalized to different research contexts, 1023

they will not further considered in this survey. Parallel-vertical integration 1024

techniques, alias meta-dimensional analysis methods [27], are the most 1025

diffused and generalizable ones because dependencies between data-blocks 1026

injected by prior information are not considered. To categorize parallel- 1027

vertical approaches several interrelated taxonomies have been defined. The 1028

categorization reported in the red-dashed box in Fig. 1 is the one adopted 1029

by several authors [29, 30, 31, 27, 32, 33] that relies on the processing stage 1030

(early, intermediate, late) in which the data fusion happens, which also 1031

influences the kind of information that is fused. 1032

Early integration techniques (also called concatenation-based models [27, 1033

33]) are applied on the input data-blocks in an early stage to compose 1034

the integrated input vectors subsequently used in the analysis by either 1035

using a simple data-concatenation, or by exploiting joint latent space 1036

estimation models. The evident advantage of early methods relies on their 1037

ability to uncover the individual information characterizing each of the 1038

different sources as well as the hidden relationships between them. Another 1039

advantage is brought by the fact that early methods solve the integration 1040

problem in the first stage, so that any unimodal analysis process may be 1041

subsequently applied. 1042

Intermediate integration approaches (also named transformation-based 1043

models) [27, 33] individually transform the data-blocks into intermediate 1044

(unimodal) models that are subsequently integrated to produce a unique 1045

fused model to be analyzed. In the taxonomy proposed by [28] (blue- 1046

dashed box in Fig. 1), these methods have been classified asmodel-dependent 1047

approaches for highlighting their dependency from the data analysis model, 1048

which guarantees the ability to retain the original data structure by 1049

explicitly addressing the fusion task in the construction of the predictive 1050

model itself. 1051

Late integration approaches (also named model-based approaches in [27, 1052

33]) separately analyze each of the incoming data-blocks to produce 1053

individual results, subsequently integrated in a late phase by some meta- 1054

learner acting as the final judge or by simple techniques such as majority 1055

voting. These approaches alongwith the early integration ones are classified 1056

asmodel-agnostic in the taxonomy proposed by [28] (blue-dashed box in Fig. 1057

1) and are contrasted with the model-independent approaches previously 1058

discussed. They are named “agnostic” because they are independent from 1059

the specific algorithm applied in the preceding unimodal analysis, which 1060

can be therefore tailored to the processed type. 1061

Even if the aforementioned early/intermediate/late taxonomy is the 1062

most diffused in literature, other taxonomies have been defined in the 1063

context of integrative (multi-omics) methods for PrecisionMedicine. As an 1064

example, [174, 25, 175] consider three classes: 1) statistical-based methods, 1065

most of which can be considered instances of the class of early integrative 1066

methods; 2) unsupervised methods neglecting the outcome variable during 1067

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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the integration phase, that may be applied in any (early, intermediate,1068

or late) phase and are mainly devoted to unsupervised clustering; 3)1069

supervised integration methods fusing the available information to maximize1070

the outcome prediction performance by mainly using an intermediate1071

Multiple Kernel Learning (MKL) integration approach or a late fusion1072

approach.1073

Other taxonomies [14, 32, 8, 16] consider the specific algorithm used1074

for the integration; they recognize network-based approaches (among1075

which deep-network based approaches, not treated in this survey), feature1076

transformation models mainly applying an early integration approach (e.g.,1077

Principal Component Analysis - PCA, Canonical Correlation Analysis -1078

CCA), integrative models exploiting Matrix Factorization (MF) techniques1079

in an early integrative fashion, MKL models belonging to the class of1080

intermediate methods, and Bayesian techniques applied in an early phase.1081

Note that Bayesian models are not considered in this work since they have1082

been exhaustively described in a dedicated survey [13].1083

Finally, the relevant survey by [16] is focused on the description1084

of publicly available multimodal datasets in the context of multi-omics1085

and in the critical analysis of open source integrative models. After a1086

thorough study, the authors conclude that an objective comparison between1087

different models is difficult, and highlight the lack of an easy-to-use multi-1088

omics data fusion model providing a “biologist-friendly” visualization and1089

interpretation.1090
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Key Points1103

• Patients similarity networks (PSN) are explainable and privacy1104

preserving representations of patients that leverage the similarity of1105

their clinical/biomolecular profiles to construct graphs of patients.1106

• Network Medicine algorithms on PSNs for patient stratification,1107

phenotype and outcome prediction and disease risk assessment1108

represent novel tools for Genomic and Precision Medicine1109

• The combination of clinical, omics and imaging bio-medical data can1110

lead to novel PSNs able to leverage the synergy of multiple views of the1111

patients.1112

• Several reviews about data integration methods in Bioinformatics and1113

bio-medical applications have been proposed but no specific reviews1114

about the emerging field of heterogeneous data integration methods1115

for patient similarity networks are actually available.1116

• Weprovide a thorough reviewandpropose a taxonomyof heterogeneous 1117

data integration methods for PSNs, together with the different patient 1118

similarity measures proposed in literature. 1119

• We also review methods that have appeared in the machine learning 1120

literature but have not yet been applied to PSNs, thus providing a 1121

resource to navigate the vast machine learning literature existing on 1122

this topic. 1123

• Strengths and limitations of the proposed methods are discussed to 1124

both assist researchers in the design and development of novelmethods 1125

and to guide the selection of PSN integration methods for specific 1126

applications, focusing on methods that could be used to integrate very 1127

diverse datasets, including multi-omics data as well as data derived 1128

from clinical information and medical imaging. 1129
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Table 6. PCA-based andCCA-based input data-fusionmethods. For eachmethod, the table reports: the name/acronymwith the corresponding reference paper; whether
it requires the same set of patients across all data modalities (i.e. “Matched Samples”); the dataset used to develop and evaluate the approach in the reference paper and
the corresponding sample cardinality and data types composing the dataset; the exploited integration method; the application task and the code availability (with link to
the repository and programming languages for which the code is available).
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Table 7.MF-based input data-fusion methods. For each method, the table reports: the name/acronym with the corresponding reference paper; whether it requires the
same set of patients across all datamodalities (i.e. “Matched Samples”); the dataset used to develop and evaluate the approach in the reference paper and the corresponding
sample cardinality and data types composing the dataset; the exploited integration method; the application task and the code availability (with link to the repository and
programming languages for which the code is available).
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Table 8.Output-fusionmethods. For eachmethod, the table reports: the name/acronymwith the corresponding reference paper; the dataset used to develop and evaluate
the approach in the reference paper and the corresponding sample cardinality and data types composing the dataset; the exploited integration method; the application
task and the code availability (with link to the repository and programming languages for which the code is available).
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