
Hybrid Quantum-Classical Walks
for Graph Representation Learning

in Community Detection
1st Adrián Marı́n

QTCG.
Dpt. Electromagnetism and Matter Physics.

University of Granada, Spain
marinadrian@correo.ugr.es

2nd Mauricio Soto-Gomez
Dpt. di Informatica.
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Abstract—Graph Representation Learning (GRL) has emerged
as a cornerstone technique for analysing complex, networked
data across diverse domains, including biological systems, social
networks, and data analysis. Traditional GRL methods often
struggle to capture intricate relationships within complex graphs,
particularly those exhibiting non-trivial structural properties
such as power-law distributions or hierarchical structures. This
paper introduces a novel quantum-inspired algorithm for GRL,
utilizing hybrid Quantum-Classical Walks to overcome these
limitations. Our approach combines the benefits of both quantum
and classical dynamics, allowing the walker to simultaneously
explore both highly local and far-reaching connections within the
graph. Preliminary results for a case study in network community
detection shows that this hybrid dynamic enables the algorithm
to adapt effectively to complex graph topologies, offering a robust
and versatile solution for GRL tasks.

I. INTRODUCTION

The use of graph-based models to represent complex sys-
tems has become ubiquitous in diverse scientific domains,
including biology, medicine, social sciences, and economics.
This widespread adoption stems from the expressive power of
graphs to capture intricate relationships among entities, such
as interactions in protein-protein networks, patient similarities
in medical records, or social connections in online platforms.
As a result, Graph Representation Learning (GRL) — the task
of learning compact, information-rich vector representations of
graph nodes — has emerged as a central topic of interest in
the machine learning community [1].

By embedding nodes into low-dimensional Euclidean spaces
that preserve both local and global structural properties of
the original graph, GRL enables the effective application
of conventional machine learning models to tasks such as
node classification, link prediction, community detection, and
recommendation [2]–[4]. Efforts in GRL leveraged a variety of
algorithmic paradigms [5]: ranging from matrix factorization

techniques [6] to graph neural networks (GNNs) [1], including
Random Walk-based models such as DeepWalk and node2vec,
which leverage local neighborhood sampling to learn represen-
tations based on co-occurrence statistics [7], [8].

In this work, we explore the use of Quantum Walks (QWs)
to enhance random walk-based models for GRL. QWs have
been an active line of research during the last decades [9],
[10]. Most of its interest is based on the fact that QWs
propagate quadratically, or even exponentially, faster than their
classical counterparts for a huge variety of graphs [11]–[13].
Besides, QWs are widely used to speed up computational
problems such as searching [14], [15] and autonomous learn-
ing [16]. Interestingly, they have also played a foundational
role in physics-inspired models of intelligence. For example,
the Projective Simulation framework introduces a model of
learning and decision-making based on stochastic and QWs
on episodic memory graphs, offering a novel perspective
on artificial agency rooted in quantum information process-
ing [17]. This connection highlights the versatility of walk-
based mechanisms not only in representation learning but also
in modeling cognitive-like processes in artificial agents and
pinpoints a novel use for QWs in AI models.

Beyond QWs, Hybrid Quantum-Classical Walks (HQCWs)
mix both quantum and classical dynamics to determine the
system’s evolution. This kind of hybrid walks are grounded
on the Open Quantum Systems (OQS) theory [18], and
have been widely used to model different effects, such as
photosynthetic complexes [19]–[22], computational science
analysis [23], and optimization of transport phenomena [24]–
[26]. However, these approaches are based on quantum master
equations that provide a description of the average behavior
of a walker, lacking the information about single trajectories
that is required for GRL techniques.

In this paper, we provide an algorithm for the simulation



of trajectories of HQCWs and a GRL technique based on it.
This technique benefits from both the fast propagation of QWs
and the deterministic trajectories obtained by the algorithm.
We evaluate the potential of our model in the context of
a community detection problem characterized by a complex
graph composed of four random clusters of different sizes,
with a low interconnectivity between them. This problem is
difficult to handle with classical random walk-based methods
since the different sizes of the clusters and the limited connec-
tions between them undermine their embedding representation
capabilities.

II. METHODS

A. Classical Walks

Consider G = (V,E,w) to be a connected, weighted graph
where V = {v1, . . . , vN} is the set of nodes of the graph, E =
{e1, . . . , eM} is the set of edges that connect the graph nodes,
and w : E → R is the weight function on the graph edges
[27]. A Classical Random Walk (CRW) on G is a discrete-
time Markov chain {Xt}t≥0 taking values in the vertex set V .
At each time step t, if the walker is at node vi ∈ V , it moves
to a neighboring node u ∈ N(vi) chosen uniformly at random

P (Xt+1 = u
∣∣Xt = vi) =

1
ki
,

where ki = deg(vi). Conveniently, we define an adjacency
matrix A of G so that Aij = 1 iff (vi, vj) ∈ E [28].
Consequently, ki =

∑V
j=1Aij . This simple rule generates

trajectories of any desired length without incorporating weight
information or any bias or preference among nodes [7]. To
incorporate structural or homophilic biases, we can extend the
CRW to a second-order random walk in which the transition
at time t+ 1 depends not only on the current node vi = Xt,
but also on the previously visited node r = Xt−1 [29]. If
x ∈ N(vi) and wvi,x is the weight of the edge (vi, x) ∈ E,
we define an unnormalized transition score as

πrvix = αpq(r, vi, x) · wvix,

where the bias factor αpq is a function of the hop-distance1

drx between the previous node r and the candidate x:

αpq(r, vi, x) =


1
p if drx = 0 (return to r),

1 if drx = 1 (stay local),

1
q if drx = 2 (explore outward).

Here p is the “inward” parameter controlling the likelihood
of immediately returning to the previous node, and q is the
“outward” parameter controlling the probability of exploring
other parts of the graph [30]. Finally, the normalized transition
probability for this second-order model is given by

P
(
Xt+1 = x | Xt = vi, Xt−1 = r

)
=

πrvix∑
z∈N(vi)

πrviz
.

1The hop-distance dab is defined as the minimum number of jumps needed
to go from node a to node b.

This flexible biasing scheme recovers the simple CRW when
p = q = 1, but for other values of (p, q) it can interpolate
between highly local (BFS-like) and far-reaching (DFS-like)
walks on the same graph [30].

B. Hybrid Quantum-Classical Walks

Our proposed model is based on a Hybrid Quantum-
Classical Walk. This means that the state of our system is given
by a quantum state. This corresponds to a column vector |ψ⟩
(while ⟨ψ| corresponds to a row vector) in a complex Hilbert
Space2, |ψ⟩ ∈ H. For our specific problem of a graph with N
nodes, the basis for our Hilbert space would be {|k⟩}Nk=1, with
|k⟩ being the state in which the walker is at node k. Therefore,
a general state of our HQCW can always be expressed as

|ψ⟩ =
N∑
k=1

ck |k⟩ , (1)

where ck ∈ C are the so-called amplitudes, and |ck|2 repre-
sents the probability of finding the particle at node k. From
normalization, amplitudes should fulfill

∑
k |ck|

2
= 1.

An alternative, yet equivalent, way of describing the state of
a quantum system is the density matrix formalism. Consider
such a system known to be in one of a set of m possible
quantum states {|ψk⟩}mk=1 with corresponding probabilities
{pk}mk=1. The ensemble {pk, |ψk⟩}mk=1 is described by the
density operator ρ =

∑m
k=1 pk |ψk⟩⟨ψk| 3. This kind of states,

named mixed states combine the classical uncertainty of the
imperfect determination of the state with the inherent quantum
uncertainty due to the superposition principle.

Although interesting, purely QWs are not very useful for
GRL. Due to the coherent character of the state, given by
Eq. (1), the walker is, in general, in several nodes at the same
time. This makes it difficult to define a trajectory of the walker
and to analyse its performance. To overcome this difficulty,
we use a hybrid quantum-classical model that combines both
coherent evolution with discrete jumps among nodes. This
model has already been used in Ref. [23] to analyse complex
graphs. It was first proposed in Ref. [31] to study the quantum
to classical crossover in topologically disordered networks,
and its transport properties were deeply studied in Ref. [32].
However, as far as we know, our contribution is the first
approach to describe how hybrid quantum-classical walks can
be used for GRL. This hybrid model consists of a quantum
system that evolves with both a coherent and an incoherent
term. Its evolution is given by the Lindblad Master Equation
that is the most general Markovian OQS master equation [18],
[33], [34]:

dϱ

dt
= −i(1−α)[H, ϱ]+α

∑
k,l

(
Lk,lϱL

†
kl −

1

2

{
L†
klLkl, ϱ

})
.

(2)

2A Hilbert space is a vector space that is complete with respect to the
metric induced by the inner product. For finite systems as the ones treated in
this work a Hilbert space is just a vector space with an inner product.

3The expression |a⟩⟨b| represents a matrix obtained by the external product
of the column and the row vectors |a⟩ and ⟨b|.



In this equation, i =
√
−1, [a, b] = ab − ba is the operators

conmutator and {a, b} = ab + ba the anticonmutator. H
represents the Hamiltonian matrix that can be, in general, any
Hermitian complex matrix. For our problem of QWs it is given
by H =

∑N
kl=1Akl |k⟩⟨l|, where k and l are any two nodes

in V and A is the adjacency matrix of the graph. Similarly,
the incoherent part is composed by jump operators in the
form Lkl = Akl |k⟩⟨l|. The parameter α allows a continuous
transition from a purely QW (α = 0) to a CRW (α = 1).

The Lindblad Master Equation gives the evolution of a
classical ensemble, in a way similar to Markovian classical
master equations describe the evolution of the probability
distributions. To simulate single trajectories, we use a method
called Quantum Montecarlo or Quantum-Jumps approach [35].
To simulate a walk with a depth of Lwalk jumps, we apply
the following algorithm:

Algorithm 1 Quantum-Jumps algorithm for HQCW

1: Initial settings:
t = 0 (time)
|ψ⟩ = |j⟩ (j: initial node for the walk)
count = 0 (counter of jumps)

2: Determine the probabilities of jumping from node k to
node l for a time interval ∆t as

pkl = αAlk∆t |⟨l|ψ⟩|2 (k, l) ∈ [1, ..., N ]
3: Calculate the total probability of any jump as

P =
∑
kl pkl

4: Uniformly sample r ∈ [0, 1]
5: if r < P then (there is a jump)
6: Define the index n ≡ k +N ∗ (l − 1).
7: Calculate the cumulative probabilities Pn =

∑n
k=1 pk

8: Find the value of n such that Pn ≤ r < Pn+1

(this represents the jump made)
9: The state changes to |ψ⟩ = |l⟩

10: Store the site l as visited
11: count = count+ 1
12: else (there is no jump)
13: The state evolves in a coherent (quantum) way as

|ψ⟩ → {1−(i/ℏ)H∆t−
∑

kl Alk(∆t/2)|k⟩⟨k|}|ψ⟩
P .

14: end if
15: if count < Lwalk then
16: Go to 2.
17: end if

In line 9 it is important to note that the value of n
unequivocally corresponds to a pair (k, l); therefore, when
we determine n we are determining the pair of nodes where
the jump is performed. In this model, when there is a jump
(step 5 of the algorithm), we can consider that the walker has
collapsed into this node and starts propagating again from it.
This gives a Markovian character to the evolution, in a similar
way to that for the CRWs. As the probabilities of the jumps are
proportional to the parameter α, it is clear that small values of
this parameter make the system to propagate more coherently
and with fewer jumps than higher values. At the limit α→ 0

(α → 1), the quantum (classical) limit is recovered. Finally,
the parameter ∆t is a numerical value that should be small
enough to solve the Lindblad Master Equation (2) numerically.
The dependence of the results with regard to this parameter
is not discussed in this work, and it will be subject to further
research.

C. Node embeddings

Both the HQCW and the Classical Methods (first- and
second-order CRWs) can be applied to a graph G to generate
sequences of jumps/transitions that represent a serialization
of G, ultimately yielding node embeddings. Following the
node2vec approach [29], we obtain node embeddings by
learning continuous d-dimensional representations of the graph
nodes through optimizing a skip-gram model [36] by maxi-
mizing the concurrence probability among elements over the
random-walk sequences.

III. EXPERIMENTATION

A. Dataset and experimental settings

Our studied graph is a random graph with dense subgraphs
of different sizes as displayed in Fig 1. It is composed of
four Erdös-Renyi random networks of different scales: three
of them are 15 nodes each, and one is 55 nodes. Within
each subgraph, any given pair of nodes is connected with
probability pintra = 0.25. Between subgraphs, each possible
edge is added with probability pinter = 0.0015.

We evaluated the performance of the different methods in
producing embedding representations capable of identifying
the four clusters of different sizes. For each embedding,
we applied K-means clustering with K = 4 and retained
the best solution among 50 consecutive runs, selecting the
one with the lowest within-cluster sum of squares (inertia).
For a quantitative assessment of the quality of the obtained
clusters, we computed the Adjusted Rand Index (ARI). This
is a statistical measure that quantifies the similarity between
two clusterings of a dataset, correcting for the possibility of
random agreement between partitions. The ARI is bounded
below by -0.5 for especially discordant clusterings, it is
ensured to have a value close to 0.0 for random labeling, and it
is exactly 1.0 for identical clusters [37]. For a visual inspection
of the node embeddings, we proposed the use of t-distributed
stochastic neighbor embedding (t-SNE), a statistical method
for visualizing high-dimensional data by projecting Rd vectors
into two dimensions [38]. For graphs with clear community
structure, the 2D visualization of the resulting embeddings
reveals how well nodes from the same cluster are grouped,
enabling a qualitative assessment of the performance of each
method.

The hyperparameters were set as follows. The classical
walk-length Lwalk was set to 10, and for the Hybrid method
this walk-length is equivalent to Lwalk ≃ α ttotal, where
ttotal is the total simulation time for each trajectory. The
number of walks/trajectories to be performed starting from
each node was set to 3. We tested embedding dimensions
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Fig. 1: Graph analyzed in this work. Random graph of 100
nodes with Erdös-Renyi subclusters of different sizes with high
intraconnectivity (pintra = 0.25) inside the clusters and small
interconnectivity pinter = 0.0015 between clusters.

d ∈ {16, 32, 64, 128} and a context window size of 5. Second-
order CRWs parameters were empirically set to p = 4 and
q = 0.1.

The computational framework was implemented using
Python libraries, including QuTiP for simulating quantum tra-
jectories, NetworkX for graph handling, NumPy for numerical
computations, Word2Vec for generating embeddings, Pandas
for data processing and Scikit-learn for clustering the embed-
dings with K-means and computing the evaluation metrics.
Both the datasets and the code used in this work are available
at: https://github.com/Adrianmarinb/HQCW-in-graphs.

B. Results and discussion

Figure 2 depicts the t-SNE visualizations (with d = 32) of
node embeddings for both classical random walks (CRWs) and
hybrid quantum-classical walks (HQCWs). These visualiza-
tions suggest that the first-order CRW and the highly quantum
HQCW (α = 0.3) both fail to clearly separate the clusters,
exhibiting only weak clustering with overlapping regions that
hinder classification. In contrast, the second-order CRW im-
proves classification compared to its first-order counterpart.
Notably, the near-classical HQCW (α = 0.8) achieves even
better separation, distinctly isolating clusters and enabling
reliable classification. The ARI for these results is shown
in Table I. According to these results, a value of α = 0.8
is optimal for the proposed graph4. This is consistent with
previous findings [23], [31], [32]. This value of α represents
a walker that is almost classical, but still have some coherent
transfer through the network. These results suggest a better
performance of our model to classify complex clusters by
spreading more effectively than first- and second-order CRWs.

4Note that α = 0.9 presents a higher ARI but it uncertainty is also higher,
making α = 0.8 the best choice of the parameter in a worst case scenario.
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Fig. 2: t-SNE representations of node embeddings (d = 32)
for CRWs (top): 1st order (left), 2nd order (right) and HQCWs
(bottom): α = 0.3 (left), α = 0.8 (right).

α ARI

HQCW

0.3 −0.022± 0.010
0.4 −0.002± 0.007
0.5 −0.004± 0.008
0.6 −0.025± 0.007
0.7 −0.017± 0.003
0.8 0.030± 0.002
0.9 0.031± 0.004

TABLE I: ARI values of the node embeddings for the HQCWs
for different values of the parameter α.

d ARI

2nd Order CRW

16 −0.004± 0.002
32 −0.009± 0.008
64 −0.004± 0.000
128 −0.063± 0.008

HQCW ( α = 0.8 )

16 0.038± 0.000
32 0.030± 0.002
64 0.031± 0.000
128 0.022± 0.000

TABLE II: ARI values of the node embeddings for different
dimensions of the embeddings d for the second-order CRW
and HQCW (α = 0.8).

Further improvement in classification can be achieved by
adjusting the embedding dimension d. Table II shows the ARI
values for the results obtained with the second-order CRW and
the α = 0.8 HQCW across different values of d. These results
show that the hybrid algorithm significantly outperforms the
classical version for all values of d. In parallel, Figure 3
compares the t-SNE representations of these embeddings. A
visual inspection at these plots shows that, at a low dimension
(d = 16), the hybrid algorithm is significantly better than



the classical version—a crucial result for scenarios where
dimensionality constraints are imposed. As d increases, the
t-SNE visualization for the CRW embeddings improves, but
it is always worse than the HQCW embeddings, for which
the clusters become almost linearly separable with the t-SNE
representation, enabling effective decision boundaries among
them.

This analysis shows the superiority of our model for the pro-
posed community detection problem. Although preliminary,
these results show promising potential of HQCWs for node
embedding and motivate further efforts and more extensive
experimentation to fully assess their effectiveness for different
applications.

C. Complexity

Finally, we have analised the computational complexity of
the proposed HQCW model in comparison with CRWs:

• Space Complexity
– CRWs: In its most basic form, implementing CRWs

only requires storing the neighborhood of each node,
which has a space complexity of O(|E|). For second-
order random walks, transition probabilities can be
efficiently calculated by storing the two-hop neigh-
borhood of nodes, increasing the space requirement
to O(d̄2|V |). d̄ represents the average node degree,
which is typically small in most practical applica-
tions [29].

– HQCWs: In general cases, implementing HQCWs
requires storing both the Hamiltonian and Jump oper-
ators of Eq. 2. In our implementation, both coincide
with the adjacency matrix Akl. Storing this matrix
has a complexity of O(V 2). As this matrix is usually
sparse, in the best case scenario it can be reduced to
storing a set of O(|E|) as in the classical case.

• Time Complexity
– CRWs: As a Markovian process, random walk gener-

ation allows for the reuse of samples. By generating
a walk of length L > l, it becomes possible to
derive (L− l) random walks of length l with a time
complexity of O

(
L

l(L−l)

)
per sample [29].

– HQWRs: As HQWRs follow also a Markovian dy-
namics, the same argument holds giving an efficiency
of O

(
L

l(L−l)

)
per sample.

• Optimizations: The sampling process of both CRWs and
HQWRs can be further enhanced through parallelization
and the use of succinct data structures, as proposed in
the literature for CRWs [39]. The use of these methods
for the specific case of the HQWRs will be developed in
further studies.

IV. CONCLUSIONS

In this paper, we have presented a novel model of quantum
inspired random walks. This models uses the framework of
Open Quantum System Theory in order to design a random
walk that propagates faster than its classical counterparts. To

test our model, we have analysed a graph composed of four
sparsely connected Erdös-Renyi random networks of variable
sizes. Community detection in this network is hindered by
the large disparity between intra- and inter-community con-
nectivity, which potentially limits the effectiveness of CRWs
for this task.. We have found empirical evidence showing that
the HQCWs can handle this problem in a better way than
CRWs for all tested dimensions of the feature space of the
embeddings. Consistent with prior studies, the best results
for the HQCW method were obtained for α = 0.8. This
represents a random walk that is almost classical, but with
a small quantum transport.

Some future directions of this problem that we plan to
handle in the near future are to develop a “discrete” version
of our algorithm in order to eliminate the ∆t parameter of our
simulation, as well as to extend our analysis to further network
topologies and problems, including power law networks and
node ranking problems.
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