
Meta-learning in distributed data mining systems:
Issues and approaches

Andreas L. Prodromidis∗

Computer Science Department
Columbia University
New York, NY 10027

andreas@cs.columbia.edu

Philip K. Chan
Computer Science Department
Florida Institute of Technology

Melbourne, FL 32901
pkc@cs.fit.edu

Salvatore J. Stolfo
Computer Science Department

Columbia University
New York, NY 10027
sal@cs.columbia.edu

Abstract

Data mining systems aim to discover patterns and extract useful infor-
mation from facts recorded in databases. A widely adopted approach to this
objective is to apply various machine learning algorithms to compute de-
scriptive models of the available data. Here, we explore one of the main
challenges in this research area, the development of techniques that scale up
to large and possibly physically distributed databases.

Meta-learning is a technique that seeks to compute higher-level classifiers
(or classification models), called meta-classifiers, that integrate in some prin-
cipled fashion multiple classifiers computed separately over different databases.
This study, describes meta-learning and presents the JAM system (Java Agents
for Meta-learning), an agent-based meta-learning system for large-scale data
mining applications. Specifically, it identifies and addresses several impor-
tant desiderata for distributed data mining systems that stem from their ad-
ditional complexity compared to centralized or host-based systems. Dis-
tributed systems may need to deal with heterogenous platforms, with mul-
tiple databases and (possibly) different schemas, with the design and imple-
mentation of scalable and effective protocols for communicating among the
data sites, and the selective and efficient use of the information that is gath-
ered from other peer data sites. Other important problems, intrinsic within

∗Supported in part by an IBM fellowship.

data mining systems that must not be ignored, include, first, the ability to
take advantage of newly acquired information that was not previously avail-
able when models were computed and combine it with existing models, and
second, the flexibility to incorporate new machine learning methods and data
mining technologies. We explore these issues within the context of JAM and
evaluate various proposed solutions through extensive empirical studies.

2

1 Introduction

During the last decade, our ability to collect and store data have significantly out-
paced our ability to analyze, summarize and extract “knowledge” from this con-
tinuous stream of input. A short list of examples is probably enough to place the
current situation into perspective:

• NASA’s Earth Observing System (EOS) of orbiting satellites and other space-
borne instruments send one terabyte of data to receiving stations every day [73].

• The world wide web is estimated [2] to have at least 450,000 hosts, one
million sites and as many as eighty million pages (as of March 1998).

• By the year 2000 a typical Fortune 500 company is projected to possess
more than 400 trillion characters in their electronic databases requiring 400
terabytes of mass storage.

Traditional data analysis methods that require humans to process large data sets are
completely inadequate and to quote John Naisbett, “We are drowning in informa-
tion but starving for knowledge!”

The relatively new field of Knowledge Discovery and Data Mining (KDD) has
emerged to compensate for these deficiencies. Knowledge discovery in databases
denotes the complex process of identifying valid, novel, potentially useful and ulti-
mately understandable patterns in data [23]. Data mining refers to a particular step
in the KDD process. According to the most recent and broad definition [23], “data
mining consists of particular algorithms (methods) that, under acceptable computa-
tional efficiency limitations, produce a particular enumeration of patterns (models)
over the data.”

In a relational database context, a typical data mining task is to explain and
predict the value of some attribute given a collection of tuples with known attribute
values. One means of performing such a task is to employ various machine learn-
ing algorithms. An existing relation, drawn from some domain, is thus treated as
training data for a learning algorithm that computes a logical expression, a concept
description, a descriptive model, or a classifier, that can later be used to predict (for
a variety of strategic and tactical purposes) a value of the desired or target attribute
for some record whose desired attribute value is unknown.

The field of machine learning has made substantial progress over the last few
decades and numerous algorithms, ranging from those based on stochastic mod-
els to those based on purely symbolic representations like rules and decision trees,
have already been developed and applied to many problems in diverse areas. Over
the past decade, machine learning has evolved from a field of laboratory demonstra-
tions to a field of significant commercial value [45]. Machine-learning algorithms

1

have been deployed in heart disease diagnosis [61], in predicting glucose levels
for diabetic patients [22], in detecting credit card fraud [65], in steering vehicles
driving autonomously on public highways at 70 miles an hour [50], in predicting
stock option pricing [46] and in computing customized electronic newspapers[33],
to name a few applications. Many large business institutions and market analysis
firms attempt to distinguish the low-risk (high profit) potential customers by learn-
ing simple categorical classifications of their potential customer base. Similarly,
defense and intelligence operations utilize similar methodologies on vast informa-
tion sources to predict a wide range of conditions in various contexts. Recently,
for example, data mining techniques have been successfully applied to intrusion
detection in network-based systems [72].

One of the main challenges in machine learning and data mining is the devel-
opment of inductive learning techniques that scale up to large and possibly phys-
ically distributed data sets. Many organizations seeking added value from their
data are already dealing with overwhelming amounts of information. The number
and size of their databases and data warehouses grows at phenomenal rates, faster
than the corresponding improvements in machine resources and inductive learning
techniques. Most of the current generation of learning algorithms are computation-
ally complex and require all data to be resident in main memory which is clearly
untenable for many realistic problems and databases. Notable exceptions include
IBM’s SPRINT [63] and SLIQ [39] decision tree-based algorithms and Provost’s
and Hennessy’s DRL rule-based algorithm for multi-processor learning.

Furthermore, in certain cases, data may be inherently distributed and cannot
be localized on any one machine (even by a trusted third party) for a variety of
practical reasons including security and fault tolerant distribution of data and ser-
vices, competitive (business) reasons, statutory constraints imposed by law as well
as physically dispersed databases or mobile platforms like an armada of ships. In
such situations, it may not be possible, nor feasible, to inspect all of the data at one
processing site to compute one primary “global” classifier.

Meta-learning is a technique recently developed that deals with the problem
of computing a “global” classifier from large and inherently distributed databases.
Meta-learning aims to compute a number of independent classifiers (concepts or
models) by applying learning programs to a collection of independent and inher-
ently distributed databases in parallel. The “base classifiers” computed are then
collected and combined by another learning process. Here meta-learning seeks to
compute a “meta-classifier” that integrates in some principled fashion the sepa-
rately learned classifiers to boost overall predictive accuracy.

Our main objective is to take advantage of the inherent parallelism and dis-
tributed nature of meta-learning and design and implement a powerful and prac-
tical distributed data mining system. Assuming that a system consists of several

2

databases interconnected through an intranet or internet, the goal is to provide the
means for each data site to utilize its own local data and, at the same time, benefit
from the data that is available at other data sites without transferring or directly
accessing that data. In this context, this can be materialized by learning agents that
execute at remote data sites and generate classifier agents that can subsequently be
transfered among the sites. We have achieved this goal through the implementation
and demonstration of a system we call JAM (Java Agents for Meta-Learning). To
our knowledge, JAM is the first system to date that employs meta-learning as a
means to mine distributed databases. (A commercial system based upon JAM has
recently appeared [26].)

JAM, however, is more than an implementation of a distributed meta-learning
system. It is a distributed data mining system addressing many practical problems
for which centralized or host-based systems are not appropriate. On the other hand,
distributed systems have increased complexity. Their practical value depends on
the scalability of the distributed protocols as the number of the data sites and the
size of the databases increases, and on the efficiency of their methods to use the sys-
tem resources effectively. Furthermore, distributed systems may need to run across
heterogenous platforms (portability) or operate over databases that may (possibly)
have different schemas (compatibility). There are other important problems, intrin-
sic within data mining systems that should not be ignored. Data mining systems
should be adaptive to environment changes (e.g. when data and objectives change
over time), extensible to support new and more advanced data mining technologies
and last but not least, highly effective. The intent of this study is to identify and
describe each of these issues separately and to present an overview of existing ap-
proaches — detailed discussions of techniques and findings appear in publications
cited throughout this study.

JAM has been used in several experiments dealing with real-world learning
tasks, such as solving crucial problems in fraud detection in financial information
systems. The objective is to employ pattern-directed inference systems using mod-
els of anomalous or errant transaction behaviors to forewarn of impeding threats.
This approach requires analysis of large and inherently (e.g. from distinct banks)
distributed databases of information about transaction behaviors to produce models
of “probably fraudulent” transactions.

The rest of this paper describes the JAM system, views the scalability, effi-
ciency, portability, compatibility, adaptivity, extensibility and effectiveness desider-
ata as an integral part of the design and implementation of JAM, and presents the
efficacy of our approaches in predicting fraudulent credit card transactions as a case
study. In Section 2 we introduce the meta-learning process. Section 3 presents the
distributed architecture of JAM, together with our proposed approaches to scala-
bility and efficiency. Section 4 addresses the portability issues, and Section 5 de-

3

scribes our methods for overcoming the obstacles posed by databases with schema
differences. In Sections 6 and 7, we detail our techniques for incorporating newly
computed models and for extending JAM with new machine learning technolo-
gies and in Section 8 we elaborate on the effectiveness of data mining systems.
Section 9 presents our results in the credit card fraud detection task and finally,
Section 10, concludes the paper.

2 Inductive learning and Meta Learning

Inductive learning (or learning from examples [42]) is the task of identifying reg-
ularities in some given set of training examples with little or no knowledge about
the domain from which the examples are drawn. Given a set of training examples,
i.e. {(x1, y1), ..., (xn, yn)}, for some unknown function y = f(x), with each xi

interpreted as a set of attribute (feature) vectors xi of the form {xi1, xi2, ..., xik}
and with each yi representing the class label associated with each vector (yi ∈
{y1, y2, ..., ym}), the task is to compute a classifier or model f̂ that approximates f
and correctly labels any feature vector drawn from the same source as the training
set. It is common to call the body of knowledge that classifies data with the label y
as the concept of class y.

Some of the common representations used for the generated classifiers are de-
cision trees, rules, version spaces, neural networks, distance functions, and proba-
bility distributions. In general, these representations are associated with different
types of algorithms that extract different types of information from the database
and provide alternative capabilities besides the common ability to classify unseen
exemplars drawn from some domain. For example, decision trees are declarative
and thus more comprehensible to humans than weights computed within a neural
network architecture. However, both are able to compute concept y and classify un-
seen records (examples). Decision trees are used in ID3 [58], where each concept
is represented as a conjunction of terms on a path from the root of a tree to a leaf.
Rules in CN2 [13] are if-then expressions, where the antecedent is a pattern ex-
pression and the consequent is a class label. Each version space learned in VS [44]
defines the most general and specific description boundaries of a concept using a
restricted version of first order formulae. Neural networks compute separating hy-
perplanes in n-dimensional feature space to classify data [36]. The learned distance
functions in exemplar-based learning algorithms (or nearest neighbor algorithms)
define a similarity or “closeness” measure between two instances [64]. In genetic
algorithms, hypotheses are usually represented by application-specific bit strings.
These algorithms search for the most appropriate hypotheses [29, 17] by simu-
lating evolution, i.e. they generate successor hypotheses by repeatedly mutating

4

Algorithm

System

Classifier

Final

Algorithm

Learning

Learning
Classifier

Classifier

Data

Training

Data

Training

2 2

Predictions

Predictions

Data

Validation

1

1

1
22

1

Meta-level

Training

Data

3

3

44

3

Meta-Learning Algorithm

Figure 1: Meta-learning.

and recombining (crossover) parts of the best currently known hypothesis [28, 18].
Conditional probability distributions used by Bayesian classifiers are derived from
the frequency distributions of attribute values and reflect the likelihood of a cer-
tain instance belonging to a particular classification [12]. Implicit decision rules
classify according to maximal probabilities.

Meta-learning [7] is loosely defined as learning from learned knowledge. In
this case, we concentrate on learning from the output of concept learning systems.
This is achieved by learning from the predictions of these classifiers on a common
validation data set. Thus, we are interested in the output of the classifiers, not the
internal structure and strategies of the learning algorithms themselves. Moreover,
in some of the schemes defined, the data presented to the learning algorithms may
also be available to the meta-learner.

Figure 1 depicts the different stages in a simplified meta-learning scenario:

1. The classifiers (base classifiers) are trained from the initial (base-level) train-
ing sets.

2. Predictions are generated by the learned classifiers on a separate validation
set.

3. A meta-level training set is composed from the validation set and the predic-
tions generated by the classifiers on the validation set.

4. The final classifier (meta-classifier) is trained from the meta-level training
set.

5

In meta-learning a learning algorithm is used to learn how to integrate the learned
classifiers. That is, rather than having a predetermined and fixed integration rule,
the integration rule is learned based on the behavior of the trained classifiers.

In the following sections we present some of the different strategies used in our
meta-learning study.

2.1 Voting, Arbitrating and Combining

We distinguish three distinct strategies for combining multiple predictions from
separately learned classifiers. Voting generally is understood to mean that each
classifier gets one vote, and the majority (or plurality) wins. Weighted voting pro-
vides preferential treatment to some voting classifiers, as may be predicted by ob-
serving performance on some common validation set. The outcome of voting is
simply to choose one of the predictions from one or more of the classifiers. The
second major strategy is arbitration, which entails the use of an “objective” judge
whose own prediction is selected if the participating classifiers cannot reach a con-
sensus decision. Thus, the arbiter is itself a classifier, and may choose a final
outcome based upon its own prediction but cognizant of the other classifiers’ pre-
dictions. Finally, combining refers to the use of knowledge about how classifiers
behave with respect to each other. Hence, if we learn, for example, that when two
classifiers predict the same class they are always correct (relative to some valida-
tion set), this simple fact may lead to a powerful predictive tool. Indeed, we may
wish to ignore all other classifiers when they predict a common outcome.

We distinguish between base classifiers and combiners/arbiters as follows. A
base classifier is the outcome of applying a learning algorithm directly to “raw”
training data. The base classifier is a program that given a test datum provides a
prediction of its unknown class. A combiner or arbiter, is a program generated
by a learning algorithm that is trained on the predictions produced by a set of
base classifiers on raw data. The arbiter/combiner is also a classifier, and hence
other arbiters or combiners can be computed from the set of predictions of other
combiners/arbiters in a hierarchical manner.

Briefly, an arbiter [8] is the result of a learning algorithm that learns to arbitrate
among predictions generated by different base classifiers. This arbiter, together
with an arbitration rule, decides a final classification outcome based upon the base
predictions. The left diagram of Figure 2, depicts how the final prediction is made
with input predictions from two base classifiers and a single arbiter. The rest of
this paper, concentrates on the combiner strategy.

Before we detail the combiner strategy, for concreteness, we define the fol-
lowing notation. Let x be an instance whose classification we seek, and C1(x),
C2(x),..., Ck(x) be the predicted classifications of x from the k base classifiers,

6

Classifier 1

Classifier 2

Instance

Prediction 1

Prediction 2

Final

Prediction

Arbiter

Arbitration

Rule

Arbiter’s

Prediction

Combiner

Classifier 1

Classifier 2

Instance

Prediction 1

Prediction 2

Final

Prediction

Figure 2: Left: An arbiter with two classifiers. Right: A combiner with two classi-
fiers

Ci, i = 1, 2, ..., k. class(x) and attrvec(x) denote the correct classification and
attribute vector of example x, respectively.

2.2 Combiner strategy

In the combiner strategy the predictions of the learned base classifiers on the val-
idation set form the basis of the meta-learner’s training set. A composition rule,
which varies in different schemes, determines the content of training examples
for the meta-learner. From these examples, the meta-learner generates a meta-
classifier, that we call a combiner. In classifying an instance, the base classifiers
first generate their predictions. Based on the same composition rule, a new in-
stance is generated from the predictions, which is then classified by the combiner
(see right diagram of Figure 2). The aim of this strategy is to “coalesce” the predic-
tions from the base classifiers by learning the relationship or correlation between
these predictions and the correct prediction. A combiner computes a prediction
that may be entirely different from any proposed by a base classifier, whereas an
arbiter chooses one of the predictions from the base classifiers and the arbiter itself.

We experimented with three schemes for the composition rule (more details are
in [6]. First, the predictions, C1(x), C2(x), ... Ck(x), for each example x in the
validation set of examples, E, are generated by the k base classifiers. These pre-
dicted classifications are used to form a new set of “meta-level training instances,”
T , which is used as input to a learning algorithm that computes a combiner. The
manner in which T is computed varies as defined below:

class-combiner The meta-level training instances consist of the correct classifi-
cation and the predictions; i.e., T = {(class(x), C1(x), C2(x), ...Ck(x)) | x ∈

7

Example Class Attribute vector Base classifiers’ predictions
x class(x) attrvec(x) C1(x) C2(x)

x1 table attrvec1 tablE table
x2 chair attrvec2 table chair
x3 table attrvec3 chair chair

Training set from
the class-combiner scheme

Example Class Attribute vector
1 table (table, table)
2 chair (table, chair)
3 table (chair, chair)

Training set from
the class-attribute-combiner scheme

Example Class Attribute vector
1 table (table, table, attrvec1)
2 chair (table, chair, attrvec2)
3 table (chair, chair, attrvec3)

Figure 3: Sample training sets generated by the class-combiner and class-attribute-
combiner schemes with two base classifiers.

E}. This “stacking” scheme was also proposed by Wolpert [74]. See Figure 3 for
a sample training set.

class-attribute-combiner The meta-level training instances are formed as in class-
combiner with the addition of the attribute vectors; i.e., T = {(class(x), C1(x),
C2(x),Ck(x), attrvec(x)) | x ∈ E}. See Figure 3 for a sample training set.

binary-class-combiner The meta-level training instances are composed in a man-
ner similar to that in the class-combiner scheme except that each prediction, Ci(x),
has l binary predictions, Ci1(x), . . . , Cil(x), where l is the number of classes.
Each prediction, Cij (x), is produced from a binary classifier, which is trained
on examples that are labeled with classes j and ¬j. In other words, we are us-
ing more specialized base classifiers and attempting to learn the correlation be-
tween the binary predictions and the correct prediction. For concreteness, T =
{(class(x), C11 (x), . . . , C1l(x), C21 (x), . . . , C2l(x), . . . Ck1(x), . . . , Ckl(x)) | x ∈
E}. See Figure 4 for a sample training set.

These three schemes for the composition rule are defined in the context of
forming a training set for the combiner. These composition rules are also used in
a similar manner during classification after a combiner has been computed. Given
an instance whose classification is sought, we first compute the classifications pre-
dicted by each of the base classifiers. The composition rule is then applied to
generate a single meta-level test instance, which is then classified by the combiner
to produce the final predicted class of the original test datum.

8

Example Class Attribute Base classifier1’s Base classifier2’s
vector predictions predictions

x class(x) attrvec(x) C1table (x) C1chair (x) C2table (x) C2chair (x)

x1 table attrvec1 yes no yes no
x2 chair attrvec2 yes yes no yes
x3 table attrvec3 no yes no yes

Training set from
the binary-class-combiner scheme

Instance Class Attribute vector
1 table (yes, no, yes, no)
2 chair (yes, yes, no, yes)
3 table (no, yes, no, yes)

Figure 4: Sample training set generated by the binary-class-combiner scheme with
two base classifiers.

2.3 Benefits of Meta-learning

Meta-learning improves efficiency by executing in parallel the base-learning pro-
cesses (each implemented as a distinct serial program) on (possibly disjoint) sub-
sets of the training data set (a data reduction technique). This approach has the
advantage, first, of using the same serial code without the time-consuming process
of parallelizing it, and second, of learning from small subsets of data that fit in
main memory.

Meta-learning improves predictive performance by combining different learn-
ing systems each having different inductive bias (e.g representation, search heuris-
tics, search space) [44]. By combining separately learned concepts, meta-learning
is expected to derive a higher level learned model that explains a large database
more accurately than any of the individual learners. Furthermore, meta-learning
constitutes a scalable machine learning method since it can be generalized to hier-
archical multi-level meta-learning.

Most of the methods reported in the Machine Learning and KDD literature
that compute, evaluate and combine ensembles of classifiers [19] can be consid-
ered as weighted voting among hypothesis (models). Furthermore, most of these
algorithms, generate their classifiers by applying the same learning algorithms on
variants of the same data set [3, 24, 30, 32, 34, 48, 49, 62, 68]. Breiman [4] and
LeBlanc and Tibshirani [35], for example, acknowledge the value of using multi-
ple predictive models to increase accuracy, but they rely on cross-validation data
and analytical methods, (e.g. least squares regression), to compute the best linear

9

combination of the available hypothesis. Instead, the combiner methods apply ar-
bitrary learning algorithms to discover the correlations among the available models
and compute non-linear relations among the classifiers (at the expense, perhaps, of
generating less intuitive representations).

Other methods for combining multiple models, include Merz and Pazzani’s
PCR∗ [41] and Merz’s SCANN [40] algorithms. The first integrates ensembles of
regression models for improving regression estimates while the latter for improving
classification performance. Both rely on methods similar to principal components
analysis to map the estimates of the models into a new representation space upon
which they compute a higher level model. PCR∗ and SCANN are sophisticated
and effective combining algorithms, but too computationally expensive to combine
models within domains with many models and large data sets. SCANN, in fact, is
cubic in the number of available models.

Meta-learning is particularly suitable for distributed data mining applications,
such as fraud detection in financial information systems. Financial institutions to-
day typically develop custom fraud detection systems targeted to their own asset
bases. Recently though, banks have come to search for unified and global ap-
proaches that would also involve the periodic sharing with each other of informa-
tion about attacks.

The key difficulties in this approach are: financial companies avoid sharing
their data for a number of (competitive and legal) reasons; the databases that com-
panies maintain on transaction behavior are huge and growing rapidly; real-time
analysis is highly desirable to update models when new events are detected and
easy distribution of models in a networked environment is essential to maintain up
to date detection capability. Meta-learning is a general strategy that provides the
means of learning how to combine and integrate a number of classifiers or models
learned separately at different financial institutions. JAM allows financial institu-
tions to share their models of fraudulent transactions that each computes separately,
while not disclosing their own proprietary data.

Next, we describe how meta-learning is incorporated in JAM. We detail the
fundamental issues of scalability, efficiency, portability, compatibility, adaptivity,
extensibility and effectiveness of distributed data mining systems. We overview
our solutions to these issues within the JAM framework, and provide empirical
evidence that JAM constitutes an effective system as exemplified by the credit card
fraud detection domain.

10

3 Scalability and efficiency

The scalability of a data mining system refers to the ability of the system to operate
as the number of data sites increases without a substantial or discernable reduction
in performance. Efficiency, on the other hand, refers to the effective use of the
available system resources. The former depends on the protocols that transfer and
manage the intelligent agents to support the collaboration of the data sites while the
latter depends upon the appropriate evaluation and filtering of the available agents
to minimize redundancy. Combining scalability and efficiency without sacrificing
predictive performance is, however, an intricate problem. To understand the issues
and better tackle the complexity of the problem, we examine scalability and effi-
ciency at two levels, the system architecture level and the data site (meta-learning)
level.

3.1 System architecture level

First we focus on the components of the system and the overall architecture. As-
suming that the data mining system comprises of several data sites, each with its
own resources, databases, machine learning agents and meta-learning capabilities,
we designed a protocol that allows the data sites to collaborate efficiently without
hindering their progress. JAM is architected as a distributed computing construct
that supports the launching of learning and meta-learning agents to distributed
database sites.

First, local or imported learning agents execute on the local database to com-
pute the data site’s local classifiers. Then, each data site may import (remote)
classifiers from its peer data sites and combine these with its own local classifier
using meta-learning agents. Again, the meta-learning agents can be either local
or imported from other data sites. Finally, once the base and meta-classifiers are
computed, the JAM system manages the execution of these modules to classify
data sets of interest. These actions may take place at all data sites simultaneously
and independently. The JAM system can thus be viewed as a coarse-grain parallel
application where the constituent sites function autonomously and (occasionally)
exchange classifiers with each other.

The configuration of the distributed system is maintained by the Configuration
Manager (CM), an independent server, much like a simple name server, that is
responsible for keeping the state of the system up-to-date. The logical architecture
of the JAM meta-learning system is presented in Figure 5. In this example, three
JAM sites Orange, Mango and Strawberry exchange their base classifiers to share
their local view of the learning task. The user of the data site controls the learning
task by setting the parameters of the user configuration file, e.g. the algorithms to

11

Configuration
File

Configuration
File

thyroidDATASET =

META_LEARNER = Bayes
CROSS_VALIDATION_FOLD = 2

META_LEARNING_FOLD = 2

META_LEARNING_LEVEL = 1

LEARNER = ID3

CM = Cherry.cs.columbia.edu

IMAGE_URL = http://www.mango...

Configuration
File

Control & Data

messages

Transfer of Learning

& Classifier Agents

Configuration

Database
Configuration

Data Site - 2

Mango.cs

DATA SITES:

Data Site - 1 Data Site - 3

Cherry.cs.columbia.edu

Manager

IMAGE_URL=

http://www.strawberry...
IMAGE_URL=

Strawberry.cs

Mango.cs

http://www.mango...
IMAGE_URL=

port: 45735

port: 60522

port: 45450

The JAM architecture with 3 datasites

Classifier
Repository

Datasite

Datasite

Datasite Classifier

Classifier

Database

Repository Database

Database Repository

Orange.cs

http://www.orange...

Strawberry.csOrange.cs

BASE CLASSIFIERS:

Mango.ID3

META CLASSIFIERS:
Strawberry.Bayes

Orange.CART
Orange.Ripper

Orange.Bayes

Figure 5: The architecture of the meta-learning system.

be used, the database to learn, the images to be used by the animation facility, the
folding parameters, etc. In this example, the CM runs on Cherry and the Mango
site ends up with four base classifiers (one local plus the three imported classifiers)
and a single Bayesian meta-classifier (imported from Orange).

JAM is designed with asynchronous, distributed communication protocols that
enable the participating database sites to operate independently and collaborate
with other peer sites as necessary, thus eliminating centralized control and syn-
chronization points. Each JAM site is organized as a layered collection of software
components shown in Figure 6. In general, the system can be decomposed into
four separate subsystems, the User Interface, the JAM Engine and the Client and
Server subsystems. The User Interface (upper tier) materializes the front end of
the system, through which the owner can define the data mining task and drive the
JAM Engine. The JAM Engine constitutes the heart of each JAM site by managing
and evaluating the local agents, by preparing/processing the local data sets and by
interacting with the Database Management System (DBMS), if one exists. Finally,
the Client and Server subsystems compose the network component of JAM and are
responsible for interfacing with other JAM sites to coordinate the transport of their
agents. Each site is developed on top of the JVM (Java Virtual Machine), with the
possible exception of some agents that may be used in a native form and/or de-
pend on an underlying DBMS. A Java agent, for instance, may be able to access a
DBMS though JDBC (Java Database Connectivity). The RMI registry component
displayed in Figure 6 corresponds to an independent Java process that is used indi-
rectly by the JAM server component. For the interested reader, the JAM system is

12

JAM site

Java Virtual Machine

RMI JAM Agents

Java Virtual Machine

User Interface

JAM Engine

JAM Server

JAM Client
Registry

/DBMSOperating System

Figure 6: JAM site layered model.

described in detail in [67] and [51].

3.2 Meta-learning level

Employing efficient distributed protocols, however, addresses the scalability prob-
lem only partially. The scalability of the system depends greatly on the efficiency
of its components (data sites). The analysis of the dependencies among the classi-
fiers, the management of the agents and the efficiency of the meta-classifiers within
the data sites constitutes the other half (meta-learning level) of the scalability prob-
lem.

Meta-classifiers can be defined recursively as collections of classifiers struc-
tured in multi-level trees [9]. Such structures, however, can be unnecessarily com-
plex, meaning that many classifiers may be redundant, wasting resources and re-
ducing system throughput. (Throughput here denotes the rate at which a stream
of data items can be piped through and labeled by a meta-classifier.) We study
the efficiency of meta-classifiers by investigating the effects of pruning (discard-
ing certain base classifiers) on their performance. Determining the optimal set of
classifiers for meta-learning is a combinatorial problem. Hence, the objective of
pruning is to utilize heuristic methods to search for partially grown meta-classifiers
(meta-classifiers with pruned subtrees) that are more efficient and scalable and at
the same time achieve comparable or better predictive performance results than
fully grown (unpruned) meta-classifiers. To this end, we introduced two stages
for pruning meta-classifiers, the a priori pruning or pre-training pruning and the
a posteriori pruning or post-training pruning stages. Both levels are essential and
complementary to each other with respect to the improvement of accuracy and
efficiency of the system.

13

A priori pruning or pre-training pruning refers to the filtering of the classifiers
before they are combined. Instead of combining classifiers in a brute force manner,
with pre-training pruning we introduce a preliminary stage for analyzing the avail-
able classifiers and qualifying them for inclusion in a combined meta-classifier.
Only those classifiers that appear (according to one or more pre-defined metrics)
to be most “promising” participate in the final meta-classifier. Here, we adopt a
“black-box” approach which evaluates the set of classifiers based only on their
input and output behavior, not their internal structure. Conversely, a posteriori
pruning or post-training pruning, denotes the evaluation and pruning of constituent
base classifiers after a complete meta-classifier has been constructed.

We have implemented and experimented with three pre-training pruning and
two post-training pruning algorithms each with different search heuristics. The
first pre-training pruning algorithm is a metric-based algorithm, i.e. it ranks and
selects the best k classifiers based on their individual performance on a separate
validation set or via cross-validation. The second algorithm is a diversity-based
algorithm that has preference towards classifiers with diverse predictive behavior.1

Finally, the third pre-training pruning algorithm concentrates on sets of specialized
classifiers (i.e. classifiers that are good in predicting specific classes) that achieve
high coverage. 2 The pre-training pruning algorithms are described in detail in [53].
The post-training pruning algorithms are based, the first on the mapping of the
unpruned meta-classifiers as decision trees and their subsequent pruning (the nodes
of such a decision tree represent base classifier; pruning a node corresponds to the
pruning of a base classifier), and the second on the removal of the base classifiers
that are least correlated (and hence the least trusted) to the unpruned meta-classifier.
Both post-training pruning algorithms are detailed in [54].

There are two primary objectives for the pruning techniques:

1. to acquire and combine information from multiple databases in a timely man-
ner

2. to generate effective and efficient meta-classifiers.

These pre-training pruning techniques preceed the meta-learning phase and, as
such, can be used in conjunction with most of the combining techniques examined
in Section 2 (e.g. SCANN). Other methods for evaluating and pruning ensembles
of classifiers have been studied by Provost and Fawcett and by Margineantu and
Dietterich. Provost and Fawcett [55, 56] introduced the ROC convex hull method

1In general, the more diverse a set of classifiers is, the more room for improvement the meta-
learning method has.

2Coverage denotes the fraction of instances of a validation set where at least one classifier makes
a correct prediction.

14

for its intuitiveness and flexibility. The method evaluates and selects classification
models by mapping them onto a True Positive/False Positive plane and by allow-
ing comparisons under different metrics (TP/FP rates, accuracy, cost, etc.). The
intent of these algorithms, however, is to select the best classifier (not a group of
classifiers) under a specific performance criterion (which could be adjusted in the
ROC space). In this work, the focus is on methods with the potential to form effec-
tive ensembles of classifiers [19, 27]. In fact, the performance of sub-optimal yet
diverse models can be substantially improved when combined together and even
surpass that of the best single model.

Margineantu and Dietterich [38] studied the problem of pruning the ensemble
of classifiers (i.e. the set of hypothesis (classifiers)) obtained by the boosting al-
gorithm ADABOOST [25]. According to their findings, by examining the diversity
and accuracy of the available classifiers, it is possible for a subset of classifiers to
achieve similar levels of performance as the entire set. Their research however,
was restricted to computing all classifiers by applying the same learning algorithm
on many different subsets of the same training set. In JAM we consider the more
general setting where ensembles of classifiers can be obtained by applying, possi-
bly, different learning algorithms over (possibly) distinct databases. Furthermore,
instead of voting (ADABOOST) over the predictions of classifiers for the final clas-
sification, we adopt meta-learning as a more general framework for combining
predictions of the individual classifiers.

Our pre-training and post-training pruning methods have been tested in the
credit card fraud detection domain. The results are presented in Section 9.

4 Portability

A distributed data mining system should be capable of operating across multiple
environments with different hardware and software configurations (e.g across the
internet), and be able to combine multiple models with (possibly) different repre-
sentations.

The JAM system presented in this paper, is a distributed computing construct
designed to extend the OS environments to accommodate such requirements. As
implied by its name (Java Agents for Meta-learning), portability is inherent within
JAM. The “Java” part denotes that we have used Java technology to build the com-
posing parts of the system including the underlying infrastructure, the specific op-
erators that generate and spawn agents, the graphical user interface, the animation
facilities to monitor agent exchanges and the meta-learning process and the learn-
ing and classifier agents. The “meta-learning” term refers to the system’s methods
for combining classifier agents. It constitutes a unifying machine learning approach

15

that can be applied to large amounts of data in wide area computing networks for a
range of different applications. It has the advantage of being algorithm and repre-
sentation independent, i.e. it does not examine the internal structure and strategies
of the learning algorithms themselves, but only the outputs (predictions) of the
individual classifiers.

The learning agents are the basic components for searching for patterns within
the data and the classifier agents are the units that capture the computed models
and can be shared among the data sites. The platform independence of Java makes
it easy for each JAM site to delegate its agents to any participating site. As a result,
JAM has been successfully tested on the most popular platforms including Solaris,
Windows and Linux simultaneously, i.e. JAM sites imported and utilized classifiers
that were computed over different platforms.

In cases where Java’s computational speed is of concern, JAM is designed to
also support the use of native learning algorithms to substitute slower Java imple-
mentations. Native learning programs can be embedded within appropriate Java
wrappers to interface with the JAM system and can subsequently be transfered and
executed at a different site, provided, of course, that both the receiving site and the
native program are compatible.

5 Compatibility

Combining multiple models has been receiving increased attention in the litera-
ture [19, 11]. In much of the prior work on combining multiple models, it is as-
sumed that all models originate from different subsets (not necessarily distinct)
of a single data set as a means to increase accuracy, (e.g. by imposing probabil-
ity distributions over the instances of the training set, or by stratified sampling,
sub-sampling, etc.) and not as a means to integrate distributed information. Al-
though the JAM system, as described in Section 3 addresses the later by employing
meta-learning techniques, integrating classification models derived from distinct
and distributed databases may not always be feasible.

In all cases considered so far, all classification models are assumed to originate
from databases of identical schemas. Since classifiers depend directly on the for-
mat of the underlying data, minor differences in the schemas between databases
derive incompatible classifiers, i.e. a classifier cannot be applied on data of differ-
ent formats. Yet these classifiers may target the same concept. We seek to bridge
these disparate classifiers in some principled fashion.

Assume, for instance, we acquire two data sets of credit card transactions (la-
beled fraud or legitimate) from two different financial institutions (i.e. banks). The
learning problem is to distinguish legitimate from fraudulent use of a credit card.

16

Both institutions seek to be able to exchange their classifiers and hence incorporate
in their system useful information that would otherwise be inaccessible to both.
Indeed, for each credit card transaction, both institutions record similar informa-
tion, however, they also include specific fields containing important information
that each has acquired separately and which provides predictive value in determin-
ing fraudulent transaction patterns. In a different scenario where databases and
schemas evolve over time, it may be desirable for a single institution to be able to
combine classifiers from both past accumulated data with newly acquired data. To
facilitate the exchange of knowledge and take advantage of incompatible and oth-
erwise useless classifiers, we need to devise methods that “bridge” the differences
imposed by the different schemas.

Integrating the information captured by such classifiers is a non-trivial prob-
lem that we have come to call, “the incompatible schema” problem. (The reader
is advised not to confuse this with Schema Integration over Federated/Mediated
Databases.)

5.1 Database Compatibility

The “incompatible schema” problem impedes JAM from taking advantage of all
available databases. Lets consider two data sites A and B with databases DBA
and DBB , respectively, with similar but not identical schemas. Without loss of
generality, we assume that:

Schema(DBA) = {A1, A2, ..., An, An+1, C} (1)

Schema(DBB) = {B1, B2, ..., Bn, Bn+1, C} (2)

where, Ai,Bi denote the i−th attribute ofDBA and DBB , respectively, and C the
class label (e.g. the fraud/legitimate label in the credit card fraud example) of each
instance. Without loss of generality, we further assume that Ai = Bi, 1 ≤ i ≤ n.
As for the An+1 and Bn+1 attributes, there are two possibilities:

1. An+1 6= Bn+1: The two attributes are of entirely different types drawn from
distinct domains. The problem can then be reduced to two dual problems
where one database has one more attribute than the other, i.e.:

Schema(DBA) = {A1, A2, ..., An, An+1, C} (3)

Schema(DBB) = {B1, B2, ..., Bn, C} (4)

where we assume that attribute Bn+1 is not present in DBB .3

3The dual problem has DBB composed with Bn+1 but An+1 is not available to A.

17

2. An+1 ≈ Bn+1: The two attributes are of similar type but slightly different
semantics that is, there may be a map from the domain of one type to the
domain of the other. For example, An+1 and Bn+1 are fields with time
dependent information but of different duration (i.e. An+1 may denote the
number of times an event occurred within a window of half an hour and
Bn+1 may denote the number of times the same event occurred but within
ten minutes).

In both cases (attribute An+1 is either not present in DBB or semantically
different from the corresponding Bn+1) the classifiers CAj derived from DBA are
not compatible with DBB’s data and hence cannot be directly used in DBB’s site,
and vice versa. But the purpose of using a distributed data mining system and
deploying learning agents and meta-learning their classifier agents is to be able
to combine information from different sources. In the next section we investigate
ways, called bridging methods, that overcome this incompatibility problem and
integrate classifiers originating from databases with different schemas.

5.2 Bridging methods

There are several approaches to address the problem depending upon the learning
task and the characteristics of the different or missing attribute An+1 of DBB . The
details of these approaches can be found in [52].

• An+1 is missing, but can be predicted: It may be possible to create an aux-
iliary classifier, which we call a bridging agent, from DBA that can predict
the value of the An+1 attribute. To be more specific, by deploying regression
methods (e.g. CART [5], locally weighted regression [1], linear regression
fit [47], MARS [31]) for continuous attributes and machine learning algo-
rithms for categorical attributes, data site A can compute one or more aux-
iliary classifier agents CAj ′ that predict the value of attribute An+1 based
on the common attributes A1, ..., An. Then it can send all its local (base
and bridging) classifiers to data site B. At the other side, data site B can
deploy the auxiliary classifiers CAj ′ to estimate the values of the missing
attribute An+1 and present to classifiers CAj a new database DBB ′ with
schema {A1, ..., An, Ân+1}. From this point on, meta-learning and meta-
classifying proceeds normally.

• An+1 is missing and cannot be predicted: Computing a model for a miss-
ing attribute assumes a correlation between that attribute and the rest. Nev-
ertheless, such a hypothesis may be unwarranted in which case we adopt one
of the following strategies:

18

– Classifier agent CAj supports missing values: If the classifier agent
CAj originating from DBA can handle attributes with missing values,
data site B can simply include null values in a fictitious An+1 attribute
added to DBB . The resulting DBB ′ database is a database compatible
with the CAj classifiers. Different classifier agents treat missing values
in different ways. Some machine learning algorithms, for instance,
treat them as a separate category, others replace them with the average
or most frequent value, while more sophisticated algorithms treat them
as “wild cards” and predict the most likely class of all possible, based
on the other attribute-value pairs that are known.

– Learning agents at data site B can not handle missing values: If, on
the other hand, the classifier agent CAj cannot deal with missing val-
ues, data site A can learn two separate classifiers, one over the original
database DBA and one over DBA′, where DBA′ is the DBA database
but without the An+1 attribute:

DBA
′ = PROJECT (A1, ..., An) FROM DBA (5)

The first classifier can be stored locally for later use by the local meta-
learning agents, while the later can be sent to data site B. Learning
a second classifier without the An+1 attribute, or in general with at-
tributes that belong to the intersection of the attributes of the databases
of the two data sites, implies that the second classifier makes use of
only the attributes that are common among the participating data sites.
Even though the rest of the attributes may have high predictive value
for the data site that uses them, they are of no value for the other data
site. After all, the other data site (data site B) since they were not
included anyway.

• An+1 is present, but semantically different: It may be possible to integrate
human expert knowledge and introduce bridging agents either from data site
A, or data site B that can preprocess the An+1 values and translate them
according to the An+1 semantics. In the context of the example described
earlier where the An+1 and Bn+1 fields capture time dependent information,
the bridging agent may be able to map the Bn+1 values into An+1 semantics
and present these new values to the CAj classifier. For example, the agent
may estimate the number of times the event would occur in thirty minutes by
tripling the Bn+1 values or by employing more sophisticated approximation
formulas using non uniformly distributed probabilities (e.g. Poisson).

These approaches address the “incompatible schema” problem and meta-learning
over these models should proceed in a straightforward manner. The idea of request-

19

ing missing definitions from remote sites (i.e. missing attributes) first appeared
in [37]. In that paper, Maitan, Raś and Zemankova define a query language and
describe a scheme for handling and processing global queries (queries that need
to access multiple databases at more than one site) within distributed information
systems. According to this scheme, each site compiles into rules some facts de-
scribing the data that belong to other neighboring sites which can subsequently by
used to interpret and correctly resolve any non-standard queries posed (i.e. queries
with unknown attributes).

More recently Zbigniew Raś in [60] further elaborated this scheme and devel-
oped an algebraic theory to formally describe a query answering system for solv-
ing non-standard DNF queries in a distributed knowledge based system (DKBS).
Given a non-standard query on a relational database with categorical or partially
ordered set of attributes, his aim is to compute rules consistent with the distributed
data to resolve unknown attributes and retrieve all the records of the database that
satisfy it. Our approach, however, is more general, in that, it supports both cate-
gorical and continuous attributes, and it is not limited to a specific syntactic case
or the consistency of the generated rules. Instead, it employs machine learning
techniques to compute models for the missing values.

6 Adaptivity

Most data mining systems operate in environments that are almost certainly bound
to change, a phenomenon known as concept drift. For example, medical science
evolves, and with it the types of medication, the dosages and treatments, and of
course the data included in the various medical database; lifestyles change over
time and so do the profiles of customers included in credit card data; new security
systems are introduced and new ways to commit fraud or to break into systems are
devised. Most traditional data mining systems are static.

The classifiers deployed in the traditional classification systems are obtained by
applying machine learning programs over historical databases DBi. The problem
is to design a classification system that can evolve in case a new database DBj
becomes available.

One way to address this problem is to merge the old and new databases into a
larger database DB and re-apply the machine learning programs to generate new
classifiers. This, however, cannot constitute a viable solution. First, learning pro-
grams do not scale very well with large databases and second, the main memory
requirement by the majority of learning programs poses a physical limitation to the
size of the training databases.

A second alternative would be to employ incremental machine learning pro-

20

grams, (e.g. ID5 [69, 70, 71], an incremental version of ID3) or nearest neigh-
bor algorithms. Incremental machine learning programs denote machine learning
programs that are not constrained to retain all training examples in main mem-
ory; instead they examine one instance at a time and tune the model accordingly.
Hence, the classifiers initially trained over DBi can be updated later by resuming
their training on the new database DBj once it becomes available. On the other
hand, these algorithms do not provide a means for removing irrelevant knowledge
gathered in the past. Furthermore, updating a model on every instance may not
be accurate in a noisy domain. This shortcoming can be avoided by employing
incremental batch learning methods [14, 20, 75], i.e. methods that update mod-
els using subsets of data. The problem with these approaches is that they are not
general enough; instead they rely on specific algorithms, model representation and
implementations.

We describe a new possibility, a mechanism that takes advantage of the ca-
pabilities and architecture of the JAM system to integrate new information. New
information is treated in a fashion similar to the information imported from re-
mote data sites in JAM. Instead of combining classifiers from remote data sites
(integration over space), adaptive learning systems combine classifiers acquired
over different time periods (integration over time). We employ meta-learning tech-
niques to design learning systems capable of incorporating into their accumulated
knowledge (existing classifiers) the new classifiers that capture emerging patterns
learned over new data sources.

Let Cnew be the set of classifiers generated from the latest batch of data and
Ccurrent be the set of classifiers currently in use. The union of the Ccurrent and
the Cnew classifiers constitutes the new set of candidate classifiers. After the prun-
ing process over the validation set, a new meta-classifier is computed via meta-
learning. The classifiers fromCcurrent that survived the pruning stage represent the
existing knowledge, while the remaining classifiers from Cnew denote the newly
acquired information. A key point in this process is the selection of the validation
set that is used during the pruning and meta-learning stages. A straight-forward ap-
proach is to include in the validation set both old and new data and in proportions
that reflect the speed of pattern changes (which can be approximated by monitoring
the performance of Ccurrent over time). A more sophisticated approach would also
weight data according to recency — weights decay over time.

In addition to solving the problem of how to make a learning system evolve and
adjust according to its changing environment, this meta-learning-based solution has
other advantages that make it even more desirable:

1. It is simple. Different classifiers capture the characteristics and patterns that
surfaced over different period of times and meta-learning combines them in

21

a straight-forward manner.

2. It integrates uniformly with the existing approaches of combining classifiers
and information acquired over remote sources.

3. It is easy to implement and test. In fact, all the necessary components for
building classifiers and combining them with older classifiers are similar or
identical to the components used in standard meta-learning and can be re-
used without modification.

4. It is module-oriented and efficient. The meta-learning based system need
not repeat the entire training process in order to create models that integrate
new information. Instead it can build independent models that can plug-
in to the meta-learning hierarchy. In other words, we only need to train
base classifiers from the new data and employ meta-learning techniques to
combine them with other existing classifiers. In this way, the overhead for
incremental learning is limited to the meta-learning phase.

5. It can be used in conjunction with existing pruning techniques. Normally, in-
corporating new classifiers in a meta-classifier hierarchy continuously would
eventually result in large and inefficient tree-based hierarchies. But since the
new classifiers are not different in nature from the “traditional” classifiers,
it is possible that the meta-learning based system can analyze and compare
them (pre- and post-training pruning) and keep only those that contribute
to the overall accuracy and not over-burden the meta-classification process.
For example, it can decide to collapse or substitute a sub-tree of the meta-
classifier hierarchy with newly obtained classifier(s) that capture the same or
new patterns.

This strategy opens a new research direction that is compatible with the JAM
system and at the same time is scalable and generic, meaning that it can deal with
many large databases that become available over time, and can support different
machine learning algorithms respectively. The strategy allows JAM to extend and
incorporate new information without discarding or depreciating the knowledge it
has accumulated over time from previous data mining.

We have not treated the issue of what to do about previously computed and
unused (pruned) classifiers or models. Retaining and managing older unused clas-
sifiers or models is an interesting open question that has not been adequately ad-
dressed in our work.

22

7 Extensibility

It is not only data and patterns that change over time. Advances in machine learn-
ing and data mining are bound to give rise to algorithms and tools that are not
available at the present time as well. Unless the data mining system is flexible to
accommodate existing as well as future data mining technology it will rapidly be
rendered inadequate and obsolete. To ensure extensibility, JAM is designed us-
ing object-oriented methods and is implemented independently of any particular
machine learning program or any meta-learning or classifier combining technique.

The learning and meta-learning agents are designed as objects. JAM provides
the definition of the parent agent class and every instance agent (i.e. a program
that implements any of your favorite learning algorithms ID3 [58], Ripper [15],
CART [5], Bayes [21], WPEBLS [16], CN2 [13], etc.) are then defined as a sub-
class of this parent class. Among other definitions which are inherited by all agent
subclasses, the parent agent class provides a very simple and minimal interface that
all subclasses have to comply with. As long as a learning or meta-learning agent
conforms to this interface, it can be introduced and used immediately in the JAM
system.

To be more specific, a JAM agent needs to have the following methods imple-
mented:

1. A constructor with no arguments. JAM can then instantiate the agent,
provided it knows its name (which can be supplied by the owner of the data
site through either the local user configuration file or the GUI).

2. An initialize() method. In most of the cases, if not all, the agent
subclasses inherit this method from the parent agent class. Through this
method, JAM can supply the necessary arguments to the agent. Arguments
include the names of the training and test datasets, the name of the dictionary
file, and the filename of the output classifier.

3. A buildClassifier() method. JAM calls this method to trigger the
agent to learn (or meta-learn) from the training dataset.

4. AgetClassifier()and getCopyOfClassifier()methods. These
methods are used by JAM to obtain the newly built classifiers which are then
encapsulated and can be “snapped-in” at any participating data site! Hence,
remote agent dispatch is easily accomplished.

The class hierarchy (only methods are shown) for five different learning agents
is presented in Figure 7. ID3, Bayes, WPEBLS, CART and Ripper inherit the
methods initialize() and getClassifier() from their parent learning

23

WpeblsLearner

Classifier getCopyOfClassifier()

boolean BuildClassifier()

WpeblsLearner()

Nearest Neighbor

BayesLearner

Classifier getCopyOfClassifier()

boolean BuildClassifier()

BayesLearner()

Probabilistic

RipperLearner

Classifier getCopyOfClassifier()

boolean BuildClassifier()

RipperLearner()

Rule-Based

Classifier getCopyOfClassifier()

boolean BuildClassifier()

CartLearner
CartLearner()

Decision Tree

Classifier getClassifier() {

Learner

boolean BuildClassifier()
Classifier getCopyOfClassifier()

return classifier;
}

boolean initialize(String dbName, ...)
Learner(),

ID3Learner

Classifier getCopyOfClassifier()

boolean BuildClassifier()

ID3Learner()

Decision Tree

Figure 7: The class hierarchy of learning agents.

agent class. The MetaLearning, Classifier and MetaClassifier classes are defined
in similar class hierarchies.

JAM’s infrastructure is independent of the machine learning programs of inter-
est. As long as a machine learning program is defined and encapsulated as an object
conforming to the minimal interface requirements (most existing algorithms have
similar interfaces already) it can be imported and used directly. This plug-and-play
characteristic makes JAM a powerful and extensible data mining facility. In the
latest version of JAM, for example, ID3 and CART are full Java agents, whereas
Bayes, WPEBLS and Ripper are stored locally as native applications. It is exactly
this feature that allows users to employ native programs within the Java agents if
computational speed is crucial (see also Section 4).

8 Effectiveness

We seek effective measures to evaluate the predictive accuracy of classification
systems. Contrary to most studies on comparing different learning algorithms and
classification models, predictive accuracy does not mean only overall accuracy (or
minimal error rate). Instead, we must consider alternative and more realistic “op-
timality criteria”. Other measures of interest include True Positive (TP) and False
Positive (FP) rates for (binary) classification problems, ROC analysis and prob-
lem specific cost models are all different criteria relevant to different problems and
learning tasks. A detailed study against the use of accuracy estimation for com-
paring induction algorithms can be found in [57]. In the credit card fraud domain,
for example, overall predictive accuracy is inappropriate as the single measure of
predictive performance. If 1% of the transactions are fraudulent, then a model that

24

Four 50:50 subsets

A 20:80 set

Figure 8: Generating four 50:50 data subsets from a 20:80 data set

always predicts “non-fraud” will be 99% accurate. Hence, TP rate is more impor-
tant. Of the 1% fraudulent transactions, we wish to compute models that predict
100% of these, yet produce no false alarms (i.e. predict no legitimate transactions
to be fraudulent). Hence, maximizing the TP-FP spread may be the right measure
of a successful model. Yet, one may find a model with TP rate of 90%, i.e. it cor-
rectly predicts 90% of the fraudulent transactions, but here it may correctly predict
the lowest cost transactions, being entirely wrong about the top 10% most expen-
sive frauds. Therefore, a cost model criterion may be the best judge of success, i.e
a classifier whose TP rate is 10% may be the best cost performer.

Furthermore, using the natural class distribution of a data set might not yield
the most effective classifiers (particularly when the distribution is highly skewed).
Given a skewed distribution, we would like to generate the desired distribution
without removing any data. Our approach is to create data subsets with the de-
sired distribution, generate classifiers from these subsets, and integrate them by
meta-learning their classification behavior. If, for example, we aim to change a
naturally skewed 20:80 distribution of a binary classification problem into a 50:50
distribution, we can randomly divide the majority instances into four partitions
and form four data subsets by by merging the minority instances with each of the
four partitions containing majority instances. That is, the minority instances are
replicated across four data subsets to generate the desired 50:50 distribution. Fig-
ure 8 depicts this process. Our empirical results indicate that our multi-classifier
meta-learning approach using a 50:50 distribution in the data subsets for training
can significantly reduce the amount of dollar loss due to illegitimate transactions.
Details of our techniques and results are in [10].

Formally, let n be the size of the data set with a distribution of x : y (x is the
percentage of the minority class) and u : v be the desired distribution. The number
of minority instances is n × x and the desired number of majority instances in a
subset is nx× v

u . The number of subsets is the number of majority instances (n×y)
divided by the number of desired majority instances in each subset, which is ny

nxv
u

or
y
x × u

v . (When it is not a whole number, we take the ceiling (d yx × u
v e) and replicate

some majority instances to ensure all of the majority instances are in the subsets.)
That is, we have y

x × u
v subsets, each of which has nx minority instances and nxv

u

25

majority instances.
The next step is to apply a learning algorithm(s) to each of the subsets. Since

the subsets are independent, the learning process for each subset can be run in
parallel on different processors. For massive amounts of data, substantial improve-
ment in speed can be achieved for super-linear-time learning algorithms. The gen-
erated classifiers are combined by learning (meta-learning) from their classification
behavior.

At this stage, pruning can be used as additional means to improve the predictive
performance of the final classification model (meta-classifier). In general, learning
algorithms are designed to compute classification models with as small error rate
as possible. However, when the models are evaluated with respect to different
metrics (e.g. TP, cost model), their results are bound to be sub-optimal, except
perhaps by chance. In such cases, pruning can help discard from the ensemble the
base classifiers that do not exhibit the desired property with positive impact on the
predictive performance of the final meta-classifier.

9 Empirical Evaluation

JAM has been used to compute classifier and meta-classifier agents to forewarn
of possibly fraudulent credit card transactions. This section describes our exper-
imental setting, reports the results and compares the performance of the different
approaches.

9.1 Experimental setting

Learning algorithms Five inductive learning algorithms are used in our exper-
iments, Bayes, C4.5, ID3, CART and Ripper. ID3, its successor C4.5 [59], and
CART are decision tree based algorithms, Bayes, described in [43], is a naive
Bayesian classifier, and Ripper [15] is a rule induction algorithm.

Learning tasks Two data sets of real credit card transactions were used in our
experiments. The credit card data sets were provided by the Chase and First Union
Banks, members of FSTC (Financial Services Technology Consortium).

The two data sets contained credit card transactions labeled as fraudulent or
legitimate. Each bank supplied half a million records spanning one year with 20%
fraud and 80% non-fraud distribution for Chase bank and 15% versus 85% for First
Union bank. The schemas of the databases were developed over years of experi-
ence and continuous analysis by bank personnel to capture important information

26

for fraud detection. We cannot reveal the details of the schema beyond what is de-
scribed in [66]. The records have a fixed length of 137 bytes each and about thirty
numeric attributes including the binary class label (fraudulent/legitimate transac-
tion). Some of the fields are numeric and the rest categorical, i.e. numbers were
used to represent a few discrete categories.

To evaluate and compare the meta-classifiers constructed, we adopted three
metrics: the overall accuracy, the TP-FP spread and a cost model fit to the credit
card fraud detection problem. Overall accuracy expresses the ability of a classifier
to provide correct predictions, TP-FP4 denotes the ability of a classifier to catch
fraudulent transactions while minimizing false alarms, and finally, the cost model
captures the performance of a classifier with respect to the goal of the target appli-
cation (stop dollar loss due to fraud).

Credit card companies have a fixed overhead that serves as a threshold value for
challenging the legitimacy of a credit card transaction. If the transaction amount
amt, is below this threshold, they choose to authorize the transaction automatically.
Each transaction predicted as fraudulent requires an “overhead” referral fee for au-
thorization personnel to decide the final disposition. This overhead cost is typically
a “fixed fee” that we call $Y . Therefore, even if we could accurately predict and
identify all fraudulent transactions, those whose amt is less than $Y would produce
$(Y − amt) in losses anyway. To calculate the savings each fraud detector con-
tributes due to stopping fraudulent transactions, we use the following cost model
for each transaction:

• If prediction is “legitimate” or (amt≤ Y), authorize the transaction (savings =
0);

• Otherwise investigate the transaction:

– If transaction is “fraudulent”, savings = amt− Y ;

– otherwise savings = −Y ;

First we distribute the data sets across six different data sites (each site stor-
ing two months of data) and we prepared the set of candidate base classifiers, i.e.
the original set of base classifiers the pruning algorithm is called to evaluate. We
computed these classifiers by applying the five learning algorithms to each month
of data, therefore creating sixty base classifiers (ten classifiers per data site). Next,
we had each data site import the “remote” base classifiers (fifty in total) that were

4The TP-FP spread is an ad-hoc, yet informative and simple metric characterizing the perfor-
mance of the classifiers. In comparing the classifiers, one can replace the TP-FP spread, which
defines a certain family of curves in the ROC plot, with a different metric or even with a complete
analysis [55] in the ROC space.

27

subsequently used in the pruning and meta-learning phases, thus ensuring that each
classifier would not be tested unfairly on known data. Specifically, we had each
site use half of its local data (one month) to test, prune and meta-learn the base-
classifiers and the other half to evaluate the overall performance of the pruned or
unpruned meta-classifier (more details can be found in [53, 54]). In essence, the
setting of this experiment corresponds to a parallel six-fold cross validation.

Finally, we had the two banks exchange their classifier agents as well. In addi-
tion to its ten local and fifty “internal” classifiers (those imported from their peer
data sites), each site also imported sixty external classifiers (from the other bank).
Thus, each Chase data site was populated with sixty (ten local and fifty remote)
Chase classifiers and sixty First Union classifiers and each First Union site was
populated with sixty (ten local and fifty remote) First Union classifiers and sixty
Chase classifiers. Again, the sites used half of their local data (one month) to test,
prune and meta-learn the base-classifiers and the other half to evaluate the overall
performance of the pruned or unpruned meta-classifier. To ensure fairness, the ten
local classifiers were not used in meta-learning.

The two databases, however, had the following schema differences:

1. Chase and First Union defined a (nearly identical) feature with different se-
mantics

2. Chase includes two (continuous) features not present in the First Union data

For the first incompatibility, we had the values of the First Union data mapped
to the semantics of the Chase data. For the second incompatibility, we deployed
bridging agents to compute the missing values (for a detailed discussion, see [52]).
When predicting, the First Union classifiers simply disregarded the real values pro-
vided at the Chase data sites, while the Chase classifiers relied on both the common
attributes and the predictions of the bridging agents to deliver a prediction at the
First Union data sites.

Tables 1 and 2 summarize our results for the Chase and First Union banks re-
spectively. Table 1 reports the performance results of the best classification models
on Chase data, while Table 2 presents the performance results of the best perform-
ers on the First Union data. Both tables display the accuracy, the TP-FP spread
and savings for each of the fraud predictors examined and the best result in ev-
ery category is depicted in bold. The maximum achievable savings for the “ideal”
classifier, with respect to our cost model, is $1470K for the Chase and $1085K for
the First Union data sets. The column denoted as “size” indicates the number of
base-classifiers used in the classification system.

The first row of Table 1 shows the best possible performance of Chase’s own
COTS authorization/detection system on this data set. The next two rows present

28

Table 1: Performance results for the Chase credit card data set.
Type of Classification Model Size Accuracy TP - FP Savings

COTS scoring system from Chase - 85.7% 0.523 $ 682K
Best base classifier over single subset 1 88.7% 0.557 $ 843K
Best base classifier over largest subset 1 88.5% 0.553 $ 812K
Meta-classifier over Chase base classifiers 50 89.74% 0.621 $ 818K
Meta-classifier over Chase base classifiers 46 89.76% 0.574 $ 604K
Meta-classifier over Chase base classifiers 27 88.93% 0.632 $ 832K
Meta-classifier over Chase base classifiers 4 88.89% 0.551 $ 905K
Meta-classifier over Chase and First Union
base classifiers (without bridging) 110 89.7% 0.621 $ 797K
Meta-classifier over Chase and First Union
base classifiers (without bridging) 65 89.75% 0.571 $ 621K
Meta-classifier over Chase and First Union
base classifiers (without bridging) 43 88.34% 0.633 $ 810K
Meta-classifier over Chase and First Union
base classifiers (without bridging) 52 87.71% 0.625 $ 877K

the performance of the best base classifiers over a single subset and over the largest
possible 5 data subset, while the next four rows detail the performance of the un-
pruned (size of 50) and best pruned meta-classifiers for each of the evaluation met-
rics (size of 46 for accuracy, 27 for the TP-FP spread, and 4 for the cost model). Fi-
nally, the last four rows report on the performance of the unpruned (size of 110) and
best pruned meta-classifiers (sizes of 65, 43, 52) according to accuracy, the TP-FP
spread and the cost model respectively. The first four meta-classifiers combine only
“internal” (from Chase) base classifiers, while the last four combine both internal
and external (from Chase and First Union) base classifiers. Bridging agents were
not used in these experiments, since all attributes needed by First Union agents,
were already defined in the Chase data.

Similar data is recorded in Table 2 for the First Union set, with the excep-
tion of First Union’s COTS authorization/detection performance (it was not made
available to us), and the additional results obtained when employing special bridg-
ing agents from Chase to compute the values of First Union’s missing attributes.
(In Table 1 we do not report results using bridging agents. First Union classifiers
do not require predictive bridging agents to estimate any additional values; instead
they ignore the two extra attributes of the Chase data.)

The most apparent outcome of these experiments is the superior performance
of meta-learning over the single model approaches and over the traditional autho-
rization/detection systems (at least for the given data sets). The meta-classifiers
outperformed the single base classifiers (local or global) in every category. More-

5Determined by the available system resources.

29

Table 2: Performance results for the First Union credit card data set.
Type of Classification Model Size Accuracy TP - FP Savings

Best base classifier over single subset 1 95.2% 0.749 $ 800K
Best base classifier over largest subset 1 95.5% 0.790 $ 803K
Meta-classifier over First Union base classifiers 50 96.53% 0.831 $ 935K
Meta-classifier over First Union base classifiers 14 96.59% 0.797 $ 891K
Meta-classifier over First Union base classifiers 12 96.53% 0.848 $ 944K
Meta-classifier over First Union base classifiers 26 96.50% 0.838 $ 945K
Meta-classifier over Chase and First Union
base classifiers (without bridging) 110 96.6% 0.843 $ 942K
Meta-classifier over Chase and First Union
base classifiers (with bridging) 110 98.05% 0.897 $ 963K
Meta-classifier over Chase and First Union
base classifiers (with bridging) 56 98.02% 0.890 $ 953K
Meta-classifier over Chase and First Union
base classifiers (with bridging) 61 98.01% 0.899 $ 950K
Meta-classifier over Chase and First Union
base classifiers (with bridging) 53 98.00% 0.894 $ 962K

over, by bridging the two databases, we managed to further improve the perfor-
mance of the meta-learning system. Notice, however, that combining classifiers
agents from the two banks directly (without bridging) is not very effective. This
phenomenon can be easily explained from the fact that the attribute missing from
the First Union data set is significant in modeling the Chase data set. Hence, the
First Union classifiers are not as effective as the Chase classifiers on the Chase
data, and the Chase classifiers cannot perform at full strength at the First Union
sites without the bridging agents.

An additional result, evident from these tables, is the invaluable contribution of
pruning. In all cases, pruning succeeded in computing meta-classifiers with similar
or better fraud detection capabilities, while reducing their size and thus improving
their efficiency. A comparative study between predictive performance and meta-
classifier throughput can be found in [54].

10 Conclusions

Distributed data mining systems aim to discover and combine useful information
that is distributed across multiple databases. A widely accepted approach to this
objective is to apply to these databases various machine learning programs that
discover patterns that may be exhibited in the data and compute descriptive rep-
resentations of the data, called classification models or classifiers. In this study,
we concentrated on the problem of acquiring useful information, efficiently and

30

accurately, from large and distributed databases. In this respect, we described the
JAM system, a powerful, distributed agent-based meta-learning system for large
scale data mining applications. Meta-learning is a general method that facilitates
the combining of models computed independently by the various machine learning
programs and supports the scaling of large data mining applications.

In the course of the design and implementation of JAM we identified several
issues related to the scalability, efficiency, portability, compatibility, adaptivity, ex-
tensibility and effectiveness of distributed data mining systems. We addressed
the efficiency and scalability problems first by employing distributed and asyn-
chronous protocols at the architectural level of JAM for managing the learning
agents across the data sites of the system, and second by introducing special prun-
ing algorithms at the data site level (meta-learning level) to evaluate and combine
only the most essential classifiers. To preserve portability across heterogenous plat-
forms we built JAM upon existing agent infrastructure available over the internet
and to achieve compatibility we employed special bridging agents to resolve any
differences in the schemata among the distributed databases. Adaptivity is attained
by extending the meta-learning techniques to combine both existing and new classi-
fiers while extensibility is ensured by decoupling JAM from the learning algorithms
and by introducing plug-and-play capabilities through objects. Finally, to evaluate
and improve the effectiveness of our data mining system, we investigated more ap-
propriate metrics (some of which are task specific) and applied meta-learning and
distribution manipulation techniques to tasks with skewed distributions.

The design and implementation of useful and practical distributed data mining
systems requires extensive research on all these issues. The intent of this paper is
not to provide a detailed exposition of techniques but to overview the important
issues and our proposed approaches (detailed discussions of our techniques and
findings appear in publications cited throughout this study). This area is open and
active and these problems have not been fully explored. The proposed methods
were empirically evaluated against real credit card transaction data provided by
two separate financial institutions where the target data mining application was to
compute predictive models that detect fraudulent transactions. Our experiments
suggest that meta-learning, together with distributed protocols, the pruning meth-
ods and bridging techniques constitute a highly effective and scalable approach for
mining distributed data sets with the potential to contribute useful systems with
broad applicability.

31

11 Acknowledgments

This research is supported by the Intrusion Detection Program (BAA9603) from
DARPA (F30602-96-1-0311), NSF (IRI-96-32225 and CDA-96-25374) and NYSSTF
(423115-445). We wish to thank Adam Banckenroth of Chase Bank and Tom
French of First Union Bank for their support of this work.

References
[1] C. G. Atkeson, S. A. Schaal, and A. W. Moore. Locally weighted learning. AI Review, In

press.

[2] Michael Belford. Information overload. In Computer Shopper, July 1998.

[3] L. Breiman. Heuristics of instability in model selection. Technical report, Department of
Statistics, University of California at Berkeley, 1994.

[4] L. Breiman. Stacked regressions. Machine Learning, 24:41–48, 1996.

[5] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Wadsworth, Belmont, CA, 1984.

[6] P. Chan and S. Stolfo. Experiments on multistrategy learning by meta-learning. In Proc. Second
Intl. Conf. Information and Knowledge Management, pages 314–323, 1993.

[7] P. Chan and S. Stolfo. Meta-learning for multistrategy and parallel learning. In Proc. Second
Intl. Work. Multistrategy Learning, pages 150–165, 1993.

[8] P. Chan and S. Stolfo. Toward parallel and distributed learning by meta-learning. In Working
Notes AAAI Work. Knowledge Discovery in Databases, pages 227–240, 1993.

[9] P. Chan and S. Stolfo. Sharing learned models among remote database partitions by local
meta-learning. In Proc. Second Intl. Conf. Knowledge Discovery and Data Mining, pages 2–7,
1996.

[10] P. Chan and S. Stolfo. Toward scalable learning with non-uniform class and cost distributions:
A case study in credit card fraud detection. In Proc. Fourth Intl. Conf. Knowledge Discovery
and Data Mining, pages 164–168, 1998.

[11] P. Chan, S. Stolfo, and D. Wolpert, editors. Working Notes for the AAAI-96 Workshop on
Integrating Multiple Learned Models for Improving and Scaling Machine Learning Algorithms,
Portland, OR, 1996.

[12] P. Chesseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. Autoclass: A bayesian
classification system. In Proc. Fifth Intl. Conf. Machine Learning, pages 54–64, 1988.

[13] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261–285, 1989.

[14] S. H. Clearwater, T. P. Cheng, H Hirsh, and B. G. Buchanan. Incremental batch learning. In
Proceedings of the Sixth International Workshop on Machine Learning, pages 366–370, San
Mateo, CA, 1989. Morgan Kaufmann.

[15] W. Cohen. Fast effective rule induction. In Proc. 12th Intl. Conf. Machine Learning, pages
115–123. Morgan Kaufmann, 1995.

[16] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with symbolic
features. Machine Learning, 10:57–78, 1993.

32

[17] K. DeJong. Learning with genetic algorithms: An overview. Machine Learning, 3:121–138,
1988.

[18] K. A. DeJong, W. M. Spears, and D. F. Gordon. Using genetic algorithms for concept learning.
Machine Learning, 13:161–188, 1993.

[19] T.G. Dietterich. Machine learning research: Four current directions. AI Magazine, 18(4):97–
136, 1997.

[20] P. Domingos. Efficient specific-to-general rule induction. In Proceedings Second International
Conference on Knowledge Discovery & Data Mining, pages 319–322, Portland, OR, August
1996. AAAI Press.

[21] R. Duda and P. Hart. Pattern classification and scene analysis. Wiley, New York, NY, 1973.

[22] E.R.Carson and U.Fischer. Models and computers in diabetes research and diabetes care. Com-
puter methods and programs in biomedicine, special issue, 32, 1990.

[23] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Dis-
covery and Data Mining. AAAI Press/MIT Press, Menlo Park, California/Cambridge, Mas-
sachusetts/London, England, 1996.

[24] Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. In Proceedings of the Second European Conference on Computational
Learning Theory, pages 23–37. Springer-Verlag, 1995.

[25] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Proc. Thirteenth
Conf. Machine Learning, pages 148–156, 1996.

[26] R. Grossman, S. Baily, S. Kasif, D. Mon, and A. Ramu. The preliminary design of papyrus: A
system for high performance. In P. Chan H. Kargupta, editor, Work. Notes KDD-98 Workshop
on Distributed Data Mining, pages 37–43. AAAI Press, 1998.

[27] L. Hansen and P. Salamon. Neural network ensembles. IEEE Trans. Pattern Analysis and
Mach. Itell., 12:993–1001, 1990.

[28] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, MI, 1975.

[29] J. Holland. Escaping brittleness: The possiblilities of general-purpose learning algorithms ap-
plied to parallel rule-based systems. In R. Michalski, J. Carbonell, and T. Mitchell, editors,
Machine Learning: An Artificial Intelligence Approach (Vol. 2), pages 593–623. Morgan Kauf-
mann, Los Altos, CA, 1986.

[30] R.A. Jacobs, M.I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixture of local experts.
Neural Computation, 3(1):79–87, 1991.

[31] J.H.Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1–141,
1991.

[32] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural
Computation, 6:181–214, 1994.

[33] K.Lang. News weeder: Learning to filter net news. In A.Prieditis and S.Russel, editors, Proc.
12th Intl. Conf. Machine Learning, pages 331–339. Morgan Kaufmann, 1995.

[34] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In
G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Info. Proc. Sys. 7, pages
231–238. MIT Press, 1995.

33

[35] M. LeBlanc and R. Tibshirani. Combining estimates in regression and classification. Technical
Report 9318, Department of Statistics, University of Toronto, Toronto, ON, 1993.

[36] R. Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazine, 5(2):4–
22, April 1987.

[37] Jacek Maitan, Zbigniew W. Ras, and Maria Zemankova. Query handling and learning in a dis-
tributed intelligent system. In Zbigniew W. Ras, editor, Methodologies for Intelligent Systems,
4, pages 118–127, Charlotte, North Carolina, October 1989. North Holland.

[38] D. Margineantu and T. Dietterich. Pruning adaptive boosting. In Proc. Fourteenth Intl. Conf.
Machine Learning, pages 211–218, 1997.

[39] M Mehta, R. Agrawal, and J. Rissanen. Sliq: A fast scalable classifier for data mining. In Proc.
of the fifth Int’l Conf. on Extending Database Technology, Avignon, France, March 1996.

[40] C. Merz. Using correspondence analysis to combine classifiers. Machine Learning, 1998. In
press.

[41] C. Merz and M. Pazzani. A principal components approach to combining regression estimates.
Machine Learning, 1998. In press.

[42] R. Michalski. A theory and methodology of inductive learning. In R. Michalski, J. Carbonell,
and T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, pages 83–134.
Morgan Kaufmann, 1983.

[43] M. Minksy and S. Papert. Perceptrons: An Introduction to Computation Geometry. MIT Press,
Cambridge, MA, 1969. (Expanded edition, 1988).

[44] T. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226, 1982.

[45] T. M. Mitchell. Does machine learning really work? AI Magazine, 18(3):11–20, 1997.

[46] M.Malliaris and L.Salchenberger. A neural network model for estimating option prices. Ap-
plied Intelligence, 3(3):193–206, 1993.

[47] R.H. Myers. Classical and Modern Regression with Applications. Duxbury, Boston, MA, 1986.

[48] D. W. Opitz and J. J. W. Shavlik. Generating accurate and diverse members of a neural-network
ensemble. Advances in Neural Information Processing Systems, 8:535–541, 1996.

[49] M. P. Perrone and L. N. Cooper. When networks disagree: Ensemble methods for hydrid neural
networks. Artificial Neural Networks for Speech and Vision, pages 126–142, 1993.

[50] D. Pomerleau. Neural network perception for mobile robot guidance. PhD thesis, School of
Computer Sci., Carnegie Mellon Univ., Pittsburgh, PA, 1992. (Tech. Rep. CMU-CS-92-115).

[51] A. Prodromidis. Management of Intelligent Learning Agents in Distributed Data Min ing Sys-
tems. PhD thesis, Department of Computer Science, Columbia University, New York, NY,
1999.

[52] A. L. Prodromidis and S. J. Stolfo. Mining databases with different schemas: Integrating
incompatible classifiers. In G. Piatetsky-Shapiro R Agrawal, P. Stolorz, editor, Proc. 4th Intl.
Conf. Knowledge Discovery and Data Mining, pages 314–318. AAAI Press, 1998.

[53] A. L. Prodromidis and S. J. Stolfo. Pruning meta-classifiers in a distributed data mining system.
In In Proc of the First National Conference on New Information Technologies, pages 151–160,
Athens, Greece, October 1998.

[54] A. L. Prodromidis, S. J. Stolfo, and P. K. Chan. Effective and efficient pruning of meta-
classifiers in a distributed data mining system. Technical report, Columbia Univ., 1999. CUCS-
017-99.

34

[55] F. Provost and T. Fawcett. Analysis and visualization of classifier performance: Comparison
under imprecise class and cost distributions. In Proc. Third Intl. Conf. Knowledge Discovery
and Data Mining, pages 43–48, 1997.

[56] F. Provost and T. Fawcett. Robust classification systems for imprecise environments. In Proc.
AAAI-98. AAAI Press, 1998.

[57] F. Provost, T. Fawcett, and Ron Kohavi. The case against accuracy estimation for comparing in-
duction algorithms. In Proc. Fifteenth Intl. Conf. Machine Learning, pages 445–553, Madison,
WI, 1998.

[58] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[59] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, San Mateo, CA,
1993.

[60] Zbigniew W. Ras. Answering non-standard queries in distributed knowledge-based systems.
In L. Polkowski A. Skowron, editor, Rough sets in Knowledge Discovery, Studies in Fuzziness
and Soft Computing, volume 2, pages 98–108. Physica Verlag, 1998.

[61] R.Detrano, A.Janosi, W.Steinbrunn, M.Pfisterer, J.Schmid, S.Sandhu, K.Guppy, S.Lee, and
V.Froelicher. International application of a new probability algorithm for the diagnosis of
coronary artery disease. American Journal of Cardiology, 64:304–310, 1989.

[62] R. Schapire. The strength of weak learnability. Machine Learning, 5:197–226, 1990.

[63] J. C. Shafer, R. Agrawal, and M. Metha. Sprint: A scalable parallel classifier for data mining.
In Proc. of the 22nd Int’l Conf. on Very Large Databases, Bombay, India, September 1996.

[64] C. Stanfill and D. Waltz. Toward memory-based reasoning. Communications of the ACM,
29(12):1213–1228, 1986.

[65] S. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. Chan. Credit card fraud detection using meta-
learning: Issues and initi al results. In Working notes of AAAI Workshop on AI Approaches to
Fraud Detection and Risk Management, 1997.

[66] S. Stolfo, W.D. Fan, A. Prodromidis W.Lee, S. Tselepis, and P. K. Chan. Agent-
based fraud and intrusion detection in financial information systems. Available from
http://www.cs.columbia.edu/∼sal/JAM/PROJECT, 1998.

[67] S. Stolfo, A. Prodromidis, S. Tselepis, W. Lee, W. Fan, and P. Chan. JAM: Java agents for
meta-learning over distributed databases. In Proc. 3rd Intl. Conf. Knowledge Discovery and
Data Mining, pages 74–81, 1997.

[68] Volker Tresp and Michiaki Taniguchi. Combining estimators using non-constant weighting
functions. Advances in Neural Information Processing Systems, 7:419–426, 1995.

[69] P. Utgoff. ID5: An incremental ID3. In Proc. 5th Intl. Conf. Mach. Learning, pages 107–120.
Morgan Kaufmann, 1988.

[70] P. Utgoff. Incremental induction of decision trees. Machine Learning, 4:161–186, 1989.

[71] P. Utgoff. An improved algorithm for incremental induction of decision trees. In Proc. of the
Eleventh Intl. Conference on Machine Learning, pages 318–325, 1994.

[72] K. Mok W. Lee, S. Stolfo. Mining audit data to build intrusion models. In G. Piatetsky-Shapiro
R Agrawal, P. Stolorz, editor, Proc. Fourth Intl. Conf. Knowledge Discovery and Data Mining,
pages 66–72. AAAI Press, 1998.

[73] J. Way and E. A. Smith. The evolution of synthetic aperture radar systems and their progression
to the eos sar. IEEE Transactions on Geoscience and Remote Sensing, 29(6):962–985, 1991.

35

[74] D. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

[75] X. Wu and H. W. Lo. Multi-layer incremental induction. In Proceedings of the fifth Pacific Rim
International Conference on Artificial Intelligence, Singapore, November 1998.

36

