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Abstract. The bio-molecular diagnosis of malignancies, based on DNA
microarray biotechnologies, is a difficult learning task, because of the
high dimensionality and low cardinality of the data. Many supervised
learning techniques, among them support vector machines (SVMs), have
been experimented, using also feature selection methods to reduce the
dimensionality of the data. In this paper we investigate an alternative
approach based on random subspace ensemble methods. The high di-
mensionality of the data is reduced by randomly sampling subsets of
features (gene expression levels), and accuracy is improved by aggregat-
ing the resulting base classifiers. Our experiments, in the area of the
diagnosis of malignancies at bio-molecular level, show the effectiveness
of the proposed approach.

1 Introduction

Traditional diagnosis of malignancies based on histopathological and clinical pa-
rameters can fail in detecting tumours that differentiate from normal tissues at
bio-molecular level [1]. Similarly, traditional approaches to prognosis determina-
tion (e.g. staging, or marker based prognosis) can be sometimes ineffective when
the clinical outcome depends on multiple bio-molecular factors [2].

Information for supporting both diagnosis and prognosis of malignancies at
bio-molecular level can be obtained by means of high throughput bio-technologies
based on large scale hybridization techniques (e.g. DNA microarray) [3].

Because of the large amount of gene expression data produced from DNA mi-
croarray experiments, the problem of analysing and extracting significant knowl-
edge from the data becomes critical.

Several supervised learning methods have been applied to the analysis of
cDNA microarrays and high density oligonucleotide chips [4, 5]. In particular,
Support Vector Machines (SVMs) have been applied to the analysis of DNA
microarray gene expression data in order to classify functional groups of genes,
normal and malignant tissues and multiple tumor types [5, 6].

One of the main drawbacks that characterize gene expression data is rep-
resented by their very high dimensionality and low cardinality. Indeed is well
known that in these cases the curse of dimensionality problem arises [7]. Hence



several works pointed out the importance of feature selection methods to reduce
the dimensionality of the input space [8].

From a computational point of view, feature selection is a difficult problem.
In fact it is a NP-hard problem [9]. In this paper we propose to experiment a dif-
ferent approach, based on Random Subspace ensembles of learning machines [10].
The prediction accuracy of the ”weak” base learners arising from the random
selection of the genes is then enhanced through aggregation by majority voting
of the trained base classifiers.

The characteristics of the methods are summarized in the next section, dis-
cussing also the reasons why this approach should be effective with gene expres-
sion data. Sect. 3 shows the results of the application of random subspace ensem-
bles of SVMs to a diagnostic problem (colon adenocarcinoma), and a prognostic
problem (medulloblastoma clinical outcome prediction) using high dimensional
gene expression data. After discussing the experimental results, conclusions and
on-going developments of the present work ends the paper.

2 Random subspace ensembles for gene expression data
analysis

Ensemble methods combine different classifiers in order to build a more accu-
rate classifier. Several ensemble methods, such as bagging and boosting, have
been proposed, and it has been shown that they enhance accuracy of learning
machines [11]. In particular, these methods and others, such as Error Correcting
Output Coding ensembles, have been applied to the analysis of DNA microarray
data [4, 12].

DNA microarray data are usually characterized by a small number of vectors
of high dimension: high dimensionality and low cardinality of data arise the
so called curse of dimensionality problem. A possible approach to reduce the
dimension consists in considering feature selection methods [9], [10].

In this paper we experiment an alternative approach based on Random Sub-
space ensemble [23]. This method avoids some computational difficulty of feature
selection (feature selection is an NP-hard problem) [9] and it can be implemented
in parallel in a natural way. Moreover with different random projections of the
data we can obtain more base learners, so that their diversity can be improved,
while the overall accuracy of the ensemble can be enhanced through aggregation
techniques. A high-level pseudo-code of the random subspace ensemble method
is the following:



Random Subspace Algorithm
Input:

- A data set D = {(xj , tj)|1 ≤ j ≤ m}, xj ∈ X ⊂ Rd, tj ∈ C = {1, . . . , k}
- a weak learning algorithm L
- subspace dimension n < d
- number of the base learners I

Output:
- Final hypothesis hran : X → C computed by the ensemble.

begin
for i = 1 to I
begin

Di = Subspace projection(D, n)
hi = L(Di)

end
hran(x) = arg maxt∈C card({i|hi(x) = t})

end.
D represents the original d-dimensional training set. The randomized proce-

dure Subspace projection randomly selects, according to the uniform distri-
bution, a n-subset A = {α1, . . . , αn} from {1, 2, . . . , d}, so defining a projection
PA : Rd → Rn, where PA(x1, . . . , xd) = (xα1 , . . . , xαn); then it returns as output
the new data set Di = {(PA(xj), tj)|1 ≤ j ≤ m}.

The new data set Di obtained through the procedure Subspace projection
is given as input to a learning algorithm L which outputs a classifier hi; this
process is repeated I times, where I is the number of the base learners. In the
testing phase all the trained classifiers are finally aggregated through majority
voting, that is the output of the ensemble is the label of the class more frequently
chosen by the component classifiers (card(S) denotes the cardinality of the set
S). Note that, with abuse of notation, with hi(x) we ambiguously denote the
extension of hi to the entire Rd space.

This approach has been successfully applied to different real problems [13, 14],
but it seems well-suited for the diagnosis of polygenic and tumoral diseases using
very high dimensional gene expression data.

3 Experimental environment

We have experimented the previous algorithm on 2 bio-medical problems: 1)
Colon adenocarcinoma bio-molecular diagnosis [15] 2) Central nervous system
embryonal tumour clinical outcome prediction [2]. The two prediction problems
are both based on gene expression profiles of a relatively small group of patients.

We specialized the learning algorithm L using linear Support Vector Ma-
chines (SVMs). In fact, SVMs are usually considered very good predictors for
the bio-molecular prediction of tumours. Moreover random subspace ensembles
seems to give good results with linear base learners characterized by a decreas-
ing learning curve (error) with respect to the cardinality n [16], and linear
SVMs show these characteristics. Furthermore, we fixed 200 as the number I
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Fig. 1. SVM random subspace ensembles results on the colon data set (5-fold cross
validation). (a) Test and training error with respect to the dimension of the subspace.
(b) Sensitivity, specificity and precision with respect to the dimension of the subspace.

of base learners and chose as dimension of subspace every number n = 2k with
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Fig. 2. Colon data set: (a) Average training and test error of the base learners (com-
ponent predictors) with respect to the subspace dimension (b) Test error of the 64
dimensional SVM random subspace ensemble with respect to the number of the base
learners on the 5 folds.

1 ≤ k < dlog2 de. More precisely, we drew 200 random subspaces from the avail-

able
(

d
n

)
ones, and we used them to project the original d−dimensional input

data into the obtained 200 n−dimensional subspaces; the resulting samples have
been used to train the 200 base SVMs that belong to the ensemble.

Concerning the implementation, we developed new C++ classes and applica-
tions for random subspace ensembles extending the NEURObjects 1 library [17].
The experiments have been executed by means of the C.I.L.E.A. Avogadro clus-
ter of Xeon double processor workstations [18].

The main goal that we have pursued in the experiments is the performance
comparison of single SVMs trained with all the available genes vs. random sub-
space ensembles. In order to evaluate and to understand the ensemble behaviour,
we analyzed also the accuracy of the base learners, that is the performances of
the single base SVMs trained with random subsets of features (genes).

We computed for both single SVMs and random subspace ensembles the test
error and the training error, by 5-fold cross validation. Moreover we considered
sensitivity, specificity and precision values. Only for the ensembles we also eval-
uated the error as a function of the number of the base learners on each fold.

3.1 Colon tumor prediction

The Colon adenocarcinoma data set is composed of 2000 genes and 62 samples:
40 colon tumor samples and 22 normal colon tissue samples [15].
1 The extended new version of the NEURObjects library is

freely downloadable for research or teaching purposes from
http://homes.dsi.unimi.it/~valenti/sw/NEURObjects/.



Experimental setup We used the same preprocessing technique illustrated
in [15]. Concerning model selection, the values of the regularization parameter
C of the SVMs have been selected in the range between 0.01 and 1000. Moreover
the dimension k of the subspaces is each power of 2 in the range between 2 and
210, while the number of base learners used is 200.

Results Single SVMs trained using the entire set of gene expression data
achieved an error of 17.74± 10.87 % according to a 5-fold cross validation eval-
uation of the generalization error. As outlined in other works [8], on this task
the linear SVMs are insensitive to the regularization C parameter that controls
the trade-off between the accuracy on the training set and the complexity of the
learning machine: for all the C values we obtained the same results.

On the contrary Random subspace ensembles on this task are quite sensitive
to the regularization parameter: for instance 16-dimensional random subspace
ensembles achieve better results with quite large C values. The minimum of
the test error is obtained using 64-dimensional subspaces, but also with 16 to
1024-dimensional subspaces equal or better results with respect to single SVMs
trained on the entire feature space can be achieved (Fig 1 a).

Interestingly enough, sensitivity is very high if very low dimensional sub-
spaces are applied, but at the expenses of the specificity (Fig 1 b). Indeed using
2 or 4-dimensional subspaces the base SVMs learn nothing, predicting that all
samples are malignant, without any distinction between normal and cancerous
tissues. The ensembles start to learn when 8 random genes are selected, and if
we apply at least 16 gene-subspaces we achieve a reasonable specificity at the
expense of a low decrement of the sensitivity (Fig 1 b).

Fig. 2 (a) shows that both the base learner training and test error decrease
monotonically with the subspace dimension. Hence the best performance with
64-dimensional random subspace ensembles cannot be the effect of a better ac-
curacy of the base learners trained with 64 random genes.

We trained 200 SVMs for each ensemble, but Fig. 2 (b) shows that with
about 50 learners we can achieve the same results. Indeed the test error on the
5 folds decreases up to 50 base learners, and for larger ensembles the test error
stabilizes and no variations are registered. Note that the spikes in the five curves
are due to the low cardinality of the data set.

3.2 Medulloblastoma clinical outcome prediction

The data set considered doesn’t treat a diagnosis problem, but a prediction of
medulloblastoma clinical outcome by gene expression profiling. The Medulloblas-
toma data set is composed of 60 samples, with 39 medulloblastoma survivors and
21 treatment failures. We used about 4000 genes, obtained by the same prepro-
cessing techniques adopted in the original work [2].

Experimental setup The gene expression data were subjected to a thresh-
old and a variation filter that excludes genes showing minimal variation across
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Fig. 3. SVM random subspace ensembles results on the medulloblastoma data set (5-
fold cross validation). (a) Test and training error with respect to the dimension of the
subspace (b) Sensitivity, specificity and precision with respect to the dimension of the
subspace.



the samples being analysed. By preprocessing we obtained 4433 genes from the
original 7129.

Regarding the model selection, we selected the C values in the range between
10−9 and 103. The dimension k of the subspaces is each power of 2 in the range
between 2 and 211, and the number of the base learners used is 200.
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Fig. 4. Medulloblastoma data set: (a) Average test error of the base learners (com-
ponent predictors) with respect to the subspace dimension (b) Test error of the 256
dimensional SVM random subspace ensemble with respect to the number of the base
learners on the 5 folds.

Results With this data set single SVMs trained using the entire set of gene
expression data are quite sensitive to the C parameter. In particular we need
to choose very low values of the regularization parameter in order to achieve an
error of 28.33 ± 9.50 % according to a 5-fold cross validation evaluation of the
generalization error.

Similarly to the colon data set, also with the medulloblastoma clinical out-
come prediction problem random subspace ensembles outperform single SVMs
trained on the entire set of the gene expression data. The minimum of the test
error is registered with 256-dimensional subspaces, but in this case we need from
128 to 512-dimensional random subsets of genes to achieve better results than
single SVMs (Fig 3 a).

In all cases we obtained low sensitivity (slightly better for subspaces between
128 and 512 dimensions), and large specificity for a large range of randomly
selected genes. The ensembles trained with relatively small subspaces (less than
16 random genes) show large specificity and zero sensitivity, as low dimensional
ensembles fail to detect failures (that is those who succumbed to their disease)
while successfully detect all the survivors (Fig 3 b). On medulloblastoma clin-
ical outcome prediction Pomeroy et al [2] (see supplementary documentation)



successfully applied SVMs and feature selection methods, but our ensemble ap-
proach achieves better accuracy and sensitivity 2.

As with the colon data set, also in this case the better results obtained with
256 dimensional subspaces cannot be explained with a better accuracy of the
base learners trained with 256 random genes. Indeed Fig. 4 (a) shows that base
learner training and test error decrease with the subspace dimension.

Differently from the previous classification problem, in medulloblastoma ex-
periments we need more base learners to stabilize the error (Fig. 4 (b)).

3.3 Discussion

Table 1. Comparison of the results between single and random subspace ensembles of
SVMs.

Test Err. St.dev Train Err. St.dev Sens. Spec. Prec.

Colon tumour data set
RS ensemble 0.1290 0.0950 0.0000 0.0000 0.9000 0.8182 0.9000
Single SVM 0.1774 0.1087 0.0000 0.0000 0.8500 0.7727 0.8718
Single base SVM 0.1776 0.1019 0.0000 0.0000 —— —— ——
Medulloblastoma data set
RS ensemble 0.2333 0.1087 0.0000 0.0000 0.5714 0.8718 0.7059
Single SVM 0.2833 0.0950 0.0083 0.0114 0.5238 0.8205 0.6111
Single base SVM 0.2916 0.1008 0.0092 0.0103 —— —— ——

Tab. 1 compares the results of the best single SVM and the best random
subspace ensemble on the Colon and Medulloblastoma data sets. Average errors
of the best base learners of the ensemble are also reported.

The most significant result is that Random subspace ensembles outperform
single SVMs on both the considered classification tasks. The null hypothesis
that the random subspace ensemble has the same error rate as single SVMs is
rejected at 0.05 significance level according to the 5-fold cross validated paired
t-test [19] for both the Colon and Medulloblastoma data sets.

Moreover we achieve better results with random subspace ensembles for a
quite large choice of the subspace dimension (Fig. 1 and 3). Only if too small
subspaces are used, we cannot obtain good results, because the base learners are
not able to learn when the data are too uninformative (Fig. 2 (a) and 4 (a)).

The best average accuracy of the base learners, comparable with the accuracy
of the single SVM trained with the entire set of features (genes), is achieved with
1024 dimensions with the colon data set and 2048 dimensions with the medul-
loblastoma data set. In both cases there is no statistical significant difference
2 Anyway, note that we used 5-fold cross validation to estimate the generalization

error, while Pomeroy et al. applied leave-one-out techniques.



between the average accuracy of the base learners and the accuracy of the SVMs
trained with all the available gene expression data (Tab. 1). As outlined in other
works [1, 12], this fact highlights that the information carried out by many genes
is highly correlated, and no discrimination gain is achieved when we double the
number of genes both for the colon and medulloblastoma data sets. On the other
hand these results can also be explained by the fact that many genes are not
correlated with the discrimination of the functional classes.

Anyway the significant performance differences between random subspace
and single SVMs cannot be only explained through the accuracy of the base
learners, as the best ensemble performance are obtained with 64 (Colon data set:
fig. 1 a) and 256-dimensional subspaces (Medulloblastoma data set: Fig. 3 a),
whilst the best base learner accuracy is achieved respectively with 1024 and 2048-
dimensional subspaces. Hence we need a deeper understanding of the ensemble
behaviour to explain the better results of random subspaces.

To this purpose we propose a list of possible research directions to explain the
results of the random subspace ensembles with high-dimensional gene expression
data:

1. Diversity of the base learners. The trade-off problem between accuracy and
diversity of the base learners and their relationships with the accuracy of the
corresponding ensembles is a critical topic in ensemble methods research [20].
Our results suggest that the ensembles could be more accurate when the com-
ponent base learners are diverse, that is when their predictions are not equal; on
the other hand we need also accuracy, because very inaccurate base learners can-
not make the ensemble accurate. Anyway, to confirm this hypothesis. we need to
quantitatively evaluate the diversity between the component base learners using,
for instance, diversity measures proposed in [20].

2. Bias-variance interpretation. It is well-known that ensemble methods based
on aggregation and majority voting reduce the variance component of the error
(e.g. bagging [21]). Random subspace ensembles are based on aggregation and
majority voting, so we could expect that the ensemble decrements the variance
with respect to the single learner. Anyway it is unclear if the bias component
is reduced by this approach. To this purpose it could be interesting to interpret
the generalization capabilities of random subspace ensembles using bias–variance
analysis, as proposed in [22].

3. Dimensionality reduction. Random subspace ensembles reduce the curse
of dimensionality effect that plagues hyperdimensional spaces [7]. Hence, gene
expression data, characterized by very high dimensionality, can benefit from the
random subspace approach. Indeed random subspace ensembles increment the
effective cardinality, that is the ratio between cardinality and dimensionality [16].

4. Redundant sets of features. Random subspace methods can obtain a decre-
ment of the generalization error when the classification problems involves a re-
dundant set of features, and if we can dispose of ”weak” learners (that is classi-
fiers that perform better than ”random guessing”) [10, 23]. This is exactly the
case of gene expression data classification for diagnosis or clinical outcome pre-
diction purposes. Indeed it is well-known that gene expression levels of subsets



of genes are correlated, because those subsets are co-regulated through the same
sets of transcriptional factors [24].

4 Conclusions and developments

The results of the application of the random subspace ensembles of linear SVMs
have revealed the effectiveness of the approach with colon and medulloblastoma
data sets. Better results than single SVMs trained with the global available
feature (gene) space are achieved for a quite large range of subspace dimensions.

Anyway, especially for the Medulloblastoma clinical outcome prediction task
we obtained a relatively high estimated generalization error and a too low sen-
sitivity, even if comparable with the modified K-nearest-neighbour plus gene se-
lection approach proposed in [2]. For these reasons we are experimenting a new
approach that combines the random subspace ensemble approach with feature
selection ones in order to improve the generalization capabilities of the ensemble.

In the discussion (Sect. 3.3) we showed some research directions to investi-
gate the reasons why the proposed approach works with gene expression data.
Nevertheless, we need a deeper understanding of the success of random subspace
ensembles with high dimensional data. To this purpose an interesting theoretical
open problem consists in explicitly relating the random subspace method with
Kleinberg’s Stochastic Discrimination theory [25].
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