
i
i

“RANKS_supp” — 2016/3/28 — 19:41 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Systems biology

RANKS: a flexible tool for node label ranking and
classification in biological networks:
Supplementary Information
Giorgio Valentini 1,∗, Giuliano Armano 2, Marco Frasca 1, Jianyi Lin 1, Marco
Mesiti 1 and Matteo Re 1

1AnacletoLab, Department of Computer Science, University of Milan, 20139 Milan, Italy and
2Department of Electric and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

The Supplementary Information includes a detailed description of RANKS – RAnking of Nodes with
Kernelized Score functions, and some examples of its application to the Gene Function Prediction, Drug
repositioning and Human Phenotype Ontology prediction problems. All the examples include R code that
shows how to use the RANKS R package in the context of node label ranking problems. A final section
explains how to expand the functionalities of the package through user defined score functions and kernels.

1 The RANKS method
Most of the node label ranking algorithms proposed for the analysis
of biomolecular networks exploit local or global learning strategies to
properly rank nodes [25, 22, 19, 5, 6]. In this context nodes represent
usually genes or proteins, and edges functional similarities between nodes,
according to the biological property under investigation.

RANKS – RAnking of Nodes with Kernelized Score functions is a
very fast semi-supervised network method that combines local and global
learning strategies to exploit both "local" similarities between nodes
and "global" similarities embedded in the topology of the biomolecular
network. From this standpoint RANKS can be considered a generalization
of both guilt-by-association methods [20], and kernel based algorithms for
semi-supervised network analysis [11].

Indeed, the guilt-by-association (GBA) approach [20] is generalized
through fast and efficient local learning strategies based on an extended
notion of functional distance between nodes. Global learning strategies
are introduced by using kernel functions able to exploit the relationships
and the overall topology of the underlying biological network. This
approach can be also seen as a general algorithmic scheme: by introducing
different local score functions and by choosing different kernels to model
the similarity between nodes, we can derive different network-based
algorithms. For instance, by adopting graph kernels [11], both direct and

indirect relationships between genes can be exploited, thus taking into
account the overall topology of the network.

Let G = (V,E) be an undirected graph with weighted adjacency
matrix W representing a biomolecular network W (e.g. a gene or protein
network), where V denotes the set of nodes (corresponding, for instance,
to genes or proteins), and VC ⊂ V denotes a subset of nodes having a
specific property C (C could be, for instance, a Gene Ontology term, or
a genetic disease). For the sake of simplicity, we can represent the nodes
of the graph with natural numbers 1, 2, . . . , n. Moreover a set of features
xi ∈ X can be associated to a node i. For instance, xi could represent the
expression or the phylogenetic profile of a node i, or whatever available
data for a given gene/node i.

The node label ranking problem consists of finding a score function
S : V −→ R+ by which we can directly rank nodes according to their
likelihood to belong to a specific category C (the higher the score, the
higher the likelihood that a node belongs to C). It is worth noting that
node label ranking can be seen as a “one-class” semi-supervised learning
problem on biomolecular networks G, since we can exploit the labeling
of the known “positive” vertices v ∈ VC belonging to the category C,
but also the similarity relationships between labeled or unlabeled vertices
v ∈ V .

In RANKS score functions are based on distance measures defined in a
suitable Hilbert space H. More precisely, let ϕ : X → H, be a mapping
to a given Reproducing Kernel Hilbert Space H, and K : X×X → R its
associated kernel function, such that < ϕ(·), ϕ(·) >H= K(·, ·), where
< ·, · >H represents an internal product in H.

© The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

i
i

“RANKS_supp” — 2016/3/28 — 19:41 — page 2 — #2 i
i

i
i

i
i

2 Valentini et al.

A distance measure D(i, VC) in the Hilbert space between a given
node/gene i and the set of nodes VC having a specific property C can be
thus introduced by using a proper kernel function [32]. Indeed, we can
embed any valid kernel into the distance measure itself, thus resulting in
a modular approach by which existing graph kernels, or in perspective
new graph kernels properly designed for node label ranking problems in
biomolecular networks, can be applied to rank nodes according to the
property C under study. By choosing different distance measures, diverse
score functions can be derived. As examples we consider the following
score functions, each one based on a different notion of distance between
nodes:

1. Nearest Neighbours score
2. K-Nearest Neighbours score
3. Average score

1.1 Nearest-Neighbours Score

We can define a distance measure DAV (i, VC) of a vertex i ∈ V w.r.t. to
a set of nodes VC , as the minimum squared distance in the Hilbert space
between i and VC :

DNN (i, VC) = min
j∈VC

n
ϕ(xi)− ϕ(xj)

n
2 (1)

By developing the square (1) we can obtain:

DNN (i, VC) = min
j∈VC

[< ϕ(xi), ϕ(xi) > + < ϕ(xj), ϕ(xj) >

−2 < ϕ(xi), ϕ(xj) >] (2)

where< ·, · > is the inner product in the feature spaceH. We can achieve a
similarity measure by simply changing the sign of equation 2 and recalling
that < ϕ(·), ϕ(·) >= K(·, ·):

SimNN (i, VC)=− min
j∈VC

[K(xi,xi)−2K(xi,xj) +K(xj ,xj)]

(3)
If K(xj ,xj) is equal for all j ∈ V , we can disregard these terms, thus
achieving the nearest neighbours score SNN :

SNN (i, VC) = − min
j∈VC

−2K(xi,xj) = 2 max
j∈VC

K(xi,xj) (4)

1.2 K-Nearest-Neighbours Score

If we consider the k-nearest neighbours, i.e. Ik(i) = {j ∈
VC |j is ranked among the first k nearest neighbors of i}, then we can
easily extend the SNN score by introducing the k-nearest neighbours
distance:

DkNN (i, VC) =
∑

j∈Ik(i)

n
ϕ(xi)− ϕ(xj)

n
2 (5)

By expanding the square in (5) and inverting the sign we can obtain a
similarity measure:
SimkNN (i, VC) =

= −
∑

j∈Ik(v)

(K(xi,xi)− 2K(xi,xj) +K(xj ,xj)) (6)

This similarity measure can be directly used as a k-nearest neighbours
score SkNN , but in the case that K(xj ,xj) is equal for all j ∈ V , we
can disregard constant terms and hence obtain the simplification:

SkNN (i, VC) = 2
∑

j∈Ik(i)

K(xi,xj) (7)

1.3 Average Score

Another distance can be simply defined as the average distance in the
Hilbert space H between i and the set of nodes VC :

DAV (i, VC) =
n
ϕ(xi)−

1

|VC |
∑

j∈VC

ϕ(xj)
n

2 (8)

By expanding the square (8) we obtain:

DAV (i, VC) =< ϕ(xi), ϕ(xi) > −
2

|VC |
∑

j∈VC

< ϕ(xi), ϕ(xj) >

+
1

|VC |2
∑

k∈VC

∑
j∈VC

< ϕ(xk), ϕ(xj) > (9)

Also in this case a similarity measure can be obtained by changing the
sign:

SimAV (i, VC) = −K(xi,xi) +
2

|VC |
∑

j∈VC

K(xi,xj)

−
1

|VC |2
∑

k∈VC

∑
j∈VC

K(xk,xj) (10)

We can finally obtain the average score SAV , by observing that the third
term of (10) is equal for all i ∈ V :

SAV (i, VC) = −K(xi,xi) +
2

|VC |
∑

j∈VC

K(xi,xj) (11)

By using the proposed kernelized score functions we can rank nodes
with respect to their likelihood to belong to a given category C simply by
evaluating the selected kernel function. If the kernel matrix is computed
in advance, the time complexity of RANKS is O(|VC ||V |), that is
approximately linear with respect to the number of nodes when |VC | <<

|V |.

1.4 Random Walk kernels

We can obtain different node ranking algorithms by embedding different
kernels in eq. 4, 7 and 11. In principle, any valid kernel can be used (e.g.
linear, polynomial, gaussian, Laplacian, Cauchy and inverse multiquadric
kernels), but in the context of biomolecular networks it is often meaningful
to use a random walk kernel [34] constructed from the weighted adjacency
matrix W of the graph under study. Indeed it can capture not only
relationships coming from direct neighborhoods between nodes, similarly
to guilt by association methods [20], but also relationships coming from
shared and more in general indirect neighbours between nodes. For
instance, in the context of network-based Gene Function Prediction (GFP),
while it is quite obvious that functional relationships are coded into direct
neighbours, important functional relationships between genes can also be
coded through indirect neighbours [3]. For instance, enzymes belonging
to the same biological process may not share the same links, since their
catalyzed reactions can be linked through other intermediate reactions
belonging to the same pathway, but of course the involved enzymes do
belong to the same biological process.

Random walk kernels represent the kernelized version of Markov
Random Walks, by which random trajectories across graphs can be
exploited to investigate the relationships between nodes and to score or
label each node with respect to a specific property of the nodes[18].

The one-step random walk kernel matrix K can be obtained from the
adjacency matrix W of the graph in the following way:

K = (a− 1)I +D− 1
2 WD− 1

2 (12)

where D is the “degree” diagonal matrix with elements dii =
∑

j wij ,
I is the identity matrix and a is a value larger than 2. The q-step random

i
i

“RANKS_supp” — 2016/3/28 — 19:41 — page 3 — #3 i
i

i
i

i
i

RANKS 3

walk kernel can be directly obtained from (12):

Kq = [(a− 1)I +D− 1
2 WD− 1

2]q (13)

where q ≥ 2 is an integer representing the number of steps of the random
walk across the graph and can be easily computed by a recursive chain of
matrix multiplications:

Kq = Kq−1K (14)

Fig. 1 provides a derivation of the random walk kernel.

Fig. 1. Derivation of the random walk kernel.

By setting q = 2, the random walks consider indirect neighbours, that
is two nodes are similar if either they are directly connected or they share
common nodes in their neighborhood. It is worth noting that if q = 1

we obtain the one-step random walk kernel, by which only the direct
neighbours of each node are visited. More in general, by setting q > 2

two vertices are considered similar if they are directly connected or if
they are indirectly connected through a path including from 1 to q − 1

intermediate vertices. Large values of q may introduce remote similarities
between nodes, in a way similar to diffusion kernels [14]. It can be shown
that (13) is up to scaling terms equivalent to a q-step random walk on the
graph with random restarts, a well-known algorithm used for scoring web
pages in the Google search engine [2].

2 Application examples
RANKS has been successfully applied to gene function prediction, gene
disease prioritization and drug repositioning ([24]) problems, comparing
favourably with state-of-the-art network based methods [27, 28, 29, 38].

In this section we provide several application examples of RANKS,
including the R code that shows how to use the RANKS R package in
the context of node label ranking problems. More precisely, we at first
consider an example of application to two classical prediction problems,
Gene Function Prediction [26] and Drug repositioning [33]. Then we
describe an application to the Human Phenotype Ontology prediction
problem [13], a complex prediction task proposed in the recent Critical
Assessment of Functional Annotation 2 (CAFA2) international challenge,
where RANKS was one of the top ranked method in this specific prediction
task (http://biofunctionprediction.org/node/8) [9].

The RANKS package is freely downloadable from CRAN
(https://cran.r-project.org/ for Unix, Windows and Mac
operating systems. The data used in these examples are downloadable from
http://homes.di.unimi.it/valentini/DATA/RANKS. Detailed
explanations about the syntax and the semantic of each function and
method implemented in the package are available in the RANKS reference
manual:
(https://cran.r-project.org/web/packages/RANKS/RANKS.pdf).

2.1 Gene Function Prediction

Gene Function Prediction (GFP) can be formalized as a node label ranking
problem, where nodes represent genes and edges relationships weighted
according to the evidence of co-functionality implied by data sources [40].
By exploiting the labeling of a subset of genes annotated with a specific
function, and the topology of the network, the prediction task consists of
ranking unlabeled nodes with respect to the function under study [23, 4,
21].

In this section we present a simple application for ranking genes with
respect to FunCat (Functional Catalogue) classes with the yeast model
organism [31]. Here we limited the experiments to a relatively low number
of genes and FunCat classes to allow to easily experiment with RANKS. We
combined 6 bio-molecular data sets previously used for the related task of
gene classification [35]. The data sets include pairwise sequence similarity
data, protein-protein interaction, protein domain and gene expression data.
We considered only yeast genes common to all data sets. Moreover, in order
to get a not too small set of positive examples for training, for each data set
we selected only the FunCat-annotated genes1, and classes with at least
20 positive examples, using the HCgene R package [36]. This selection
process yielded 1901 yeast genes annotated to 168 FunCat classes (see
[27] for more details about the construction of the integrated network).

Let us now illustrate, step-by-step, how to use the package in an R
script to predict gene functions in the yeast using 5-fold cross-validation,
repeated 10 times, in order to evaluate the scores for each of the 1901
yeast genes relative to all the considered FunCat classes. At first we need
to load the necessary packages:

library(RANKS);

library(PerfMeas);

PerfMeas is another package available from CRAN to measure the
performance of supervised and semi-supervised learning methods (i.e.
accuracy, AUC, etc). Then network data (in the form of a weighted
adjacency matrix) and annotation data (another matrix T , where
T [i, j] = 1 if gene i is annotated to the FunCat category j, otherwise
T [i, j] = 0) are loaded:

#loading network data

data.file <- "data/yeast.data.matrix.rda";

load(data.file); # avgKF.matrix loaded

W <- avgKF.matrix; # 1901 X 1901

rm(avgKF.matrix);

filtering negative values

W[W<0]<-0;

read labels matrix with gene annotations

labels.file <- "data/yeast.label.matrix.rda";

load(labels.file);

T <- Yeast.Funcat.Table.intersection.filtered20ormoreGenes;

rm(Yeast.Funcat.Table.intersection.filtered20ormoreGenes);

T <- as.matrix(T[,-1]); # root category deleted

nclasses <- ncol(T);

ngenes <- nrow(T);

1 Our experiments build on annotations coded in the FunCat-2.1 scheme,
and FunCat-2.1_data_20070316 data, available from the MIPS web site
(http://mips.gsf.de/projects/funcat).

i
i

“RANKS_supp” — 2016/3/28 — 19:41 — page 4 — #4 i
i

i
i

i
i

4 Valentini et al.

classnames <- colnames(T);

Then the score matrix to collect the final scores and the random walk kernel
are constructed using the rw.kernel RANKS method:

construction of the matrix of scores.

S1 <- matrix(numeric(nclasses * ngenes), nrow=ngenes);

rownames(S1) <- rownames(T);

colnames(S1) <- classnames;

Construction of a 1-step RW kernel

RW <- rw.kernel(W);

Then the scores are computed by 5 fold cross-validation repeated 10 times
by calling themultiple.ker.score.cv RANKS method. Note that the KNN
score function is used, considering k = 19 nearest neighbours:

for (i in 1:nclasses) {

ind.pos <- which(T[,i]==1);

10-fold CV with 1 step RW kernel

res<-multiple.ker.score.cv(RW, ind.pos, m=5, p=10,

init.seed=1, fun=KNN.score, k=19);

S1[,i] <- res$av.scores;

cat("Class ", i, " : ", classnames[i], "\n");

}

By simply changing the argument fun you can experiment with other
scores, e.g. by setting fun = eav.score we can use the average score.
Finally we can estimate the performance by computing the Area Under
the ROC curve and precision at different levels of recall by calling the
corresponding functions of the PerfMeas package:

saving scores

save(S1, file="Results/Scores.RANKS.GFP.rda");

Computing precision at different levels of recall

recall.levels <- seq(from=0.1, to=0.9, by=0.1);

res <- precision.at.multiple.recall.level.over.classes

(T, S1, rec.levels = recall.levels);

Computing AUC

auc <- AUC.single.over.classes(T, S1);

saving results

save(res, auc, file="Results/AUC.PXR.RANKS.GFP.rda");

RANKS is very fast: on a notebook with an Intel i7 2.20 GHz with 4 GB
RAM the entire 5 fold cross validation procedure repeated 10 times for all
the 168 considered FunCat classes required less than 50 seconds, including
also the I/O and the computation of the performance measures.

Note that RANKS is basically a ranker, since it provides scores for
each gene/node, but can be also used as a classifier through the RANKS
functions ker.score.classifier.cv, ker.score.classifier.holdout

and multiple.ker.score.thresh.cv, by which an “optimal” threshold
is applied to the score to obtain the label associated to each node. The
optimal threshold is obtained by internal cross-validation on training data
(see the Reference Manual for more details).

Table 1 reports cross-validated results on the FunCat-yeast prediction
task, stratified across the 5 levels of the FunCat taxonomy. In particular,
level 1 is the highest level, which includes the most general terms, level
2 is less general, till to level 5, which includes the most specific FunCat
categories. Results show that RANKS methods (the first 3 columns) are
competitive with other state of the art network-based algorithm such as
GeneMania [23], or the classical random walk and random walk with
restart algorithm, as well as with inductive supervised algorithms such as
Support Vector Machines.

2.2 Drug repositioning

Drug repositioning consists of predicting novel therapeutic indications
for existing drugs. In this context nodes represent drugs and edges
their structural or functional similarities. The task consists of scoring

and ranking unlabeled nodes/drugs with respect to a given therapeutic
indication starting from a small set of labeled drugs/nodes [8, 7, 33].

Here we show how to predict the therapeutic category of drugs
according to the annotations provided by DrugBank 3.0 [12] using RANKS.
We considered 51 Therapeutic Categories (TC) from DrugBank (Table 2),
that is the TC having more that 15 drugs annotated. We constructed
three drug networks involving 1253 drugs: the first one is based on the
similarity of chemical structures according to their SMILES molecular
fingerprint; the second is obtained through network projections between
drugs and their molecular targets and the third one has been constructed by
network projections of the chemical-chemical interactions in the STITCH
database [15]. Then we constructed three networks U1, U2 and U3,
by progressively integrating the first, the second and the third networks
described above (see [29] for more details about the construction of the
drug networks).

In the rest of this section we show how to process data through
cross-validation techniques using a single call to the high-level function
do.RANKS of the RANKS package.

After loading RANKS and PerfMeas packages, we call do.RANKS
to perform a 5-fold cross validation (kk = 5) using the average score
(score = eav.score) and a 1-step random walk kernel (kernel =
rw.kernel, p = 1) to score the drugs with respect to 51TCs. The network
data are in the directory data (data.dir = ”data/”) and the name of the
file of the network data is U1.rda (data = ”U1”), corresponding to a
network constructed by structural similarity between each pair of drugs.
In the same way the directory where the labels of the drugs are stored
is data (labels.dir = ”data/”) and the file name of the drug labels is
”T” (labels = ”T”), where T [i, j] = 1 if drug i is annotated with the
Therapeutic Category j, otherwise T [i, j] = 0. The corresponding results
(computed scores, as well as AUC results and precision at different recall
levels) are stored in the Results directory (output.dir = ”Results/”):

library(RANKS);

library(PerfMeas);

do.RANKS(score=eav.score, kernel=rw.kernel, a=2, p=1,

sparsify=TRUE, kk=5, rep=1, seed=0,

data.dir="data/", labels.dir="data/",

output.dir="Results/", data="U1", labels="T");

Note that this interface is conceived for batch experiments, where both
input data and the results are automatically stored in R compressed
.rda files. In this way we can experiment with different score functions
or kernels by only changing the arguments of the high-level function
do.RANKS. In a similar way experiments with different data can be
easily performed by only changing the input data theirselves, just using
only 1 line of code.

The following lines of code show an example of cross-validations with
different score functions and kernels, and different input networks:

The same task as above, but using a different network

U2, constructed by integrating molecular fingerprints

of the drugs and drug-target interactions:

do.RANKS(score=eav.score, kernel=rw.kernel, a=2, p=1,

sparsify=TRUE, kk=5, rep=1, seed=0,

data.dir="data/", labels.dir="data/",

output.dir="Results/", data="U2", labels="T");

Here also chemical-chemical interaction form STITCH

have been integrated (data="U3"):

do.RANKS(score=eav.score, kernel=rw.kernel, a=2, p=1,

sparsify=TRUE, kk=5, rep=1, seed=0,

data.dir="data/", labels.dir="data/",

output.dir="Results/", data="U3", labels="T");

A different score function, i.e.

Weighted Sum Linear Decay is used with the same data:

do.RANKS(score=WSLD.score, kernel=rw.kernel, a=2, p=1,

sparsify=TRUE, kk=5, rep=1, seed=0,

i
i

“RANKS_supp” — 2016/3/28 — 19:41 — page 5 — #5 i
i

i
i

i
i

RANKS 5

Table 1. Average AUC at the five levels of the FunCat taxonomy. Numbers in boldface refer to the best results for a given level. SkNN stands for K-nearest-
neighbours score, SAV stands for average score, SNN nearest-neighbours score, GM GeneMania, RWR random walk with restart, RW random walk till to
convergence, RW2st random walk limited to 2 steps, GBA guilt-by-association, and SVM is a linear Support Vector Machine.

level SkNN SAV SNN GM RWR RW RW 2 st GBA SVM n. class
1 0.8276 0.8069 0.7754 0.7920 0.7466 0.5194 0.7608 0.7006 0.8752 16
2 0.8620 0.8535 0.8424 0.8370 0.8071 0.4902 0.7389 0.7649 0.7849 49
3 0.9006 0.8983 0.8874 0.8807 0.8614 0.5146 0.7712 0.8279 0.8058 65
4 0.9052 0.9030 0.8880 0.8860 0.8717 0.5216 0.7888 0.8419 0.7248 30
5 0.9206 0.9206 0.9164 0.9067 0.9064 0.5733 0.8173 0.8682 0.4954 8

data.dir="data/", labels.dir="data/",

output.dir="Results/", data="U3", labels="T");

Here the KNN score with k=19 nearest neighbours

is used instead:

do.RANKS(score=KNN.score, kernel=rw.kernel, a=2, p=1,

sparsify=TRUE, kk=5, rep=1, seed=0,

data.dir="data/", labels.dir="data/",

output.dir="Results/", data="U3", labels="T",

k=19);

KNN score with k=19 and 2 steps random walk kernel:

do.RANKS(score=KNN.score, kernel=rw.kernel, a=5, p=2,

sparsify=TRUE, kk=5, rep=1, seed=0,

data.dir="data/", labels.dir="data/",

output.dir="Results/", data="U3", labels="T",

k=19);

NN score and 5 step random walk kernel

and with 10 fold CV:

do.RANKS(score=NN.score, kernel=rw.kernel, a=10, p=5,

sparsify=TRUE, kk=10, rep=1, seed=0,

data.dir="data/", labels.dir="data/",

output.dir="Results/", data="U3", labels="T");

The same experiment with the SNN score but using a leave-one-
out technique to assess the generalization performances could be in
principle attained by using the same function do.RANKS and by setting
kk = 1253 (i.e. the total number of nodes/drugs), but a more efficient
version is implemented in the RANKS package through the function
do.loo.RANKS:

the same task with loo

do.loo.RANKS(score=NN.score, compute.kernel=TRUE,

kernel=rw.kernel, a=10, p=5, sparsify=TRUE,

norm=FALSE, data="U3", labels="T",

output.dir="Results/", output.name="drug_rep");

RANKS implement also high level functions for cross-validation to
experiment with other popular network-based algorithms, such as guilt-by-
association, random walk, random walk with restart and label propagation
algorithms:

High level function for 5 fold CV with GBA

do.GBA(fun=GBAmax, k=5, filter=TRUE, seed=0,

data="U3", labels="T");

High level function for 5 fold CV with random walk

do.RW(tmax=5, eps=1e-10, k=5, filter=TRUE, seed=0,

data="U3", labels="T");

5 fold CV with random walk with restart

do.RWR(gamma=0.2, tmax=20, k=5, filter=TRUE, seed=0,

data="U3", labels="T");

Note that in all cases the cross-validated computed scores, the AUC and
precision at fixed recall levels results for each single class and averaged
across classes are available as R compressed .rda files in the directory
Results (or whatever directory indicated in the argument output.dir of
the high-level function do.RANKS). For instance the previous call:

KNN score with k=19 and 2 steps random walk kernel:

do.RANKS(score=KNN.score, kernel=rw.kernel, a=5, p=2,

sparsify=TRUE, kk=5, rep=1, seed=0,

data.dir="data/", labels.dir="data/",

output.dir="Results/", data="U3", labels="T",

k=19);

automatically generates in the directory Results the files:

Scores.RW.5step.fTRUE.U3.T.rda # Score results

AUC.KNN.score19.p2.a5.fTRUE.U3.T.rda # AUC results

PXR.KNN.score19.p2.a5.fTRUE.U3.T.rda # Precision/recall

For instance by looking at AUC results:

load("AUC.KNN.score19.p2.a5.fTRUE.U3.T.rda");

AUC$av # AUC averaged across the 51 TC categories

[1] 0.9276313

AUC$per.class # per class results

only the first 10 visualized:

Adrenergic_Agents

0.9353646

Adrenergic_alpha.Agonists

0.9750442

Analgesics

0.8287407

Anti.Allergic_Agents

0.9627023

Anti.Bacterial_Agents

0.9604981

Adrenergic_Uptake_Inhibitors

0.9887672

Adrenergic_beta.Antagonists

0.9639088

Analgesics._Opioid

0.9977624

Anti.Arrhythmia_Agents

0.9317467

Anti.HIV_Agents

0.9351045

. . .

2.3 Human Phenotype Ontology prediction

The Human Phenotype Ontology (HPO) project [30] provides a
comprehensive and well-structured set of more than 10000 terms
(classes) that represent human phenotypic abnormalities annotated to
more than 7000 hereditary syndromes listed in OMIM, Orphanet
and DECIPHER databases [1]. An important computational task
is represented by the prediction or ranking of genes with respect
to HPO terms [10, 37]. HPO prediction has been recently
proposed in the international CAFA2 challenge, and RANKS was
one of the top-scoring methods participating to the challenge
(http://biofunctionprediction.org/node/8).

Here we show an application of RANKS to HPO term ranking
using integrated networks of human genes obtained from two previous

i
i

“RANKS_supp” — 2016/3/28 — 19:41 — page 6 — #6 i
i

i
i

i
i

6 Valentini et al.

Table 2. DrugBank Therapeutic Categories (TC) with more than 15 drugs
considered in the experiments. The first column reports the abbreviated name,
the second the full DrugBank name and the third the cardinality of the TC.

Therapeutic categories with more than 15 drugs
Abbreviated name Full DrugBank name name Card.
Adren.A. Adrenergic_Agents 26
Adren.In. Adrenergic_Uptake_Inhibitors 20
Adren.a. Strategic_alpha.Agonists 23
Adren.b. Adrenergic_beta.Antagonists 25
Analges. Analgesics 40
Analg.Op. Analgesics._Opioid 24
Anti.Aller. Anti.Allergic_Agents 35
Anti.Arrh. Anti.Arrhythmia_Agents 42
Anti.Bact. Anti.Bacterial_Agents 103
Anti.HIV Anti.HIV_Agents 22
Anti.Inf.A. Anti.Infective_Agents 29
Anti.Inf. Anti.Infectives 19
Anti.Ulcer Anti.Ulcer_Agents 19
Anti.anx. Anti.anxiety_Agents 35
Anti.infl. Anti.inflammatory_Agents 49
Antiarr.A. Antiarrhythmic_Agents 29
Anticonv. Anticonvulsants 46
Antidysk. Antidyskinetics 23
Antiemetics Antiemetics 34
Antifungal Antifungal_Agents 22
Antihist. Antihistamines 24
Antihypert. Antihypertensive_Agents 105
Antimetab. Antimetabolites 26
Antineopl. Antineoplastic_Agents 86
Antineopl.H. Antineoplastic_Agents._Hormonal 18
Antipark. Antiparkinson_Agents 27
Antipsyc.A. Antipsychotic_Agents 39
Antipsyc. Antipsychotics 27
Antiviral Antiviral_Agents 25
Bronchodil. Bronchodilator_Agents 33
Ca.Ch.Block. Calcium_Channel_Blockers 22
Cephalosp. Cephalosporins 30
Cycloox.Inh. Cyclooxygenase_Inhibitors 24
Dietary.sup. Dietary_supplement 47
Diuretics Diuretics 23
Dopam..Ant. Dopamine_Antagonists 29
Enzyme.Inh. Enzyme_Inhibitors 64
GABA.Mod. GABA_Modulators 26
Glucocort. Glucocorticoids 21
Hist.H1.Ant. Histamine_H1_Antagonists 28
Hypnot.Sed. Hypnotics_and_Sedatives 41
Hypoglyc. Hypoglycemic_Agents 22
Immunosup. Immunosuppressive_Agents 20
Micronutr. Micronutrient 45
Musc.Ant. Muscarinic_Antagonists 23
Narcotics Narcotics 22
Penicillins Penicillins 20
Sympathol. Sympatholytics 24
Sympathomim. Sympathomimetics 32
Vasoconstr. Vasoconstrictor_Agents 25
Vasodilator Vasodilator_Agents 55

studies [41, 17]. The Functional Interaction (FI) network [41] has been
constructed by using functional interactions predicted by a Naive Bayes
classifier trained on pairwise relationships extracted from Reactome [39]
and other curated pathways databases, and from uncurated pairwise
relationships derived from physical protein-protein interactions (PPI) in

human and other species, from gene co-expression data, proteins domain-
domain interactions, protein interactions obtained via biomedical text
mining, and Gene Ontology annotations. The network presented in [17]
integrates diverse lines of evidence in order to produce a functional human
gene network (HumanNet) that has then been used in several tests to predict
causal genes for human diseases and to increase the power of genome-wide
association studies. The most significant difference between HumanNet
and FI networks consists of including in the former functional interactions
borrowed from other species (yeast, fly and worm) through comparative
genomics techniques.

As an example of application of RANKS we integrated the two networks
through a simple unweighted integration method, thus obtaining a net with
16505 nodes (genes) and about one million and two hundred thousands
edges. We randomly selected 100 HPO terms having more than 20

annotated genes and applied RANKS to HPO term ranking and prediction.
Please, note that this task requires a computer with 16 GB RAM to be
comfortably executed (other machines with less available memory can be
used, but in this case it is likely that a certain computational burden will
occur, due to memory swapping problems).

After loading the RANKS and PerfMeas packages, we load the HPO
annotations, randomly selecting 100 HPO terms having more than 20
annotated genes:

the network data (net) and the corresponding labels

(both files in .rda format) are assumed to be in

the directory data:

net = "hnnet-finet.UA.net";

labels <- "hpo.hnnet.finet.ann.20";

load("data/hpo.hnnet.finet.ann.rda");

elimination of terms having less than 20 annotations

x <- apply(hpo.hnnet.finet.ann,2,sum);

y <- which (x<=20);

5066 terms removed, 1464 terms remained

hpo.hnnet.finet.ann.20 <- hpo.hnnet.finet.ann[,-y];

random selection of 100 HPO terms

n <- ncol(hpo.hnnet.finet.ann.20);

selected <- sample(1:n, 100);

hpo.hnnet.finet.ann.20.selected <-

hpo.hnnet.finet.ann.20[,selected];

save(hpo.hnnet.finet.ann.20.selected,

file="data/hpo.selected.labels.rda");

labels.sel <- "hpo.selected.labels";

With a single call to the high level function do.loo.RANKS we can
perform a leave-one-out run on the entire network using the average score
and a 1-step random walk kernel; scores, AUC and precision/recall results
are automatically stored in .rda files in the current directory:

RW kernel with 1 step

output.dir <- "./";

labels.sel <- "hpo.selected.labels";

do.loo.RANKS(score=eav.score, compute.kernel=TRUE,

kernel=rw.kernel, a=2, p=1, sparsify=TRUE,

data=net, labels=labels.sel,

output.dir=output.dir, output.name="hpo.sel");

The same task, using different combination of kernels, can be easily
performed with the following lines of code:

RW kernel with 3 steps

do.loo.RANKS(score=eav.score, compute.kernel=TRUE,

kernel=rw.kernel, a=10, p=3, sparsify=TRUE,

data=net, labels=labels.sel, output.dir=output.dir,

output.name="hpo.sel");

linear kernel

do.loo.RANKS(score=eav.score, compute.kernel=TRUE,

kernel=linear.kernel, a=2, p=1, sparsify=TRUE,

data=net, labels=labels.sel, output.dir=output.dir,

i
i

“RANKS_supp” — 2016/3/28 — 19:41 — page 7 — #7 i
i

i
i

i
i

RANKS 7

output.name="hpo.sel.linear");

usage of the network "as it is" (identity kernel)

do.loo.RANKS(score=eav.score, compute.kernel=TRUE,

kernel=identity.kernel, p=1, sparsify=TRUE,

data=net, labels=labels.sel, output.dir=output.dir,

output.name="hpo.sel.identity");

The distribution of the AUC results across the 100 considered HPO terms,
for the identity (Id), linear (Lin) and random walk 1-step (RW1) and
random walk 3 steps (RW3) kernels are summarized in Fig. 2.

Id Lin RW1 RW3

0.
5

0.
6

0.
7

0.
8

Fig. 2. Boxplots of the AUC results across the randomly selected 100 HPO terms. Id stands
for Identity kernel, Lin for linear, RW1 and RW3 for 1 and 3 steps random walk kernel.

3 User defined score functions and kernels
One of the strengths of the RANKS is its modularity: it offers an algorithmic
scheme where the specific choice of a score function and a kernel leads to
a different semi-supervised learning algorithm (Section 1).

RANKS offers a set of different score functions implemented in the
package: Nearest-Neighbour (SNN), K-Nearest-Neighbour (SKNN) and
average (SAV score) – Section 1), as well as Weighted Sum with Linear
Decay SAV score (SWSLD), which represents a generalization of the
score introduced in [16]. Moreover several kernels are just implemented
in the library, such as the Cauchy, the Laplacian, the Gaussian, the inverse
multiquadric, the linear and Polynomial and the random walk kernels
(Section 1.4). In addition, a user can easily devise and implement her/his
own score functions and kernels, which can be used by any high-level
function of the library as they were in fact built-in.

If you would like to implement your own score function (e.g. the
My.score function), you should implement two S4 methods:

single.My.score(K, x, x.pos)

My.score(K, x, x.pos, norm = TRUE)

whose arguments are:

K: a matrix. It must be a kernel matrix or a symmetric

matrix expressing the similarity between nodes

x: integer. Index corresponding to the element of the K

matrix for which the score must be computed

x.pos: vector of integer. Indices of the positive

elements of the K matrix

The single.My.Score is expected to return the score of a single node,
while My.score should return a vector embodying the scores of all nodes
of the network. For the sake of clarity, let us provide the declaration of the
method for single.My.score:

generic function

setGeneric("single.My.score",

function(RK, x, x.pos) standardGeneric("single.My.Score"));

method for class matrix

setMethod("single.My.score", signature(K="matrix"),

function(K, x, x.pos) { ... })

method for class graph - package graph

setMethod("single.My.score", signature(K="graph"),

function(K, x, x.pos) { ... })

Of course the body of the functions should be filled with the code
implementing the method, and parameters of the score can be added as
additional arguments. For more details, please see the reference manual of
the package RANKS.

Adding novel kernel functions is even easier. For instance a user-
defined kernel My.kernel can be added by implementing a function as
follows:

My.kernel <- function(W, a) { ... }

where

W: numeric matrix.

Rows are examples and columns are features

a: parameter for the kernel

(if necessary other kernel parameters can be added).

My.kernel should return a square symmetric kernel matrix representing
the similarities between the examples (rows of W), as specified in the
My.kernel function.

Once a new score function and/or a new kernel function have been
defined as specified above, they can be used in any high-level RANKS
functions where a generic score or kernel function can be used. For
instance, if we consider the high level function do.RANKS, to perform
a 5-fold cross-validation with the network "net.rda" and the labels
"labels.rda", both stored in the directory "data", one should callMy.score
and My.kernel as follows:

do.RANKS(score = My.score, kernel = My.kernel, kk = 5,

data.dir = "data/", labels.dir = "data/",

output.dir = "Results/", data="net", labels="labels")

The following additional example considers a hold-out classification of a
kernel matrix K using the user-defined My.score score function:

ker.score.classifier.holdout(K, ind.pos, ind.test,

fun = My.score)

As already pointed out, custom score functions and kernels can be passed
as arguments to any high level function of the software library, such as
do.RANKS or do.loo.RANKS.

References
[1]J. Amberger, C. Bocchini, and A. Amosh. A new face and new challenges for

Online Mendelian inheritance in Man (OMIM). Hum. Mutat., 32:564–7, 2011.
[2]S. Brin and L. Page. The anatomy of a large-scale hypertextual web search

engine. In Proceedings of the seventh international conference on World Wide

i
i

“RANKS_supp” — 2016/3/28 — 19:41 — page 8 — #8 i
i

i
i

i
i

8 Valentini et al.

Web 7, pages 107–117, Amsterdam, The Netherlands, 1998. Elsevier Science
Publishers.

[3]H.N. Chua, W. Sung, and L. Wong. An efficient strategy for extensive integration
of diverse biological data for protein function prediction. Bioinformatics,
23(24):3364–3373, 2007.

[4]M. Frasca, A. Bertoni, M. Re, and G. Valentini. A neural network algorithm for
semi-supervised node label learning from unbalanced data. Neural Networks,
43:84–98, 2013.

[5]M. Frasca, A. Bertoni, and G. Valentini. Unipred: Unbalance-aware network
integration and prediction of protein functions. Journal of Computational
Biology, 22(12):1057–1074, 2015.

[6]M. Frasca and G. Valentini. COSNet: an R package for label
prediction in unbalanced biological networks Neurocomputing,
doi:10.1016/j.neucom.2015.11.096, 2016.

[7]A. Gottlieb, G. Stein, E. Ruppin, and R. Sharan. PREDICT, a method for
inferring novel drug indications with application to personalized medicine.
Molecular Systems Biology, 7(496), 2011.

[8]F. Iorio, R. Bosotti, E. Scacheri, P. Mithbaokar, R. Ferriero, L. Murino,
R. Tagliaferri, N. Brunetti-Pierri, A. Isacchi, and D. di Bernardo. Discovery
of drug mode of action and drug repositioning from transcriptional responses.
PNAS, 107(33):14621–14626, 2010.

[9]Jiang, Y. et al.. An expanded evaluation of protein function prediction methods
shows an improvement in accuracy. ArXiv e-prints, article ID: 1601.00891,
2016.

[10]I Kahanda, C. Funk, K. Verspoor, and A. Ben-Hur. PHENOstruct: prediction
of human phenotype ontology terms using heterogeneous data sources.
F1000Research, 4(259), 2015.

[11]H. Kashima, K. Tsuda, and A. Inokuchi. Kernels for graphs. In B. Scholkopf,
K. Tsuda, and J.P. Vert, editors, Kernel Methods in Computational Biology,
pages 155–170. MIT Press, Cambridge, MA, 2004.

[12]C. Knox, V. Law, T. Jewison, P. Liu, S. Ly, A. Frolkis, A. Pon, K. Banco, C. Mak,
V. Neveu, Y. Djoumbou, R. Eisner, A.C. Guo, and D.S. Wishart. DrugBank 3.0:
a comprehensive resource for ’omics’ research on drugs. Nucleic Acids Res.,
39(Jan):D1035–41, 2011.

[13]S Kohler, SC Doelken, CJ Mungall, S Bauer, HV Firth, I Bailleul-Forestier,
GC Black, DL Brown, M Brudno, J Campbell, DR FitzPatrick, JT Eppig,
AP Jackson, K Freson, M Girdea, I Helbig, JA Hurst, J Jahn, LG Jackson,
AM Kelly, DH Ledbetter, S Mansour, CL Martin, C Moss, A Mumford,
WH Ouwehand, SM Park, ER Riggs, RH Scott, S Sisodiya, S Van Vooren,
RJ Wapner, AO Wilkie, CF Wright, AT Vulto-van Silfhout, N de Leeuw,
BB de Vries, NL Washingthon, CL Smith, M Westerfield, P Schofield, BJ Ruef,
GV Gkoutos, M Haendel, D Smedley, SE Lewis, and PN Robinson. The human
phenotype ontology project: linking molecular biology and disease through
phenotype data. Nucleic Acids Research, 42((Database issue)):D966–74, 2014.

[14]I.R. Kondor and J.D. Lafferty. Diffusion kernels on graphs and other discrete
structures. In Proceedings of the 19th International Conference on Machine
Learning (ICML), pages 315–322, 2002.

[15]M. Kuhn, D. Szklarczyk, A. Franceschini, M. Campillos, C. von Mering, L.J.
Jensen, A. Beyer, and P. Bork. STITCH 2: an interaction network database for
small molecules and proteins. Nucleic Acids Res., 38(Jan):D552–6, 2010.

[16]I. Lee, B. Ambaru, P. Pranjali-Thakkar, E.M. Marcotte, and S.Y. Rhee.
Rational association of genes with traits using a genome-scale gene network
for arabidopsis thaliana. Nat. Biotechnol., 28:149–156, 2010.

[17]I Lee, UM Blom, PI Wang, JE Shim, and EM Marcotte. Prioritizing candidate
disease genes by network-based boosting of genome-wide association data.
Genome Res., 21:1109–1121, 2011.

[18]L. Lovasz. Random Walks on Graphs: a Survey. Combinatorics, Paul Erdös is
Eighty, 2:1–46, 1993.

[19]A. Ma’ayan. Network integration and graph analysis in mammalian molecular
systems biology. IET Syst. Biol., 2(5):206–221, 2008.

[20]M.L. Mayer and P. Hieter. Protein networks - guilt by association. Nature
Biotechnology, 18(12):1242–1243, 2000.

[21]M. Mesiti, M. Re, and G. Valentini. Think globally and solve locally:
secondary memory-based network learning for automated multi-species function
prediction. GigaScience, 3:5, 2014.

[22]A. Mitrofanova, V. Pavlovic, and B. Mishra. Prediction of protein functions with
gene ontology and inter-species protein homology data. IEEE ACM Transactions
on Computational Biology and Bioinformatics, 8(3):775–784, 2011.

[23]S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, and Q. Morris.
GeneMANIA: a real-time multiple association network integration algorithm
for predicting gene function. Genome Biology, 9(S4), 2008.

[24]F. Napolitano, Y. Zhao, V.M. Moreira, R. Tagliaferri, J. Kere, M. D’Amato,
and D. Greco. Drug repositioning: a machine-learning approach through data
integration. J Cheminform., Jun 22;5(1):30. doi: 10.1186/1758-2946-5-30,
2013.

[25]S. Oliver. Guilt-by-association goes global. Nature, 403:601–603, 2000.
[26]P. Radivojac et al. A large-scale evaluation of computational protein function

prediction. Nature Methods, 10(3):221–227, 2013.
[27]M. Re, M. Mesiti, and G. Valentini. A Fast Ranking Algorithm for Predicting

Gene Functions in Biomolecular Networks. IEEE ACM Transactions on
Computational Biology and Bioinformatics, 9(6):1812–1818, 2012.

[28]M. Re and G. Valentini. Cancer module genes ranking using kernelized score
functions. BMC Bioinformatics, 13(Suppl 14/S3), 2012.

[29]M. Re and G. Valentini. Network-based Drug Ranking and Repositioning
with respect to DrugBank Therapeutic Categories. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 10(6):1359–1371, 2013.

[30]P.N. Robinson, S. Kohler, S. Bauer, D. Seelow, D. Horn, and S. Mundlos.
The Human Phenotype Ontology: a tool for annotating and analyzing human
hereditary disease. Am. J. Hum. Genet., 83:610–615, 2008.

[31]A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko,
U. Guldener, G. Mannhaupt, M. Munsterkotter, and H.W. Mewes. The FunCat,
a functional annotation scheme for systematic classification of proteins from
whole genomes. Nucleic Acids Research, 32(18):5539–5545, 2004.

[32]B. Schölkopf, K. Tsuda, and J.P. Vert. Kernel Methods in Computational
Biology. MIT Press, Cambridge, MA, 2004.

[33]M. Sirota et al. Discovery and preclinical validation of drug indications using
compendia of public gene expression data. Sci. Transl. Med., 96(3):96–77, 2011.

[34]A.J. Smola and I.R. Kondor. Kernel and regularization on graphs. In B. Scholkopf
and M.K. Warmuth, editors, Proc. of the Annual Conf. on Computational
Learning Theory, Lecture Notes in Computer Science, pages 144–158. Springer,
2003.

[35]G. Valentini. True Path Rule hierarchical ensembles for genome-wide gene
function prediction. IEEE ACM Transactions on Computational Biology and
Bioinformatics, 8(3):832–847, 2011.

[36]G. Valentini and N. Cesa-Bianchi. Hcgene: a software tool to support the
hierarchical classification of genes. Bioinformatics, 24(5):729–731, 2008.

[37]G. Valentini, S. Kohler, M. Re, M. Notaro, and P.N. Robinson. Prediction of
human gene - phenotype asociations by exploiting the hierarchical structure
of the human phenotype ontology. In IWBBIO 2015 (3rd International Work-
Conference on Bioinformatics and Biomedical Engineering), volume 9043 of
Lecture Notes in Bioinformatics, pages 66–77. Springer, 2015.

[38]G. Valentini, A. Paccanaro, H. Caniza, A. Romero, and M. Re. An extensive
analysis of disease-gene associations using network integration and fast kernel-
based gene prioritization methods. Artificial Intelligence in Medicine, 61(2):63–
78, 2014.

[39]I Vastrik, P D’Eustachio, E Schmidt, G Gopinath, D Croft, B de Bono,
M Gillespie, B Jassal, S Lewis, L Matthews, G Wu, E Birney, and L Stein.
Reactome: a knowledge base of biologic pathways and processes. Genome
Biol., 8:R39, 2007.

[40]A. Vazquez, A. Flammini, A Maritan, and A Vespignani. Global protein function
prediction from protein-protein interaction networks. Nature Biotechnology,
21:697–700, 2003.

[41]G Wu, X Feng, and L Stein. A human functional protein interaction network
and its application to cancer data analysis. Genome Biology, 11:R53, 2010.

