
The 18th European Conference on Artificial Intelligence

Proceedings

Workshop on Supervised and Unsupervised
Ensemble Methods and their Applications

Monday July 21, 2008

Tuesday July 22, 2008

Patras, Greece

Oleg Okun and Giorgio Valentini

SUEMA Workshop Chairs
Oleg Okun,
Dept. of Electrical and Information
Engineering,
University of Oulu, Finland

Giorgio Valentini,
DSI, Dept. of Computer
Science
University of Milano, Italy

SUEMA Scientific Program Committee
Nicolo' Cesa-Bianchi University of Milano, Italy
Carlotta Domeniconi George Mason University, USA
Robert Duin Delft University of Technology, the Netherlands
Mark Embrechts Rensselaer Polytechnic Institute, USA
Ana Fred Technical University of Lisboa, Portugal
João Gama University of Porto, Portugal
Giorgio Giacinto University of Cagliari, Italy
Larry Hall University of South Florida, USA
Ludmila Kuncheva University of Wales, UK
Francesco Masulli University of Genova, Italy
Harvey Mitchell ELTA, Israel
Mykola Pechenizkiy Eindhoven University of Technology, The Netherlands
Petia Radeva Autonomous University of Barcelona, Spain
Juan José Rodríguez University of Burgos, Spain
Fabio Roli University of Cagliari, Italy
Paolo Rosso Polytechnic University Valencia, Spain
Carlo Sansone Federico II University of Napoli, Italy
José Salvador Sánchez University Jaume I, Spain
Johan Schubert FOI, Swedish Defence Research Agency, Sweden
Lambros Skarlas University of Patras, Greece
Grigorios Tsoumakas Aristotle University of Thessaloniki, Greece
Jordi Vitrià Autonomous University of Barcelona, Spain
Ioannis Vlahavas Aristotle University of Thessaloniki, Greece
Terry Windeatt University of Surrey, UK

Table of Contents

Preface 2
Acknowledgments 4
Classifier Ensembles for Detecting Concept Change in Streaming Data:

Overview and Perspectives (PASCAL2 invited talk by Ludmila Kuncheva) 5
Evade Hard Multiple Classifier Systems by Battista Biggio, Giorgio Fumera,

and Fabio Roli 10
A Behaviour-Knowledge Space Approach for Spam Detection by Francesco

Gargiulo, Antonio Penta, Antonio Picariello, and Carlo Sansone 16
Towards an Intelligent Decision Support System for Intensive Care Units by

Pedro Gago and Manuel Filipe Santos 21
Weighted Decoding ECOC for Facial Action Unit Classification by Terry

Windeatt, Raymond S. Smith, and Kaushala Dias 26
The Neighbors Voting Algorithm by Gabriele Lombardi, Elena Casiraghi,

and Paola Campadelli 31
Multi-Class Modeling with Ensembles of Local Models for Imbalanced Mis-

classification Costs by Sebastian Nusser, Clements Otte, and Werner Haupt-
mann 36

A Taxonomy and Short Review of Ensemble Selection by Grigorios Tsouma-
kas, Ioannis Partalas, and Ioannis Vlahavas 41

Penta-Training: Clustering Ensembles with Bootstrapping of Constraints by
Carlotta Domeniconi and Muna Al-Razgan 47

Independent Model Selection for Ensemble Dispersion Forecasting by Angelo
Ciaramella, Giulio Giunta, Angelo Riccio, and Stefano Galmarini 52

Improving Supervised Learning with Multiple Clusterings by Sébastien Deri-
vaux, Germain Forestier, and Cédric Wemmert 57

Partitioner Trees: Combining Boosting and Arbitrating by Georg Krempl
and Vera Hofer 61

Disturbing Neighbors Diversity for Decision Forests by Jesús Maudes, Juan
J. Rodŕıguez, and César Garśıa-Osorio 67

Integrating Feature Selection and Committee Training by Erinija Prancke-
viciene 72

1

Preface

Welcome to the 2nd Workshop on Supervised and
Unsupervised Ensemble Methods and their Applications
(SUEMA) to be held in conjunction with the 18th European
Conference on Artificial Intelligence (Patras, Greece) on 21-
22 July, 2008. This workshop follows a similar event organized
last year in Spain. The goal of SUEMA workshops is to pro-
vide the forum for informal constructive discussion and the
exchange of ideas among a small group of scientists work-
ing in the field of ensemble methods. Nevertheless, this forum
does not intend to be exclusively reserved for a small group
of selected persons.

Despite of its small format, SUEMA attracted scholars and
researchers from diverse areas of ensemble methods. How-
ever, what is important for the whole field, in general, and
for SUEMA, in particular, is the application-driven research
reported in many papers. This means that ensemble methods
have found their ways in solving various practical tasks. We
thank all authors for their contributions that embrace a wide
area of applications of ensemble methods.

This year, SUEMA is proud to host our PASCAL2 in-
vited speaker, Ludmila Kuncheva from UK, who is the au-
thor of the well-known book “Combining Pattern Classifiers.
Methods and Algorithms”, published by Wiley in 2004 and
probably the first-ever book exclusively devoted to ensemble
methods. PASCAL2 (Pattern Analysis and Statistical Mod-
elling and Computational Learning) is a Network of Excel-
lence funded by the Seventh Framework Programme of the
European Union. Its main research focus is on the emerg-
ing challenges created by the ever expanding applications of
adaptive systems technology and their central role in the de-
velopment of large scale cognitive systems. From this stand-
point the research topics of the workshop largely fall within
the scope of PASCAL2.

The SUEMA program comprises 13 accepted papers sub-
mitted by scientists from UK, Italy, France, USA, Austria,
Germany, Greece, Spain, Lithuania, and Portugal, with the
largest part come from Italy (4 papers).

The invited talk by Ludmila Kuncheva will present an
overview and perspectives of applying classifier ensembles for
detecting concept change or drift in data streams. This is a
challenging and hard to solve real-world problem since accu-
rate decisions must be made on-line as data arrive.

Grigorios Tsoumakas, Ioannis Partalas, and Ioannis Vla-
havas will present an overview of ensemble selection ap-
proaches intended to reduce the number of predictive models
in an ensemble while improving ensemble performance. It is
known that if the number of models is too large, an ensemble
can suffer from time/memory problems and hence it will not
scale well to large datasets.

Battista Biggio, Giorgio Fumera, and Fabio Roli discuss

ensemble applications for security, in particular, for spam fil-
tering. They provide the formal explanation of why ensembles
succeed, i.e. why ensembles are more secure to use than a sin-
gle classifier. Their explanation is based on the elements of
game theory.

Francesco Gargiulo, Antonio Penta, Antonio Picariello, and
Carlo Sansone continue the spam filtering theme by using a
behavior-knowledge space approach for spam detection. Spam
is only one of the examples of dynamically changing data.

Pedro Gago and Manuel Filipe Santos analyze the concept
drift in medical services (e.g. intensive care units) with an
algorithm inspired by the dynamic weighted majority voting.

Facial expression recognition including multiple classes of
expressions can be very difficult even for humans to perform.
Nevertheless, Terry Windeatt, Raymond Smith, and Kaushala
Dias will show how to successfully apply the weighted decod-
ing ECOC (error-correcting-output-coding) for this task.

Sebastian Nusser, Clemens Otte, and Werner Hauptmann
concentrate on imbalanced misclassification costs in multi-
class safety-related problems. They will demonstrate that
a hierarchy of such costs when taken into account can re-
duce/avoid inconsistencies in ensemble decisions, caused by
multiple classes.

Manifold learning by the tensor voting framework used in
various computer vision tasks forms the basis of the neigh-
bors voting algorithm to be presented by Gabriele Lombardi,
Elena Casiraghi, and Paola Campadelli. The result of their
approach is particularly interesting to see in image patch-
ing/continuation, where a part of the image is missing or
deleted and the task is to reconstruct the missing/deleted
part so that it will be visually consistent with the rest of the
image.

Ensembles are successful not only in classification but also
in data clustering, and a number of papers prove this point.
Carlotta Domeniconi and Muna Al-Razgan explore the combi-
nation of clustering ensembles and semi-supervised clustering,
aided by a set of constraints obtained directly from the data
in order to address the ill-posed nature of clustering.

Sébastien Derivaux, Germain Forestier, and Cédric Wem-
mert discuss how supervised learning can benefit from multi-
ple clusterings.

Angelo Ciaramella, Giulio Giunta, Angelo Riccio, and Ste-
fano Galmarini propose a hierarchical agglomerative algo-
rithm to clusterize models tailored to the prediction of the
distribution of pollutants, comparing the different distribu-
tions predicted by the models using the negentropy and the
Kullback-Leibler divergence.

One of the main reasons for ensemble success is the diversity
of predictions made by the algorithms composing an ensem-
ble. Georg Krempl and Vera Hofer explore the combination

2

of boosting and arbitrating, which they call partitioner trees,
for improving the performance of specific classifier ensembles,
for instance, such as those of the generalized linear models.

Diversity injection into ensembles of decision trees is con-
sidered by Jesús Maudes, Juan Rodŕıguez, and César Garćıa-
Osorio; their approach is called disturbing neighbors, since it
adds extra features, based on the nearest neighbor rule, to the
original feature vector.

Erinija Pranckeviciene addresses the problem of how to con-
struct a diverse ensemble by integrating feature selection into
ensemble training.

Oleg Okun and Giorgio Valentini

3

Acknowledgments

The workshop chairs would like to thank the PASCAL 2 Network of Excel-
lence and the Dipartimento di Scienze dell’Informazione (University of Milan,
Italy) for the partial financial support of this event.

4

5

6

7

8

9

Evade Hard Multiple Classifier Systems
Battista Biggio and Giorgio Fumera and Fabio Roli 1

Abstract. Multiple classifier systems are widely used in security
applications like biometric personal authentication, spam filtering,
and intrusion detection in computer networks. Several works exper-
imentally showed their effectiveness in these tasks. However, their
use in such applications is motivated only by intuitive and qualitative
arguments. In this work we give a first possible formal explanation
of why multiple classifier systems are harder to evade, and there-
fore more secure, than a system based on a single classifier. To this
end, we exploit a theoretical framework recently proposed to model
adversarial classification problems. A case study in spam filtering
illustrates our theoretical findings.

1 Introduction

The effectiveness of multiple classifier systems has been proven in
several real applications [4, 3]. Various authors showed that using
classifier ensembles can allow to improve the detection capability
in security applications like biometric authentication, and intrusion
detection in computer networks. The classifier ensemble approach is
also used in commercial and open source spam filters. A short survey
of the literature on these applications is reported in section 2. For the
purposes of this work, it is important to note that the use of multiple
classifier systems have been also proposed to improve the so called
“hardness of evasion” of a security system, namely, to increase the
effort that the attacker has to do to evade the system [6]. However, the
main motivations proposed so far in favour of the classifier ensemble
approach in security applications are indeed based on qualitative and
intuitive arguments, besides the experimental evidence. In particular,
to our knowledge, no work tried to develop formal arguments to anal-
yse the improvements attainable by multiple classifier systems on the
hardness of evasion.

The aim of this work is to make a first step in this direction. We
consider a theoretical framework recently proposed in [1] to model
adversarial classification problems, namely, problems in which a
system based on machine learning techniques is used against an
adaptive adversary which can modify malicious patterns to evade
the system. This is clearly the case of many security applications,
including the ones mentioned above. This framework is summarised
in section 3.1. In section 3.2 we use it to model the particular case
in which the system is made up of an ensemble of classifiers, and
new classifiers can be added to the system in response to adversarial
actions aimed at evading it. This allow us to give a possible formal
explanation of why multiple classifiers are harder to evade than a sin-
gle classifier. These findings are then experimentally investigated in
section 4 with a case study in spam filtering, using the SpamAssas-
sin open source spam filter and a real corpus of legitimate and spam

1 Dept. of Electrical and Electronic Engineering, University of Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy, e-mails: {battista.biggio, fumera,
roli}@diee.unica.it

e-mails.

2 Previous works on multiple classifiers for
security applications

The use of classifier ensembles to improve the detection accuracy or
the hardness of evasion has been recently proposed by several au-
thors in different security applications [4, 3, 6, 2, 7]. It also turns
out that the design of well-known spam filters like SpamAssassin
(http://spamassassin.apache.org) and intrusion detec-
tion systems (IDSs) like Snort (http://www.snort.org/) im-
plicitly follows the approach based on combining an ensemble of
detectors.

SpamAssassin and Snort are based on a similar rationale. They
consist of a set of classification rules (“test”) in the if-then form,
which analyse different characteristics of input patterns (respectively
e-mails and network packets) to detect the presence of “signatures”
denoting a malicious origin of the pattern. Each test outputs a score
which denotes the “likelihood” that the pattern is malicious. Tests
are often unrelated to each other, in the sense that they are based
on unrelated characteristics of the input pattern. In some cases, they
are focused on specific signatures of known attacks. In the case of
SpamAssassin, the scores provided by the tests which fired (namely,
the ones whose antecedent part is true for the processed e-mail) are
summed up. The final decision about the input pattern (to be labelled
either as malicious or as innocent) is taken by thresholding the sum
of the scores. 2 This architecture makes easy to add new tests (i.e.,
binary classification rules) or delete old ones, to keep SpamAssas-
sin and Snort updated and to customise them to the specific traffic
of the network on which they operate. We point out that SpamAssas-
sin and Snort can be considered as instances of classifier ensembles.
Each rule can indeed be viewed as a single classifier based on a spe-
cific set of features, whose score is then fused with the ones of the
other classifiers through the well known sum rule [4]. This kind of
ensemble-like modular architecture is used also in commercial spam
filters and IDSs.

The classifier ensemble approach has been explicitly investigated
in the literature of IDSs, as an alternative to the approach based on
a “monolithic” classifier [2, 6]. The ensemble architecture proposed
in [2] and [6] is similar: it consists in fusing classifiers each trained
on a distinct feature representation of patterns. The main motivations
are derived from the field of classifier ensembles. It is indeed known
that, if different sets of heterogeneous and loosely correlated features
are available, as happens for IDSs, combining the outputs of different
classifiers trained on different feature sets can be more effective than

2 Actually Snort rules give a boolean output, and the decision function is a
logic OR between all the outputs. Nevertheless, this is equivalent to having
a binary score, say 0 and 1, and to threshold the sum of such scores with a
value between 0 and 1.

10

designing a single classifier in the feature space made up of all the
available features (see for instance [4]). Moreover, if the overall num-
ber of features is large, such a single classifier would be more prone
than a classifier ensemble to the so-called curse of dimensionality
problem. In [2] it was also pointed out that the ensemble approach
“reflects the behaviour of network security experts, who usually look
at different traffic statistics in order to produce reliable attack signa-
tures”. The above arguments qualitatively support the use of classifier
ensembles to improve the effectiveness of an IDS, i.e. to attain both
low false alarm rates and high attack detection rates. In [6] it was
also pointed out that classifier ensembles can allow to improve the
hardness of evasion. The reason is that fusing classifiers that work
on different feature spaces “forces the attacker to devise a mimicry
attack that evades multiple models of normal traffic at the same time,
which is intuitively harder than evading just one model”.

Classifier ensembles have been very investigated also in biometric
applications, in which they can be straightforwardly exploited in sev-
eral ways [7]. For instance, it is intuitive that using different biomet-
ric traits (like face, fingerprints, and speech) the recognition accuracy
of a system as well as its hardness of evasion can be improved. With
regard to the hardness of evasion, the use of multiple classifiers using
different biometric traits strongly discourages fraudulent attempts to
deceive personal identity verification systems. In fact, deceiving a
multi-modal biometric system would require the construction of dif-
ferent kinds of fake biometric traits, which is a very challenging task.
However, no work theoretically analysed the hardness of evasion of
biometric systems that use the classifier ensemble approach.

As can be seen from the above overview, so far the hardness of
evasion of security systems based on MCSs is not motivated theoret-
ically, but is rather intuitively suggested by the fact that the MCS ar-
chitecture naturally allows adding new classifiers (e.g., new filtering
rules in SpamAssassin) in response to adversarial actions aimed at
evading it, and experimental evidences show that adding new classi-
fiers, using different features, makes more difficult for the attacker to
evade the system. Experience and intuition also suggest the designer
of these security systems that the characteristics which allow detect-
ing malicious patterns can be very different and heterogeneous, and
can change over time due to new tricks used by spammers and hack-
ers to defeat spam filters and IDSs. Also this motivates the heuris-
tic strategy commonly used to increase the hardness of evasion by
adding new classifiers using different input features. In the next sec-
tion we will address this open issue, providing a first theoretical jus-
tification of the classifier ensemble approach as tool for improving
the hardness of evasion.

3 Why are multiple classifiers harder to evade?

In the literature, the first attempt to formalise a scenario in which an
adaptive adversary tries to defeat a system based on machine learn-
ing techniques was made in [1]. The authors formalised this class of
problems under the statistical framework of the minimum risk the-
ory, as a two-class classification problem in which a classifier has to
discriminate between positive (malicious) and negative (innocent) in-
stances (e.g., spam and legitimate e-mails, genuine or impostor users
in access control systems, attack or normal packets in computer net-
work traffic, etc.), while the adversary can modify either training or
testing instances to defeat the classifier. Assuming that both the clas-
sifier and the adversary are guided by utility and cost functions, the
model proposed in [1] allows to show how the adversary should com-
pute the optimal strategy for modifying instances, and how the clas-
sifier should take this into account by modifying its decision func-

tion accordingly. This can also allow to evaluate the effectiveness of
a given strategy followed by the classifier to improve its detection
capability and its hardness of evasion. This analytical framework is
summarised in section 3.1. In section 3.2 we will exploit it to analyse
the case when the system is made up of an ensemble of classifiers
working on different feature sets, and the decision function is ob-
tained by thresholding the sum of the scores provided by each clas-
sifier. This classifier architecture is commonly used in spam filters,
IDSs and biometric authentication systems, as described in section 2.
Our aim is to give a support based on a formal model to the strategy
used to improve the detection capability and the hardness of evasion
in these kinds of systems, based on adding new classifiers each work-
ing on homogeneous features, different from the ones used by other
classifiers.

3.1 A theoretical framework for adversarial
classification

When machine learning or pattern recognition techniques are used
in applications like spam filtering, intrusion detection, biometric au-
thentication, etc., their task can be formalised as a two-class classi-
fication problem. Denoting with y the class label, instances belong
either to a positive (y = +) or to a negative class (y = −). The
positive class is made up of malicious instances, while innocent or
legitimate instances belong to the negative class. Instances are con-
sidered as realisations of a random variable X , and are represented
as vectors of N feature values which are random variables them-
selves, (X1, . . . , Xi, . . . , XN). A realisation of such random vari-
able is denoted as x = (x1, . . . , xi, . . . , xN), where xi is a possi-
ble value for feature Xi. It is assumed that instances are generated
i.i.d. according to a given distribution P (X), which can be rewritten
as P (X) = P (X|+)P (+) + P (X|−)P (−). The set of all possi-
ble realisations of X defines the feature space X . In [1] it is assumed
that the adversary can modify only positive instances at the operation
phase, to make them being misclassified as legitimate by the classi-
fier, but it can not modify any negative instance nor positive instances
belonging to the training set. We point out that this assumption is true
for several real applications. For instance, in the spam filtering task,
where instances correspond to e-mails, spammers can modify only
positive instances (their own e-mails) to evade the anti-spam filter,
but they can not modify legitimate e-mails or any training instance,
given that the training process is usually carried out offline, over a
hand-labelled corpora of e-mails. There are however some cases, like
IDSs trained online, in which the adversary can modify training in-
stances: the model in [1] can not be directly applied to these cases.

In [1] it is then assumed that the classifier and the adversary act ac-
cording to given utility and cost functions. Denoting with yC(x) the
label given to the instance x by the classifier, the utility function of
the classifier is represented as UC(yC , y). It is reasonable to assume
that such utility is positive for correctly classified instances and neg-
ative for misclassified ones, that is, UC(+, +) > 0, UC(−,−) > 0,
UC(+,−) ≤ 0 and UC(−, +) ≤ 0. The cost for the classifier is
assumed to be due to measuring each feature. The cost for measur-
ing the i-th feature is denoted as Vi. Finally, it should be taken into
account that the adversary could modify any positive instance x us-
ing some function A(x). For example, in spam filtering the function
A(x) could be implemented by adding words or using synonyms in
the spam mails. It follows that the expected utility for the classifier is

11

given by

UC =
X

(x,y)∈X×Y

P (x, y)[UC(yC(C(A(x))), y)−
NX

i=1

Vi], (1)

where Y = {+,−} and P (x, y) is the joint probability of pattern
x being generated with true label y (note that, by the above assump-
tions, A(x) = x if y = −, namely for each negative instance).

Similarly, denoting with UA(yc, y) the utility function of the ad-
versary, it is assumed that it is positive for positive instances mis-
classified by the classifier as legitimate (UA(−, +) > 0), negative
for correctly classified positive instances (UA(+, +) ≤ 0), and zero
for negative instances (UA(−,−) = UA(+,−) = 0) whatever the
label assigned by the classifier, namely, the adversary utility is not
affected by the classification of negative instances. The cost for the
adversary is that faced for modifying an instance x according to the
function A(x) defined above. It is assumed that the cost is given by
W (x,A(x)) =

PN
i=1 Wi(x,A(x)), being Wi the cost for modi-

fying the i-th feature. Of course, Wi = 0 if the i-th feature is not
changed, Wi > 0 otherwise. The expected utility for the adversary
is thus

UA =
X

(x,y)∈X×Y

P (x, y)[UA(yC(C(A(x))), y)−W (x,A(x))].

(2)
Using the above model, the adversarial classification problem is

formulated as a game between classifier and adversary, in which the
two players make one move at a time. A move by the classifier con-
sists in choosing a decision function yC(·), taking into account both
the training set and any knowledge it may have about the strategy
A(·) defined in the previous move by the adversary. Analogously,
a move by the adversary consists in choosing a strategy A(·), tak-
ing into account the available knowledge about the decision function
chosen by the classifier at the previous move. Although game theory
could in principle be applied to find the optimal sequence of moves
by both players according to their utility and cost functions, it was
shown in [1] that this is computational intractable, and anyway it
requires the knowledge of the distribution P (x, y), which is unre-
alistic. Therefore, a simplified single-shot version of the game was
considered in [1]. Initially, classifier constructs a decision function
using its training set, assuming that training instances are untainted
(i.e., A(x) = x). Then the adversary chooses his strategy A(·) with
the aim of maximising his expected utility (given by eq. 2), assuming
perfect knowledge of the decision function chosen by the classifier
and of its utility and cost functions. Finally, classifier moves again
by choosing a new decision function, taking into account the move
by the adversary and assuming to know his utility and cost functions.
We point out that the optimal adversary strategy consists in defining,
for each positive instance x, a modification x′ which maximises the
corresponding summand of the adversary expected utility in eq. 2,
that is:

A(x) = argmax
x′∈X

[UA(yC(C(x′), +)−W (x, x′)]. (3)

Given the above definition of the adversary utility and cost func-
tions, it is easy to see that the adversary will change a given instance
x, only if it is correctly classified by the classifier as positive, and if
there is any instance A(x) 6= x which is misclassified by the clas-
sifier as negative, and the modification cost W (x,A(x)) is lower
than the utility gain UA(−, +)− UA(+, +). Otherwise, it turns out
that the best strategy is to leave the instance x unchanged, namely
A(x) = x.

In [1] the above framework was applied to find the optimal adver-
sary and classifier strategies, when the classifier is a Naive Bayes,
under the standard assumption of game theory that both players have
perfect knowledge of each other, namely each one knows the utility
and cost functions of the other one, and the adversary also knows
the classification algorithm and the training set used by the classifier.
The corresponding adversarial classification system was then exper-
imentally evaluated on a spam filtering task, quantitatively showing
that the classifier effectiveness significantly degrades if the adversar-
ial nature of this task is not taken into account, while an adversary-
aware classifier can perform significantly better.

3.2 Multiple Classifier Systems for Adversarial
Classification

The framework for adversarial classification proposed in [1] applies
also to the case we are interested in, namely a system made up of an
ensemble of N classifiers working on different feature sets, whose
decision function consists in thresholding the sum of the scores pro-
vided by each classifier. To this aim, denoting with si(xi) the score
provided by the i-th classifier for the instance x represented in the
i-th feature space, and with t the decision threshold, it is sufficient to
define the decision function as

yC(x) =


+, if

PN
i=1 si ≥ t,

−, if
PN

i=1 si < t,
(4)

and to consider Vi and Wi(x,A(x)) as the cost incurred respectively
by the classifier for measuring the i-th feature set of the instance x
and by the adversary for modifying it.

We now define the classifier strategy against the adversary as the
addition of one or more classifiers to the previous ensemble, based
on different feature sets. The rationale of this strategy is intuitive,
as pointed out in section 2: taking into account different characteris-
tics, or views, of the same instances, it should be easier to discrim-
inate positive from negative ones, and at the same time it should be
more difficult for the adversary to evade all of them. We would like
to formally analyse this rationale, in light of the framework in [1].
Analogously to [1], we assume that initially the classifier is trained
on a given training set and operates on untainted instances, namely
A(x) = x. Then the adversary reacts by devising a strategy A(x),
which is likely to decrease the classifier effectiveness. Next, the clas-
sifier adds some new classifiers to the previous ensemble. The adver-
sary can in turn react again by devising a new strategy to defeat the
new version of the MCS, and so on.

Let us now define the adversary strategy, namely the optimal way
in which the adversary should choose the function A(x) against a
given ensemble of N classifiers. To this aim, we assume that the
adversary knows the feature set used by each of the individual clas-
sifiers, the score si(x), i = 1, . . . , N , provided by each individual
classifier for any positive instance x, and the threshold t. We also as-
sume that the cost Wi(x,A(x)) for modifying the i-th feature set is
equal to the absolute difference between the corresponding scores
si(x) and si(A(x)). This means that the total cost W (x,A(x))
equals the Manhattan distance in the N -dimensional score space be-
tween the corresponding score vectors. This is a reasonable assump-
tion without any specific knowledge about the nature of features. It
is reasonable to assume that the higher the score reduction the adver-
sary would like to attain, the more the modifications he has to make.
Thus for getting a lower score he has to face a higher cost. We point
out that a similar assumption about the cost of modifying an instance
in a given feature space was made in [5]: in that work, the cost was

12

assumed to be a function of the distance between x and A(x) in the
feature space. The optimal strategy of the adversary against an en-
semble of N classifiers, defined in eq. 3 for the general case, can be
rewritten as follows:

A(x) =

8<:
x′ 6= x, if ∃x′ : yC(x

′) = −, ∆UA > W (x, x′),
x′ = argmaxx′′∈X ∆UA −W (x, x′′),

x, otherwise,
(5)

where ∆UA is given by UA(−, +) − UA(+, +). Under the above
assumptions, the above optimal strategy can be rephrased as finding,
for any given instance x which is correctly classified as positive by
the classifier, namely

PN
i=1 si(x) ≥ t, an instance A(x) which is

misclassified as negative by the classifier, namely
PN

i=1 si(A(x)) <
t, and for which the utility gain ∆UA exceeds the cost for making the
modification, which by the above assumptions is given by:

W (x,A(x)) =

NX
i=1

|si(x)− si(A(x))|. (6)

If no such instance can be found, then x is left unchanged. It is not
difficult to see that the minimum cost the adversary has to incur so
that the modified instance is misclassified as negative equals the dif-
ference between the total score given to x by the classifier and the
decision threshold t:

PN
i=1 si(x)− t.

It is now possible to give a formal explanation, according to the
above framework, of the reasons why the classifier ensemble ap-
proach, and in particular adding new classifiers (using new features)
to a given ensemble, can be effective in the considered kind of ap-
plications. We consider the simplest case in which the previous N
classifiers and the decision threshold s are left unchanged. A conse-
quence of adding M new classifiers (M ≥ 1) is that the score of
any positive pattern could increase. In particular, considering the op-
timal strategy A(x)) against N classifiers, if A(x) 6= x, as seen
above the modified instance A(x)) evades the classifier, namely
sN (x) =

PN
i=1 si(A(x)) < t. However, this is no more guaran-

teed if one ore more new classifiers are added. Indeed the new score
sN+M (x) will be given by the sum of the previous one and of that
of the new classifiers, sN (x) +

PN+M
i=N+1(x), which could exceed

t. In other words, the optimal strategy of the adversary against N
classifiers could be less effective, in the sense that it could allow to
evade the classifier for a smaller set of instances, if new classifiers
are added to the ensemble. This means that the detection capability
of the classifier has improved. Moreover, the cost to evade the clas-
sifier could increase, just because the score of any positive pattern
could increase. For some positive patterns x correctly classified by
the new classifier ensemble, such increase of the score from sN (x)
to sN+M (x) could make the difference sN+M (x)− t larger than the
utility, UA(−, +), that the adversary would gain by modifying x so
that it is misclassified as negative. This implies that there could be
some positive instances that the adversary can afford to modify to
evade N classifiers, but not to evade N + M classifiers. This means
that the classifier has become harder to evade.

The above analysis gives a first theoretical support to the argu-
ments proposed in favour of the classifier ensemble approach in many
works related to security applications, mentioned in section 2. In the
next section we will apply the above framework to a case study re-
lated to the spam filtering task, using a real spam filter and a real
corpus of spam and legitimate e-mails, to quantitatively evaluate the
improvement in the effectiveness and in the hardness of evasion at-
tainable using the classifier ensemble approach.

4 A case study in spam filtering

In this section we apply the theoretical framework of section 3.2 to
a case study involving a real spam filter, SpamAssassin. This is a
well known and widely used spam filter, and is particularly suitable
to our aim since it is an open source software. The architecture of
SpamAssassin (as well as the one of most commercial spam filters),
summarised in section 2, fits the one considered in section 3.2. This
allows us to analyse the effect of adding new filtering modules (in
other words, new classifiers based on different feature sets) on the
detection capability and on the hardness of evasion of this spam fil-
ter. For our experiments we used the latest version of SpamAssassin
(3.2.4) and the configuration named “bayes+net”, which includes all
the available filtering modules (in particular, a Naive Bayes text clas-
sifier) comprising the optional ones (Razor, Pyzor, etc.). Each mod-
ule has its own scoring system, and scores can be continuous valued
or discrete. SpamAssassin is deployed with a predefined scoring sys-
tem for each module, and a predefined detection threshold t set to 5.
We chose to use these predefined settings, although the scoring sys-
tem of each rule and the value of t can be modified by users. The only
module which includes a trainable classification algorithm is the one
based on the Naive Bayes text classifier: we trained this classifier as
described below.

Our experiments were carried out on the publicly available TREC
2007 e-mail data set.3 It is made up of 75,419 real e-mail messages,
received by a mail server between April 2007 and July 2007, and
contains 25,220 legitimate and 50,199 spam messages. For training
the Naive Bayes classifier used by SpamAssassin, we used the first
10,000 messages of the data set in chronological order. This training
set was made up of 1,969 legitimate e-mails and 8,031 spam e-mails.
The remaining 65,419 e-mails were used as test set.

For the purpose of our experiments, the main problem in using a
real spam filter made up by a large number of different modules is
that it is very difficult to define for each of them the possible modi-
fications that the adversary (namely, a spammer) can make to evade
the filter. Moreover, this also makes difficult to define commensu-
rable modification costs for the adversary, for modules using het-
erogeneous features.4 Nevertheless, taking into account that in the
theoretical framework of section 3.2 the modification cost for mod-
ifying the feature vector representation of instances corresponding
to any given module was defined as the absolute distance between
the scores provided by that module before and after the modification,
we decided to avoid the explicit definition of the possible modifica-
tions. We simply assume that the adversary can make any modifica-
tion which reduces arbitrarily the score provided by each module. So
the only constraint on the adversary is that the cost faced for mod-
ifying any e-mail has to be lower than the utility gained by getting
that e-mail misclassified by the filter, as explained in section 3.2. We
point out that this simplifying assumption is totally in favour of the
adversary, not of the classifier, since we are not setting any constraint
on the actual modifications which can be made on spam e-mails.

In our experiments we considered the utility functions UA(yC , y)

3 http://plg.uwaterloo.ca/˜gvcormac/treccorpus07/
4 This turned out to be possible in the experiments reported in [1] on the

same application, because the experiments were made using a single Naive
Bayes text classifier: in that work, the modifications were defined as adding
dictionary words or using synonyms.

13

and UC(yC , y) reported below:

UA =

8>><>>:
UA(+, +) = 0
UA(−, +) = 1, 5
UA(+,−) = 0
UA(−,−) = 0

UC =

8>><>>:
UC(+, +) = 1
UC(−, +) = −10
UC(+,−) = −1
UC(−,−) = 1

(7)

Note that two different utility functions for the adversary were con-
sidered, differing only in the value of UA(−, +), which is the utility
gained by the adversary when he evades the filter. This value affects
the capability of adversary of evading the filter, since it equals the
maximum cost the it can afford for modifying e-mails (we remind
the reader that an e-mail x can be changed to any e-mail x′, only
if W (x, x′) ≤ UA(−, +) − UA(+, +)). Finally, we assumed that
the cost Vi faced by the MCS for measuring the feature vector of the
i-th classifier is zero (such cost is just a negative constant added to
the expected value of the utility function in the framework of section
3.2).

The version of SpamAssassin we used is made up of 619
filtering rules each based on different characteristics (features)
of e-mails (the list of the rules can be found at http://
spamassassin.apache.org/tests_3_2_x.html). Since
this number is rather high, we did not add rules one at a time. In-
stead we subdivided them into n disjoint subsets S1, . . . , Sn, and
added at each step all the rules of a given subset. For the purposes
of these experiments we chose n = 6. The number of rules for each
subset was set to 119 for S1 and to 100 for all the other subsets.
In the real SpamAssassin filter new rules are usually added in re-
sponse to new spammers’ tricks which are identified in real spam
e-mails. Accordingly, it would have been reasonable to subdivide
the rules taking into account their chronological order. Unfortunately
the time in which each rule was introduced is not reported in the
SpamAssassin documentation. So we resort to make a random sub-
division. To make experiments easily reproducible, we sorted the
rules alphabetically according to their names as listed in http:
//spamassassin.apache.org/tests_3_2_x.html. The
only exception was the rule related to the Naive Bayes classifier:
since it is known that text classifiers are used in spam filters since
several years, we included this rule in the first subset, S1.

To evaluate how the addition of filtering modules affects the de-
tection rate and the hardness of evasion of SpamAssassin using the
above framework, the experiments were carried according to the
above procedure.

1. R← ∅, A0(x) = x
2. For k = 1, . . . , n:

2.1 R← R
S

Sk

2.2 Evaluate the expected utility of the classifier and of the adver-
sary, when the classifier uses the rules in R and the adversary
uses the strategy Ak−1(x) which was optimal for the previous
set of rules

2.3 Compute the optimal adversarial strategy Ak(x) against rules
in R

2.4 Evaluate the expected utility of the classifier and of the adver-
sary, when the classifier uses the rules in R and the adversary
uses the corresponding optimal strategy Ak(x)

The above experimental set up can be phrased as follows. At each
step, we first evaluate the performance of the classifier and the ad-
versary after a new set of rules is added to the classifier, and the ad-
versary uses the strategy which was optimal against the previous set

of rules (in the first step, this means that the adversary does not mod-
ify his instances). This simulates what happens in real cases, as soon
as a spam filer is updated. Then the optimal strategy of the adversary
against the new set of rules is computed, and the performances of the
classifier and the adversary are evaluated again. This simulates what
happens when spammers devise new tricks to evade the last version
of a spam filter.

The optimal adversarial strategy Ak(x) at each step was com-
puted as follows, according to section 3.2 and to the above assump-
tion about how the adversary can modify his instances. Denoting
S1

S
. . .
S

Sk as R, for any positive instance x correctly classified
by the filter (namely yC(x) = +, or equivalently

P
i∈R si(x) ≥ t),

we compute the set of feasible values s′i for the scores of rules
in R which would correspond to an instance x′ classified as neg-
ative (namely

P
i∈R s′i < t), such that the corresponding cost

W (x, x′) =
P

i∈R |s
′
i − si(x)| is minimum and is lower than the

utility gain. If such scores can be found, then we assume that the
adversary evades the filters by modifying x, otherwise it is assumed
that the adversary can not afford to modify x to evade the filter.

The results are shown in figures 1 and 2, for both utility func-
tions considered for the adversary, in terms of the expected utility
of the adversary and of the classifier as a function of the number of
rules used in SpamAssassin. The results in the top left graph refer
to the case in which the adversary does not modify his instances. As
one could expect, the expected utility of the classifier increases as
the number of rules increases while the opposite happens for the ad-
versary. In other words, this means that adding new filtering modules
based on different features allows to improve the detection capability.
The only exception is when passing from 419 to 519 rules. This can
be due to the fact that after adding rules to SpamAssassin it would
be better to reweight all of them, although this was not made in our
experiments for the sake of simplicity. The bottom left graph shows
what happens when the adversary uses the optimal strategy against
each set of rules. The expected utility of the adversary significantly
improves with respect to the previous case. The one of the classi-
fier still increases as the number of rules increases, but obviously
attains lower values than in the previous case. However, it is worth
noting that the improvement attained by the adversary, reported in
the top right graph from top, tends to decrease as the number of
rules increases. Similarly, the decrease in classifier’s expected util-
ity tends to be higher for lower number of rules. The reason is that
the modification cost the adversary has to face to evade the classifier
increases as the number of rules increases, until it exceeds the util-
ity gain for some positive instances, making it no more convenient
to modify them. This is a clear evidence that adding new filtering
modules based on different features allows to improve not only the
classifier’s discriminant capability, but also its hardness of evasion.
Consider finally the bottom right graph, corresponding to the case
when the classifier adds new rules, and the adversary uses the strat-
egy which was optimal against the previous set of rules. For lower
number of rules (up to 319), the expected utility of the adversary is
between the ones of the first two graphs: this is reasonable, because
it is now trying to evade only some of the rules used by the classifier.
However, for higher number of features its expected utility is even
worse than the one it attained without trying to evade any rule. The
expected utility of the classifier is instead very close to the one it at-
tained when the adversary did not try to evade any rule. This means
that the addition of new rules allowed to compensate the tricks intro-
duced by the adversary to evade the previous rules. In other words,
most spam e-mails which evaded the previous version of the filter
were detected by the new rules.

14

!!" #!" $!" %!" &!" '!"

(

()&

!

*+,-,

.
-/
0/-
1

2

2
345+6,761
807,,/9/+6

!!" #!" $!" %!" &!" '!"

(

()&

!

*+,-,

.
-/
0/-
1

2

2
345+6,761
807,,/9/+6

!!" #!" $!" %!" &!" '!"

(

()&

!

*+,-,

.
-/
0/-
1

2

2
345+6,761
807,,/9/+6

!!" #!" $!" %!" &!" '!"

(

()&

!

*+,-,

!
.

2

2
2!.2:345+6,761;

!!.2:807,,/9/+6;

Figure 1. Expected utility for the adversary and the classifier, as a function
of the number of rules used by the classifier, when UA(−, +) = 1. Top left:
the adversary does not modify his instances. Bottom left: the adversary uses
the optimal strategy against the classifier. Top right: gain and loss in expected
utility attained respectively by the adversary and the classifier, when passing
from the situation in the top left graph to that in the bottom left one, for each
number of rules used by the classifier. Bottom right: for each set of rules, the

adversary uses the optimal strategy against the previous set of rules.

!!" #!" $!" %!" &!" '!"

(

!

#

$

%

&

)*+,+

-
,.
/.,
0

1

1
234*5+650
7/6++.8.*5

!!" #!" $!" %!" &!" '!"

(

!

#

$

%

&

)*+,+

-
,.
/.,
0

1

1
234*5+650
7/6++.8.*5

!!" #!" $!" %!" &!" '!"

(

!

#

$

%

&

)*+,+

-
,.
/.,
0

1

1
234*5+650
7/6++.8.*5

!!" #!" $!" %!" &!" '!"

(

!

#

$

%

&

)*+,+

!
-

1

1
1!-19234*5+650:

!!-197/6++.8.*5:

Figure 2. Expected utility for the adversary and the classifier, as a function
of the number of rules used by the classifier, when UA(−, +) = 5. See

caption of figure 1 for the other details.

The behaviour of the expected utility in figures 1 and 2 is similar,
with the obvious difference that the expected utility of the adversary
is higher in the graphs of figure 2 than in figure 1, since it can af-
ford a higher cost to modify instances (the opposite happens for the
classifier). These experimental results on a real case study give thus a
quantitative confirmation to the theoretical explanation given in sec-
tion 3.2 on the effectiveness of the classifier ensemble approach in
improving both the detection capability and the hardness of evasion
of a security system like a spam filter.

ACKNOWLEDGEMENTS

We would like to thank Nilesh Dalvi and Mausam for providing us
the code used in [1].

REFERENCES
[1] Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak

Verma, ‘Adversarial classification’, in Tenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD),
pp. 99–108, Seattle, (2004).

[2] Giorgio Giacinto, Fabio Roli, and Luca Didaci, ‘Fusion of multiple clas-
sifiers for intrusion detection in computer networks’, Pattern Recognition
Letters, 24, 1795–1803, (2003).

[3] Michal Haindl, Josef Kittler, and Fabio Roli, eds. Multiple Classifier
Systems, 7th International Workshop, MCS 2007, Prague, Czech Repub-
lic, May 23-25, 2007, Proceedings, volume 4472 of Lecture Notes in
Computer Science. Springer, 2007.

[4] Josef Kittler, Mohamad Hatef, Robert P.W. Duin, and Jiri Matas, ‘On
combining classifiers’, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 20(3), 226–239, (1998).

[5] Daniel Lowd and Christopher Meek, ‘Adversarial learning’, in Proceed-
ings of the Eleventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), ed., ACM Press, Chicago, IL.,
(2005).

[6] Roberto Perdisci, Guofei Gu, and Wenke Lee, ‘Using an ensemble of
one-class svm classifiers to harden payload-based anomaly detection
systems’, in International Conference on Data Mining (ICDM), pp. 488–
498. IEEE Computer Society, (2006).

[7] Arun A. Ross, Karthik Nandakumar, and Anil K. Jain, Handbook of
Multibiometrics, Springer Publishers, 2006.

15

A Behaviour-Knowledge Space Approach
for Spam Detection

Francesco Gargiulo and Antonio Penta and Antonio Picariello and Carlo Sansone1

Abstract. Unsolicited Commercial E-mails (UCE), commonly
known asspam, are becoming a serious problem for e-mail accounts
of single users, small companies and large institutions. In this pa-
per we describe a novel method for detecting spam messages ana-
lyzing both text and image attached components. In particular, we
describe an architecture in order to overcome some problems that are
still boarded on the state-of-the-art spam-filters. The proposed sys-
tem takes into account both the semantic richness of natural language
and the recent spam evolution based on images, by using a Behaviour
Knowledge Space approach for fusing results coming from different
analysis of the e-mails.

1 Introduction

The presence of spam can seriously compromise normal user activ-
ities, forcing to navigate through mailboxes to find the - relatively
few - interesting e-mails, so wasting time and bandwidth and occu-
pying huge storage space. The types of those messages vary: some of
them contains advertisements, other e-mails provides winning notifi-
cations, and sometimes we get messages with executable files, which
finally emerge as malicious codes, such as viruses and Trojan horses.
In addition, spam e-mails may often have unsuitable content (as a
pornographic material advertising) that is illegal and sometimes dan-
gerous for non adult users.

The recognition of spam content is not a trivial problem: there
are some factors that are related with human perception, economic
behavior, legal context, that are hardly measurable or summarized
in adequate features. The same definition ofspam e-mailsrequires a
common agreement that is not easy to find.

In our opinion,all kind of spam e-mails have several common
characteristics, such as: i) they are unsolicited, ii) they have a com-
mercial content, even though the content itself is continuously evolv-
ing, trying to outsmart the classical countermeasures adopted by anti-
spam filters. Consequently, a great variety of technical methodology
have been implemented in current anti-spam systems [4].

We focused our attention on that measures related to e-mail con-
tents, in particulartexts and images, rather then on networking and
identity strategies [14].

The textual filtering methods are widely deployed and they varies
in the inspected content and the proposed methodology. Some filters
consider only the header or the body of an e-mail, while other ones
take both. These approaches use different models, considering word-
tokens, their frequencies and their combinations. Inrule based-filters
[5] the users define some rules related to the headers or the bod-
ies, considering particular words assign of spam content; anyway,

1 Dipartimento di Informatica e Sistemistica, University of Naples Federico
II, Italy, e-mail: {francesco.grg,a.penta,picus,carlosan}@unina.it

this simple solution is strongly dependent on how the words used by
spammers can change .

Differently, Signature-basedmethods do not really deal with
whole messages or specific tokens, transforming the message into a
signature. Clearly, the methods effectiveness is related to the robust-
ness of the signature function. Note that a signature database must
be distributed and kept up to date very frequently, due to the rapid
variation of spam e-mails.

A different kind of filters is based oncollaborative solutions, in
particular on Peer-to-Peer (P2P) networks for signature distribution
[16, 6].

Statistical filtersbased on the the Bayes theory have also been
investigated [1, 13].

Other approaches consider spam detection as abinary clas-
sification problemand several algorithms from the learning the-
ory research field have been used. In these solutions, e-mails are
mapped into multidimensional space, each dimension representing
the words in the e-mail content; several measures are proposed such
as the terms-frequency (tf) or the product between the documents-
frequency (df) and terms-frequency, as in [8].

Image spam has been extensively studied using several techniques
primarily developed from the Image Processing and Computer Vi-
sion community, using features related to text areas[2, 15] or color
distribution [2]. A classifier is usually trained on such features, try-
ing to discriminate spam images from legitimate ones. The main idea
of these approaches is that images which contain texts are likely to
be spam. In [7], the authors present features that are focused on sim-
ple property of image, making classification very fast. A different
approach (Fumera et al. [9]) proposes to process each spam image
using an OCR system, thus extracting embedded text instead of im-
age features.

In this paper we combine the visual clues with the semantic infor-
mation related to the e-mail body, to determine whether a message is
spam. In order to address the problem of combining a non-constant
number of modules, since it is not possible toa priori known if there
is one or more images attached to the e-mail and/or there are tex-
tual information to be processed, we propose the use of aBehaviour
Knowledge Space[11] approach.

The paper is organized as follows: section 2 describes at a glance
the main component of the proposed system; in 3, and 4, we de-
scribe text and image features respectively, while in 5 we show how
to combine them. In 6 several experiments are discussed, and in 7 we
describe the conclusion of our work.

16

2 System Architecture

As shown in figure 1, we design a system that integrates image-based
and text-based analysis. The mails, initially, are parsed by a Multi-
purpose Internet Mail Extensions (MIME) parser, that can retrieve
the different parts of the e-mails. The text is thus processed by a
Text Analyzermodule, while the images are forwarded to anImage
Analyzermodule. TheFusion blockhas the role to use the results
produced by the previous modules, furnishing the final classification
of each e-mail.

Both the Text and the Image analyzer can be implemented by
means of different classifiers, each one using different features. In
the following, we will describe into details the different feature sets
used and the combination process.

Figure 1. System Architecture

3 Textual Features

We propose a strategy based on text processing and analysis in order
to process what we callsemanticandsyntacticalfeatures. Generally
speaking, our main idea is to characterize how e-mails belonging to
the same class (ham or spam) have the same meaning, using a set of
semantic features.

In addition, we process e-mails in order to detect special characters
that are typically used into spam context.

3.1 Semantic Features

We propose to use a feature set based on a modified version of Vec-
tor Space Model (VSM)[12]. The representation of e-mail textual
content in the vector space model has a number of advantages, in-
cluding the uniform treatment of queries and documents as vectors,
the ability to differently weight the different terms; anyway, it suffers
from its inability to cope with two classic problems arising in natu-
ral languages, i. e. synonymy and polysemy. We briefly recall that
synonymyrefers to a case where two different words (say ”pupil“
and ”scholar“) have the same meaning, andpolysemyrefers to the
case where a term such as ”play” has multiple meanings according
to different contexts.

Because the vector space representation fails to capture this kind
of relationships, we choose a modified version of VSM, the Latent
Semantic Analysis or LSA [12]. Despite LSA is a traditional and well
accepted technique used to stick out the semantic contents in text-
process community, there are few application in the spam framework.

LSA is an application of Singular Value Decomposition (SVD) to
document-by-termN × M matricesA. In particular, SVD provides
a suitable matrix decomposition as described in the following:

A = TSD
T

beingS=diag(σ1, . . . , σr) a M × N matrix, with σi =
√

λi and
λi ≥ λi+1 with 1 ≤ i ≤ r; the λ1, ..., λr be the eigenvalues of
AAT , r being the rank ofA. Note thatAT A has the same eigenval-
ues ofAAT .

The valuesσi are also denoted as thesingular valuesof A. In the
LSA technique it is used a reduced version ofA , known asM × N

matrix Ak, k being a positive integer that is the maximum rank of
Ak. This approximation is computed taking into account the distance
between the two matricesX = A-Ak that is minimal according to a
Frobenius norm [12].

In other words, we have a reduced space in which the words that
have similar co-occurrence patterns are projected (or collapsed) into
the same dimension, and in the indexing phase the technique projects
the documents into the new generated space with latent semantic di-
mensions. In order to derive the features to learn a classifier during
the training phase, we adopt the LSA similarity measure that is the
projection of the document in the space obtained bySk × DT

k , Sk

andDk being the matrices after the SVD reduction. In the testing
phase we use also this matrix productT T

k Q in order to compute the
text feature thanks to the SVD equation:

T
T
k Q = SkD

T
k (1)

(∗)k being the matrices obtained after the reduction process andQ

being theN × 1 matrix representing the input document.
We also propose an intelligent filter that is able to detect and reject

those words nothuman-readable, i.e. “fsdrx”, “jkdld”: this solution is
based on an SVM classifier trained on several features derived from
bigrams and trigrams composition of English words. Note that the
use of this kind of filter has also the aim of enhancing the recogni-
tion of the semantic content that can be used in particular spammer
attacks, such as the ones which use to put random words into e-mail
texts, thus trying to reduce the effectiveness of current antispam al-
gorithms.

3.2 Syntactical Features

We propose to use some syntactic features that can be extracted from
mail texts, in order to estimate usual and suspected mail formats.

Spammers, in fact, usually try to obfuscate the textual part of an
e-mail’s body by substituting some characters in order to bypass the
effectiveness of antispam filters.

So, we defined another set of features for obtaining a characteriza-
tion of this kind of obfuscated text. The features we are investigating
on, are mainly based on the presence ofspecialcharacters, i.e. those
characters that should not be frequently present in a legitimate text.
The whole set we considered is made up of the following characters:
{ !, ” , #, $, % , & , ’ , (,), * , +, ,, -, . . ., /, @}. Starting from this set
we defined sixsyntactical features:

• text length: the number of characters of the whole text
• words number: the number of words in the text
• ambiguity: the ratio between the number of special and normal

characters
• correctness:the ratio between the number of words that do not

contain special characters and the number of words that contain
special characters

• special length: the maximum length of a continuous sequence of
special characters

• specialdistance: the maximum distance between two special
characters belonging to the above considered set.

17

Figure 2. Outputs obtained by applyinggocr (available at
http://jocr.sourceforge.net) to some spam images

4 Image Features

We propose a novel approach for the detection of the image spam in
which two different image processing techniques are used. The first
one is devoted to directly extract some global features from each im-
age attached to the e-mails. Such features should also be able to de-
tect if images were adulterated or not, by considering the complexity
of the image itself as it is perceived from an human being. The sec-
ond processing is carried out by means of two steps: first, there is a
preprocessing phase with the use of an OCR, then a feature extrac-
tion process starting from the OCR output try to characterize it in
order to detect if the embedded text has been voluntarily obfuscated
and/or distorted.

4.1 Visual Features

The first set of features, that we calledvisual features, are directly
obtained from the image attached to the mails. In order to give an
image characterization that should be able to discriminate between
normal and adulterated images, we considered features that describe
the image texture from a statistic point of view. As said before, in
fact, spammers typically now try to bypass filters that use an OCR
for detecting texts within an image by obfuscating such texts with
the addition of some noise or by superimposing a texture (see also
Figure 2). So, texture detection can help in individuating images that
contain spam messages. For the sake of simplicity, in the following
we will present the considered features in case of gray-level images,
but the same operators can be applied to color images too.

We will use{I (x, y) , 0 ≤ x ≤ N − 1, 0 ≤ y ≤ M − 1} to de-
note aN × M image withG gray levels. All the considered sta-
tistical texture measures are based on the co-occurrence matrices.
Spatial gray level co-occurrence estimates image properties related
to second-order statistics. TheG × G gray level co-occurrence ma-
trix Pd for a displacement vectord = (dx, dy) is defined as follows.
The entry(i, j) of Pd is the number of occurrences of the pair of
gray levelsi andj which are a distanced apart. Formally, it is given
as:

Pd(i, j) = | {((r, s), (t, v)) : I(r, s) = i, I(t, v) = j} |
where(r, s), (t, v) ∈ N × M , (t, v) = (r + dx, s + dy) , and|.|

is the cardinality of a set.

As regards the choice of the displacement vectord, we consid-
ered the four direct neighbors of each pixel, i.e. we used four pairs
as values ofdx anddy for calculating the number of co-occurrences,
namely(0, 1), (1, 0), (−1, 0) and(0,−1). We do not perform a nor-
malization ofPd in order to preserve the dependence of the consid-
ered features on the image size.

As suggested in [10], from the co-occurrence matrix it is possible
to extract features that can be used for detecting a texture within an
image. In particular, we considered the following five features:

• Contrast ∑

i

∑

j

(i − j)2Pd(i, j)

is the difference in terms of visual properties that makes an object
(or its representation within an image) distinguishable from other
objects and the background. In the visual perception of real
world, contrast is determined by the difference in the color and
brightness of the object and other objects within the same field
of view. In practice, it is the ratio between the brightest and the
darkest value of the image. In the case of a B/W image, note that
the increase of the contrast is equal to erase gray values.

• Entropy:

−
∑

i

∑

j

Pd(i, j)logPd(i, j)

is an index of the brightness variation among the pixel in an
image. More the values of brightness are different each others,
more the entropy will be higher.

• Energy: ∑

i

∑

j

P
2

d(i, j)

is the spectral content of an image

• Correlation:
∑

i

∑
j
(i − µx)(j − µy)Pd(i, j)

σxσy

is an index of the correlation degree among the pixel. Hereµx

andµy are the means andσx andσy are the standard deviations
of Pd(x) andPd(y) respectively, wherePd(x) =

∑
j
Pd(x, j)

andPd(y) =
∑

i
Pd(i, y)

• Homogeneity: ∑

i

∑

j

Pd(i, j)

1 + |i − j|

is a measure of the brightness variation within the image. If the
image is completely black or white, its homogeneity value will
be the maximum. On the contrary, if the image contains several
brightness variations, this value will be very low.

Another category of features that can be used for characterizing
images from a global point of view is based on the complexity of an
image for a human reader. We have chosen to consider a feature also
proposed in [3]:

• Perimetric Complexity: is defined as the squared length of the
boundary between black and white pixels (the perimeter) in the
whole image, divided by the black area.

18

Note that, differently from [3], we evaluate the perimetric com-
plexity on the whole image, after performing a binarization with a
fixed threshold.

4.2 OCR-based Features

Here we propose to use the same features considered in Section 3.2.
In this case, however, special characters are extracted from the output
of an OCR that has received an attached image as input.

We have noticed, in fact, that characters embedded into an image
are opportunely distorted and/or obfuscated in spam e-mails. Thus,
most of the words cannot be correctly detected, as we can see in
Figure 2. Furthermore, several special characters that typically are
not present in commonly used words can appear in the OCR output.

5 Combining Text-based and Image-based
Classifiers

It has been experimentally shown that the combination of an ensem-
ble of classifiers can be of great benefit in many practical pattern
recognition applications. Through the appropriate choice of a combi-
nation rule, it is possible to dampen the overall effect of theindepen-
denterrors in each observation domain, thus reaching performance
better than those of a single classifier.

The combination of classifiers is then an important part of our ar-
chitecture. Anyway, there are some problems that must be taken into
account in this case:

• It is necessary to define a method for combining a non-constant
number of classifiers, since it is not possible toa priori known if
there is one or more images attached to the e-mail and/or there are
textual information to be processed.

• It should be avoidedpadding-attacksfrom spammers. That is, the
possibility that an attacker puts a spam message within anormal
context, for example by attaching an image containing an embed-
ded spam message to an e-mail that containsnormal images.

As shown in Figure 3 we used a two-stage approach. The first
stage (denoted asClassificationin Fig. 3) consists in a simplelogical
OR. Through this approach we try to address the problem ofpadding
attacks.

Then, at the second stage we adopt aBehavior Knowledge Space
(BKS) combining rule [11]. The idea behind this rule is to avoid mak-
ing unjustified assumption on the classifier ensemble such as classi-
fier independence.

A BKS is a K-dimensional space where each dimension corre-
sponds to the decision of a classifier. Given an e-mail to be assigned
to one of 2 possible classes, the ensemble ofK classifiers can in
theory provide2K different decisions.

Anyway, we also consider the case in which a classifier cannot be
activated. It happens, for example, when there are no images within
the e-mail, or when there are no words to be processed by the se-
mantic analysis. In this situations, we assume that the output of the
classifier isundefined. So, each classifier can attribute a mail to one
out of three possible classes, i.e.{ham, spam, und} and the number
of different decisions becomes3K .

Each one of these decisions constitutes one unit of the BKS. In
the learning phase each BKS unit can record2 different valuesei, by
considering that the actual classes are onlyhamandspam. Given a
suitably chosen training set, each samplex of this set is classified by
all the classifiers and the unit that corresponds to the particular clas-
sifiers’ decision is activated. It records the actual class ofx, sayCj ,

Figure 3. A BKS approach for combining text-based and image-based
classifiers

by adding one to the value ofej . At the end of this phase, each unit
can calculate the best representative class associated to it, defined as
the class that exhibits the highest value ofei. This class corresponds
to the most likely class, given a classifiers’ decision that activates that
unit.

In the operating mode, for each e-mail to be classified, theK deci-
sions of the classifiers are collected and the corresponding unit is se-
lected. Then the e-mail is assigned to the best representative class as-
sociated to that unit. Since we consider all the possible combinations
of classifiers outputs as the number of available classifiers varies, we
are implicitly handling the fact that the number of available classi-
fiers can be different for each e-mail.

It is worth noting that the proposed combining scheme could be
also easily extended using different feature sets, and then other clas-
sifiers, are defined. In this case, the problem is that the number of
BKS unit grows exponentially and a wider training set is needed in
order to achieve good results. However, as it will be shown in the
following Section, only a subset of all the possible units are activated
in practice, since some configuration of the classifiers’ decisions are
not allowed.

6 Experimental Results

In the following we will first present the database used for assess-
ing the effectiveness of the proposed approach, then evaluate if the
use of both visual and textual features can improve the performance
of the system with respect to the use of a single set of features. Fi-
nally, we make a comparison of our approach with a state-of-the-art
anti-spam filter, i.e.SpamAssassinequipped with two different spam
image plug-ins.

As regards the dataset, whose details are given in Table 1, it is
composed by 11652 e-mails, 9173 of which contains spam mes-
sages. e-mails were collected from the mailboxes of some users of
the studenti.unina.it mailserver in a period of about three
years (2005-2007). This mailserver hosts the mailboxes of all the stu-
dents of the University of Naples Federico II. Among those e-mails,

19

151 containham images and 1802 containspamimages.

Total # of e-mails e-mails with Images
Spam Ham Spam Ham
9173 2479 1802 151

Table 1. The dataset used in our tests.

As regards the first stage of our architecture (theClassification
one), we chose aDecision Treefor implementing each classifier. In
particular, a C4.5 (J48) coming from the open source toolWeka2 was
selected.

Each single classifier was trained on a set of 1,000 mails (500 for
each class) different from those belonging to the dataset reported in
table 1. In order to train the BKS rule, the dataset was splitted into
two sets. Then, two experiments have been made, by using a set for
training and the other one for testing. Results are finally obtained as
the average value of the accuracy reported in these two tests.

Classifiers Accuracy
Syntactic 85.89%
Semantic 86.65%
OCR-based 84.84%
Visual-based 92.06%

Proposed system (BKS fusion) 91.92%

Table 2. The accuracy of the four considered single classifiers and of the
proposed system. Note that the last two single classifiers - third and fourth

rows - processed only e-mails with attached images

In Table 2 the performance of the single classifiers and of the pro-
posed systems are reported. It can be noted that the use of the BKS
significantly improves the performance of the single classifiers. It
must be remarked, in fact, that the visual-based classifier operates on
a subset of the whole dataset (only 1953 mails out of 11652). It is
also interesting to note that the number of BKS units that are really
activated on the whole dataset is only 18, while their total number
is 34, i.e. 81. This confirms the considerations made in the previous
Section.

Finally, in Table 3 we report a comparison of the results obtained
by our system with those obtainable withSpamAssassinin its stan-
dard configuration and equipped with two plug-ins devised for filter-
ing image spam, namelyBayes-OCR3 andFuzzy-OCR. It clearly ap-
perars that our approach significantly outperforms bothBayes-OCR
andFuzzy-OCR, by reaching a significantly higher accuracy. Finally,
note the time needed for processing the whole dataset by our system
are practically the same needed by SpamAssassin withFuzzy-OCR,
while is significantly faster thanSpamAssassinequipped withBayes-
OCR.

7 Conclusion

In this paper we presented an approach for addressing the spam e-
mail problems, which takes into account some of the recent evolu-
tions of the spammers tricks and the limits of previous methodolo-
gies. Tests on a dataset of e-mails containing attached images con-

2 http://www.cs.waikato.ac.nz/ml/weka/
3 This plug-in is available for download at the URL:

http://prag.diee.unica.it/n3ws1t0/?q=node/107

Accuracy
Our System 91.92%
Bayes-OCR 83.56%
Fuzzy-OCR 83.57%

Table 3. Comparison between the proposed system andSpamAssassin
with Bayes-OCRandFuzzy-OCR.

firmed the effectiveness of the approach and its applicability with
respect to other widely used opensource tool such asSpamAssassin.

In the future, we plan to better characterize the contribution in
terms of CPU time of the various component of our architecture,
in order to find the best tradeoff between obtainable accuracy and
computational complexity.

REFERENCES
[1] I. Androutsopoulos, J. Koutsias, K. Chandrinos, G. Paliouas, and C. Vas-

silakis, An Evaluation of Naive Bayesian Anti-Spam Filtering, Proc. of
the 11th European Conf. on Machine Learning, pp. 9–17, 2000.

[2] H.B. Aradhye, G.K. Myers, J.A. HersonImage Analysis for Efficient
Categorization of Image-based Spam E-mail, Proc. of the Eighth Intern.
Conf. on Document Analysis and Recognition, Washington, DC, USA,
2005.

[3] B. Biggio, G. Fumera, I. Pillai, F. RoliImage Spam Filtering Using Vi-
sual Information, Proc. of the 14th Intern.l Conf. on Image Analysis and
Processing, pp. 914–918, Modena, Italy, pp. 105–110, 2007.

[4] E. Blanzieri, A. Bryl, A Survey of Anti-Spam Technique, Technical Re-
port DIT-06-056, Informatica e Telecomunicazioni, University of Trento,
2006.

[5] W. Cohen,Learning rules that classify e-mail, Papers from the AAAI
Spring Syposium on Machine Learning in Information Access, pp. 18–
25, 1996.

[6] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati,
P2p-based collaborative spam detection and filtering, Proc. of the Fourth
Intern. Conf. on Peer-to-Peer Computing, pp. 176–183, 2004.

[7] M. Dredze, R. Gevaryahu, A. Elias-Bachrach.Learning Fast Classifiers
for Image Spam. In proceedings of the Conference on e-mail and Anti-
Spam (CEAS), 2007.

[8] H. Drucker, D. Wu and V.N. Vapnik: 1999,Support Vector Machines for
Spam Categorization, IEEE Transactions on Neural Networks 10(5), pp.
1048–1054.

[9] G. Fumera, I. Pillai, F. Roli,Spam filtering based on the analysis of text
information embedded into images, Journal of Machine Learning Re-
search, 7:2699-2720, 2006.

[10] Haralick, R.M.: Statistical and Structural Approaches to Texture. Pro-
ceedings of the IEEE, 67 (5) (1979) 786–804

[11] Y.S. Huang and C.Y. Suen. A Method of Combining Multiple Experts for
the Recognition of Unconstrained Handwritten Numerals. IEEE Trans.
Pattern Analysis and Machine Intelligence, 17(1), pp. 90–94, 1995.

[12] C.D Manning, and H. Schtze,Foundations of Statistical Natural Lan-
guage Processing, June 1999, The MIT Press.

[13] V. Metsis, I. Androutsopoulos, G. Paliouras,Spam Filtering with Naive
Bayes - Which Naive Bayes?In Proceedings of the second Conference
on e-mail and Anti-Spam (CEAS), Mountain View, CA, USA, 2006.

[14] G. Schryen,Anti-Spam Measures, Analysis and Design, Springer-Verlag,
2007.

[15] C.-T. Wu, K.-T. Cheng, Q. Zhu, Y.-L. Wu,Using visual features for anti-
spam filtering, Proc. IEEE Conference on Image Processing, vol. 3, pp
509-512, 2005

[16] F. Zhou, L. Zhuang, B. Zhao, L. Huang, A. Joseph, and J. Kubiatow-
icz, Approximate object location and spam filtering on peer-to-peer sys-
tems, Proc. of ACM/IFIP/USENIX International Middleware Confer-
ence, 2003.

20

Towards an Intelligent Decision Support System for
Intensive Care Units

Pedro Gago1 and Manuel Filipe Santos 2

Abstract. Intensive Care Units (ICUs) are an attractive field for
data analysis as they provide huge amounts of data related to the pa-
tient’s condition. However, effective decision support systems oper-
ating in such an environment should not only be accurate but also as
autonomous as possible, being capable of maintaining good perfor-
mance levels without human intervention. Moreover, the complexity
of an ICU setting is such that available data only manages to cover a
limited part of the feature space. Such characteristics led us to in-
vestigate the development of ensemble update techniques capable
of improving the discriminative power of the ensemble. Our chosen
technique is inspired on the Dynamic Weighted Majority algorithm,
an algorithm initially developed for the concept drift problem. In this
paper we will show that, in the problem we are addressing, simple
weight updates do not improve results, whereas an ensemble where
we allow not only weight updates but also the creation and elimina-
tions of models increases significantly the performance.

1 Introduction

Since the 1960’s computer applications whose purpose was that of
supporting the decision making process have been designed [17].
Even though the first computer applications in business environments
were intended to make easier operational activities like order pro-
cessing, billing or inventory control, the need arose for tools that
could ease the tasks related to decision support [1].

In the medical area several expert systems were built and deployed
[2, 9, 16]. However, the failure rate was high as the effort required to
update the knowledge base was excessive and the scope of the expert
systems was very limited.

Researchers started shifting their attention to the automation of the
knowledge acquisition process by using methods from several areas
of expertise (e.g. machine learning, statistics). Knowledge Discovery
from Databases (KDD) [4] is well suited for this task. In fact, given
that there is enough data, KDD techniques make knowledge acqui-
sition easier thus simplifying the task of building decision support
tools. Despite KDD being a semi-automatic process, the predictive
models still need to be re-evaluated on a regular basis to detect any
loss of predictive accuracy. In fact, model performance is known to
degrade over time as the world does not remain in a stationary state
[7] (e.g. in the medical area new drugs and therapeutic procedures
are constantly being developed). Whenever performance drops bel-
low acceptable values it is necessary to repeat the KDD process or,
at the very least, retrain the models using the latest data. Thus, an
adaptive Decision Support System (DSS) must include mechanisms

1 Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Leiria,
Portugal, email: pgago@estg.ipleiria.pt

2 Universidade do Minho, Portugal, email: mfs@dsi.uminho.pt

to detect the degradation in performance and to act accordingly in
order to maintain the needed performance levels [15]. Moreover, it
is now well established that prediction accuracy can usually be im-
proved by using ensembles of prediction models instead of a single
model [3, 10]. Despite ensemble performance being usually better
than that of a single model the quality of ensemble predictions also
degrades with the passing of time [7].

In this paper we present several experiments aiming at predict-
ing the final outcome for patients staying in an Intensive Care Unit
(ICU). Our final goal is that of building a DSS connected to the hospi-
tal’s computer network allowing for real-time prediction and contin-
uous performance assessment. The prediction is the result of an en-
semble of classifiers, composed of both neural networks and decision
trees as it has been shown that the different model types contribute to
a lower number of coincident failures thus increasing the ensemble
performance [19]. Whenever necessary the system automatically al-
ters the ensemble, either by changing the models weights, by deleting
poor performing models or by adding new models.

In section 2 we present an overview the overall problem we are
trying to solve and also describe the data used in the experiments
presented in this paper. Section 3 contains a brief overview of related
work. In section 4 we describe the experimental setting and in section
5 we present the experimental results. Finally, section 6 includes the
discussion of the results and in section 7 we present conclusions and
pointers to future work.

2 Problem description
We are currently developing an intelligent Decision Support Sys-
tem called INTCare [5]. Operating in an ICU setting, INTCare uses
data available in the first 24 hours, after ICU admission, to predict
the patient’s outcome (the patient status at the time of hospital dis-
charge: dead or alive) and also to predict organ failure for six organ
or systems (cardiovascular, respiratory, hepatic, renal, central ner-
vous system and hematologic). Initially, the models included in INT-
Care were obtained via batch off-line training even though the INT-
Care’s architecture allows for integration with the Hospital’s Elec-
tronic Patient Records. Such integration will allow INTCare to be
semi-autonomous as it will be possible to automatically collect data
both for making predictions and to the appraisal of its predictive per-
formance. This autonomous behavior demands the inclusion of ad-
justment mechanisms into INTCare making it capable of maintaining
an acceptable performance as time passes.

In this paper we present the results of several experiments on the
use of this information to build a predictive model that maintains an
interesting predictive performance in the ICU. In particular we are
going to address the problem of creating a system capable of predict-
ing hospital mortality for ICU patients using data collected during

21

the first 24 hours after ICU admission. Moreover, such system must
be able to function without human intervention, i.e. it must automat-
ically adjust to new data. We are interested in comparing the perfor-
mance of a static ensemble system with that of several dynamic en-
semble systems. It is our belief that the dynamic systems better suit
the problem at hand as the data available is never enough to cover the
diversity of patients and the related clinical phenomena that occurs
in an ICU and thus the training set does not contain enough examples
to completely describe the concept being investigated.

2.1 Data Description

The available data is composed of data collected during the first day
of ICU stay for approximately 13000 patients. Outcome information
was added to each record, indicating the status of the patient at the
time of hospital discharge (dead or alive).

Four variables contain the information that remains unchanged
during the patient’s stay, including the site where the patient came
from, the type of admission, the patient’s age and the Simplified
Acute Physiology Score (SAPS II) score [12] (SAPS II is a severity
of disease classification system). The remaining variables (except for
the outcome) contain values collected during the inpatient first day
in the ICU. The remaining attributes were derived from the informa-
tion available on the intermediate outcomes, which are defined from
four monitored biometrics: the systolic blood pressure, the heart rate,
the oxygen saturation and the urine output (UR). The information re-
garding these monitored biometrics was condensed into 12 variables
(3 for each of the biometrics) indicating the existence and duration
of what was defined as relevant clinical events. Information regard-
ing the definition of events and critical events may be found in [14].
Finally, the last attribute denotes the patients’ final outcome (status
at the time of hospital discharge).

3 Related Work

The weight update procedure we use to supervise the ensemble is
inspired both on the on the Weighted Majority algorithm [13] and
the Dynamic Weighted Majority (DWM) [8]. Even though DWM is
intended to track concept drift we found the general idea appealing
and decided to investigate the use of a similar algorithm in a more
stable task of predicting the outcome of patients in a ICU.

Even if inspired by DWM, our implementation is different in sev-
eral details. One of the most relevant is that we do not use incremental
learning algorithms. After being included in our ensemble the mod-
els (or experts) are not modified in any way, only their weights are
changed as determined by the algorithm. Unlike DWM the creation
and elimination of experts is not directly dependent on any individ-
ual prediction made. Rather it is the result of the overall prediction
results over the entire batch of records being processed.

4 Experimental Setting

Two different ensemble evolution strategies were evaluated and com-
pared to a ”‘traditional”’ ensemble (Configuration A). In the first one
(Configuration B) the model weights are changed after the evalua-
tion of each batch of records. The weights update procedure is also
included in the second configuration (Configuration C). Also, in this
configuration new models are created using the records in each batch
and the poor performing models (those with negative weights) are
removed from the ensemble.

In order to investigate the effect of evaluating batches of records of
different sizes we tested batches of 10, 20, 50 , 100 and 200 records.
The rationale behind this is that bigger batches may reduce the re-
sponsiveness of the system and thus lower its tendency for over train-
ing.

The same initial ensemble was used for each configuration. This
ensemble was created using a process similar to the Random Sub-
space Method [6]. In our approach all the available training records
are used when creating a new model but each attribute has only a
50% chance of being selected. Our initial ensemble is composed of
50 models, 25 of which are neural networks with the other 25 being
decision trees. The algorithms used for model creation were those
present in the Weka tool [20]. We used j48 for decision trees and
the multilayer perceptron for neural networks. Both algorithms were
run with the default parameter values. In our base ensemble all the
models are assigned the same weight (1

50
).

In configurations B and C, in order to evaluate the effects of allow-
ing changes in the model’s weights we decided to adjust the weights
after each prediction. The models that had made a correct predic-
tion had their weights increased. Those who failed had their weights
reduced. We started by doing this after each prediction, but then in-
vestigated whether evaluating batches of records before making the
weights updates would lead to better results. We tested updating the
weights after each batch of 10, 20, 50, 100 and 200 records. After
each batch of predictions (of size N) we had the number of correct
predictions (C). First we calculated the fraction of the increment for
each weight:

P =
C − N

2
N
2

(1)

where P is positive if the model is correct in more than half of
the records in the batch being considered. It is zero for those cases
where exactly half of the answers are correct and it is negative for
the remaining cases. If all the predictions are correct, the value for P
is 1, if all are wrong the value is -1. The weight update is then the
result of equation 2 where wi stands for the weight of model i.

wi = wi + P ∗ 1

10 ∗ number of models
(2)

In configuration C new models were added to the ensemble after
the evaluation of each batch of records. Two new models are created:
one decision tree and one neural network. Both are trained on that
batch of records using the same method described above for the
initial training of the ensemble. The correspondent weight is equal to
the average of the weights of the other models in the ensemble. The
algorithm is as follows (as in DWM, we used the term ”’expert”’
instead of ”’model”’):

Weight Updates Algorithm

{~x, y} : training data
{e, w}1m : experts and their weights
p : number of records in each batch
δi : fraction of weight increment for expert i

~num = 0
for i = 1,...,n

answer ← 0
for j = 1, ..., m

predicted← Classify(e j , xi)

22

if (predicted = yi)
num j ← num j + 1

end if
answer← answer + predicted * wj

end for
output answer
if (i mod p = 0)

~δ ← Increment(num, p)
~w ← UpdateWeights(~w,~δ)
{e, w} ← DeleteNeg({e, w})
m← m + 1
em ← Create-DecTree(precords)
wm ← w̄
m← m + 1
em ← Create-NNetwork(precords)
wm ← w̄
~w ← Normalize(~w)

end if
end for

To evaluate the results we used the average of the values of the area
under the Receiver Operating Characteristic curve (AUC ROC) ob-
tained after 30 runs of each experiment. The ROC curves are often
used in the medical area to evaluate computational models for de-
cision support, diagnosis and prognosis [11, 21]. A model present-
ing an AUC of 1 has perfect discriminative power (perfect predictive
ability) while a value of 0.5 corresponds to random guessing.

5 Results

We divided the available data into two mutually exclusive datasets.
Models were created using the first dataset. Those models were then
evaluated using the second dataset. Several experiments were con-
ducted with different parameter settings with regard to the frequency
of weights updates and the possibility of creating of new models.
We started by evaluating the performance of the static ensemble(no
changes are made to the ensemble during the evaluation of the
records). With no changes in the ensemble composition the AUC
ROC was 78.80% ±0.93 %.

Next we tested configurations B and C investigating the effect
of using different intervals for evaluation before the weights were
changed. Different configurations include weight changes after ev-
ery record was evaluated or after batches of 10, 20 , 50, 100 or 200
records. In Table 1 we present the AUC under the ROC curve for
each of the configurations considered, allowing us to see the ensem-
bles with better discrimination capabilities (better able to distinguish
between the patients with outcome 0 or 1).

Table 1. Results for the ensemble evolution (% of AUC ROC).

Config. B C
1 78.79±0.93 –

10 78.72±0.93 85.05±0.07
20 78.61±0.93 84.83±0.10
50 78.44±0.92 84.58±0.15
100 78.03±0.92 84.41±0.21
200 77.45±0.91 82.94±0.33

B - Weight updates; C - Weight updates and model creation and elimination

These results seem to indicate that it is best to update the models
weights immediately after the evaluation of each record. In order to
further clarify this point we decided to evaluate the ROCs in a seg-
mented manner. Considering batches of 200 records and computing
the AUC ROC for each of the batches we got the results that are
show in Figure 1. The graph shows an example of the evolution of
the partial AUC ROC values for one of the experiment runs.

Figure 1. Evolution of AUC ROC values over time

We can clearly see that after the first weight update, the perfor-
mance of the ensemble using configuration C is significantly better
than that of the static ensemble (configuration A). However, even if
the overall trend is positive there are some batches of records where
the AUC ROC value drops. That may be explained by the variables
we used and by the composition of the batches. Indeed, there are
some medical conditions that cannot be detected by analysing the
available variables (e.g. a patient with head trauma often has nor-
mal values for the four biometrics parameters included in this work).
Batches with an higher number of such records are likely to lead to
lower AUC ROC values. The increase in discriminative power may
be better perceived in Figure 2. Here we show the increase in AUC
ROC after each batch of 200 records is processed.

Figure 2. AUC ROC increase.

23

It is clear that there is a real gain in using the evolution algorithm
(configuration C) as opposed to a mere static ensemble (configuration
A). Indeed, after the first two batches the increase in AUC ROC is
allways greater than 4% except for one batch.

Finally Figure 3 shows the differences in performance for config-
uration C when different batch sizes are considered. In order to allow
a clear understanding we plotted only those values for batches of 50
and batches of 200 records.

Figure 3. AUC ROC variation with weights updated after 50 or after 200
records.

6 Discussion
Ensemble methods are known to improve results when compared to
those from single classifiers. Our tests show that allowing for dy-
namic adjustments ensemble (both in terms of models’ weights and
in terms of number of models) leads to overall better discriminative
power of our ensemble classifier. Moreover, the intervals at which
such changes are made seems to be an issue worthy of further study
as different values were obtained with different intervals. Finally, the
issue of whether or not to change the ensemble composition seems
to point to a solution where the creation and elimination of models is
encouraged.

The size of the batches used is still an open issue as smaller batch
sizes increase the number of models in the ensemble and may prove
impractical in a real setting. Indeed, figure 3 seems to suggest that
in the short term smaller batches are recommended. However, if we
examine more closely the right side of that figure (after allowing the
ensemble to evolve over several batches of records) it seems that the
performance of the second ensemble is converging to (if not surpass-
ing) that of the first ensemble. This suggests investigating update pro-
cedures with batches of increasing size.

7 Conclusion
Future decision supports systems must be capable of adapting to
changes in their environment [15, 18]. In the medical area this will
allow for an easier integration of these tools in everyday use as its re-
liability tends to increase. In this paper we presented the results of a
set of experiments in building the adaptive module of a decision sup-
port system (INTCare). Considering the available data, both in the
present time and in the foreseeable future we tested dynamic hybrid

ensemble architectures allowing for unassisted operation while main-
taining acceptable performance. We concluded that, for our problem
one should allow for dynamic ensembles with the addition of new
models after each batch of records is examined and the elimination
from the ensemble of those models that have negative weights.

Future work includes extending the architecture to include organ
failure prediction. Other necessary developments regard the need to
incorporate all the available data as it is being registered. For patients
staying several days in the ICU the prediction models must take into
account not only data from the initial 24 hours but also all the data
stored since then. Moreover, relevant clinical information is possibly
hidden in the sequence in witch clinical adverse events occur. As the
INTCare system has access to data collected via bed side monitoring
this seems to be an interesting path to be explored.

ACKNOWLEDGEMENTS
We would like to thank the referees for their comments which helped
improve this paper.
Part of this work was supported by the Fundação para a Ciência e
Tecnologia (grant SFRH BD 28840 2006). Financial support for this
study was received from the FCT project PTDC/EIA/72819/2006
and from the Algoritmi research center.

REFERENCES
[1] David Arnott and Graham Pervan, ‘A critical analysis of decision sup-

port systems research’, Journal of Information Technology, 20(2), 67–
87, (June 2005).

[2] B. Buchanan and E. Shortliffe, Rule-Based Expert Systems: The MYCIN
experiments of the Stanford Heuristic Programming Project, Addison-
Wesley, Reading, MA, 1984.

[3] Thomas G. Dietterich, ‘Ensemble methods in machine learning’, Lec-
ture Notes in Computer Science, 1857, 1–15, (2000).

[4] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth,
Advances in knowledge discovery and data mining, chapter From data
mining to knowledge discovery: an overview, 1–34, American Associ-
ation for Artificial Intelligence, Menlo Park, CA, USA, 1996.

[5] Pedro Gago, Manuel Filipe Santos, Àlvaro Silva, Paulo Cortez, José
Neves, and Lopes Gomes, ‘Intcare : a knowledge discovery based intel-
ligent decision support system for intensive care medicine’, Journal of
Decision Systems, 14(3), 241–259, (2005).

[6] Tin Kam Ho, ‘The random subspace method for constructing decision
forests’, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 20(8), 832–844, (1998).

[7] Ralf Klinkenberg and Stefan Ruping, ‘Concept drift and the importance
of examples’, in Text Mining – Theoretical Aspects and Applications,
Physica-Verlag, (2003).

[8] Jeremy Z. Kolter and Marcus A. Maloof, ‘Dynamic weighted major-
ity: A new ensemble method for tracking concept drift’, in Third IEEE
International Conference on Data Mining, (2003).

[9] C. A. Kulikowski and S. M. Weis, Artificial Intelligence in Medicine,
chapter Representation of expert knowledge for consultation: the CAS-
NET and EXPERT projects, 21–56, Westview Press, Boulder, 1982.

[10] Ludmila I. Kuncheva, Combining Pattern Classifiers: Methods and Al-
gorithms, Wiley-Interscience, 2004.

[11] Thomas A. Lasko, Jui G. Bhagwat, Kelly H. Zou, and Lucila Ohno-
Machado, ‘The use of receiver operating characteristic curves in
biomedical informatics’, J. of Biomedical Informatics, 38(5), 404–415,
(2005).

[12] J. R. Le Gall, S. Lemeshow, and F. Saulnier, ‘A new simplified acute
physiology score (saps ii) based on a european/north american multi-
center study’, JAMA, 270(24), 2957–2963, (1993).

[13] N. Littlestone and M. Warmuth, ‘The weighted majority algorithm’,
Information and Computation, 108, 212–261, (1994).

[14] Álvaro Silva, Paulo Cortez, Manuel Filipe Santos, Lopes Gomes,
and José Neves, ‘Mortality assessment in intensive care units via ad-
verse events using artificial neural networks’, Artificial Intelligence in
Medicine, 36(3), 223–234, (2006).

24

[15] Zbigniew Michalewicz, Martin Schmidt, Matthew Michalewicz, and
Constantin Chiriac, Adaptive Business Intelligence, Springer, 2006.

[16] H. E. Pople, Artificial Intelligence in Medicine, chapter Evolution of an
Expert System: from INTERNIST to CADUCEUS, 179–208, Elsevier
Science Publisher, Amsterdam, 1985.

[17] J. P. Shim, Merrill Warkentin, James F. Courtney, Daniel J. Power,
Ramesh Sharda, and Christer Carlsson, ‘Past, present, and future of
decision support technology’, Decis. Support Syst., 33(2), 111–126,
(2002).

[18] Rustam Vahidov and Gregory E. Kersten, ‘Decision station: situating
decision support systems’, Decision Support Systems, 38, 283–303,
(2004).

[19] Wenjia Wang, Derek Partridge, and John Etherington, ‘Hybrid ensem-
bles and coincident-failure diversity’, in Proceedings of the Interna-
tional Joint Conference on Neural Networks, volume 4, pp. 2376–2381,
Washington, USA, (July 2001). IEEE Press.

[20] Ian H. Witten and Eibe Frank, Data Mining: Practical machine learn-
ing tools and techniques - 2nd Edition, Morgan Kaufmann, Morgan
Kaufmann, 2nd edn., 2005.

[21] MH Zweig and G Campbell, ‘Receiver-operating characteristic (roc)
plots: a fundamental evaluation tool in clinical medicine’, Clin Chem,
39(4), 561–577, (1993).

25

Weighted Decoding ECOC for Facial Action Unit

Classification

Terry Windeatt, Raymond S. Smith and Kaushala Dias 1

 1 University of Surrey, UK email: t.windeatt@surrey.ac.uk

Abstract. There are two approaches to automating the task of
facial expression recognition, the first concentrating on what
meaning is conveyed by facial expression and the second on
categorising deformation and motion into visual classes. The latter
approach has the advantage that the interpretation of facial
expression is decoupled from individual actions as in FACS
(Facial Action Coding System). In this paper, upper face action
units (aus) are classified using an ensemble of MLP base
classifiers with feature ranking based on PCA components. When
posed as a multi-class problem using Error-Correcting-Output-
Coding (ECOC), experimental results on Cohn-Kanade database
demonstrate that error rates comparable to two-class problems
(one-versus-rest) may be obtained. Weighted decoding is shown to
outperform conventional ECOC decoding. The error rates obtained
for six upper face aus around the eyes are believed to be among
the best for this database.

1 INTRODUCTION

The problem of face expression recognition is difficult because
facial expression depends on age, ethnicity, gender, occlusions as
well as pose and lighting variation. Facial action unit (au)
classification is an approach to face expression recognition that
decouples the recognition of expression from individual actions.
In FACS (facial action coding system) [1] the problem is
decomposed into facial action units, that includes six upper face
aus around the eyes. It has the potential of being applied to a much
richer set of applications than an approach that targets facial
expression directly. However, the coding process requires skilled
practitioners and is time-consuming so that typically there are a
limited number of training patterns.

There are various approaches to determining features for
discriminating between aus. Originally, features were based on
geometric measurements of the face that were involved in the au
of interest [1]. More recently, holistic approaches based on PCA,
Gabor [2] and Haar wavelets represent a more general approach to
extracting features [3], and have been shown to give comparable
results. The difficulty with these latter approaches is the large
number of features. When combined with the limited number of
patterns, this can lead to the small sample-size problem, that is
when the number of patterns is less than or comparable to the

number of features. A method of eliminating irrelevant features is
therefore required [4] [5]. In this paper the Out-of-Bag error
estimate is used to optimise the number of features.

In previous work [6] [7] five feature ranking schemes were
compared using Gabor features in an MLP ensemble. The schemes
were Recursive Feature Elimination (RFE) [9] combined with
MLP weights and noisy bootstrap, boosting (single feature
selected each round), one-dimensional class-separability measure
and Sequential Floating Forward Search (SFFS). It was shown that
ensemble performance is relatively insensitive to the feature-
ranking method with simple one-dimensional performing at least
as well as multi-dimensional schemes. It was also shown that the
ensemble using PCA features with its own inherent ranking
outperformed Gabor.

In this paper, PCA features are used with Error-Correcting
Output Coding (ECOC) and a weighted decoding strategy based
on bootstrapping individual base classifiers is proposed. The
principle behind weighted decoding is to reward classifiers that
perform well. The weights in this study are fixed in the sense that
none change as a function of the particular pattern being classified.
Sometimes this is referred to as implicit data-dependence or
constant weighting. It is generally recognized that a weighed
combination may in principle be superior, but it is not easy to
estimate the weights.

The main contribution in this paper is to apply a weighted
ECOC decoding strategy to the problem of facial action unit
classification. Section 2 discusses ensemble techniques,
Bootstrapping and ECOC for weighted decoding. Section 3
describes the database and design decisions for au classification,
and compares 2-class classification with weighted and
conventional ECOC decoding.

2 ENSEMBLES, BOOTSTRAPPING AND ECOC

We assume a simple parallel Multiple Classifier System (MCS)
architecture with homogenous MLP base classifiers. A good
strategy for improving generalisation performance in MCS is to
inject randomness, the most popular strategy being Bootstrapping.
An advantage of Bootstrapping is that the Out-of-Bootstrap (OOB)
error estimate may be used to tune base classifier parameters, and

26

furthermore, the OOB is a good estimator of when to stop
eliminating features [8]. Normally, deciding when to stop
eliminating irrelevant features is difficult and requires a validation
set or cross-validation techniques.

Bootstrapping is an ensemble technique which implies that if µ
training patterns are randomly sampled with replacement, (1-
1/µ))µ ≅ 37% are removed with remaining patterns occurring one
or more times. The base classifier OOB estimate uses the patterns
left out of training, and should be distinguished from the ensemble
OOB. For the ensemble OOB, all training patterns contribute to
the estimate, but the only participating classifiers for each pattern
are those that have not been used with that pattern for training
(that is, approximately thirty-seven percent of classifiers). Note
that OOB gives a biased estimate of the absolute value of
generalisation error, but for tuning purposes the estimate of the
absolute value is not important.

Error-Correcting Output Coding (ECOC) is a well-established
method [10] [11] for solving multi-class problems by
decomposition into complementary two-class problems. It is a
two-stage process, coding followed by decoding. The coding step
is defined by the binary k x B code word matrix Z that has one row
(code word) for each of k classes, with each column defining one
of B sub-problems that use a different labeling. Assuming each
element of Z is a binary variable z, a training pattern with target
class ωl (l = 1... k) is re-labeled as class Ω1 if Zij = z and as class
Ω2 if Zij = z . The two super-classes Ω1 and Ω2 represent, for
each column, a different decomposition of the original problem.
For example, if a column of Z is given by [0 1 0 0 1]T, this would
naturally be interpreted as patterns from class 2 and 5 being
assigned to Ω1 with remaining patterns assigned to Ω2. This is in
contrast to the conventional One-versus-rest code, which can be
defined by the diagonal k x k code matrix

Many types of coding are possible, but theoretical and
experimental evidence indicates that, providing a problem-
independent code is long enough and base classifier is powerful
enough, performance is not much affected. In this paper, a random
code with near equal split of labels in each column is used with
B=200 and k=12. It has been shown theoretically and
experimentally that a long random code performs almost as well as
a pre-defined code, optimised for its error-correcting properties
[11].

In the test phase, the jth classifier produces an estimated
probability jq̂ that a test pattern comes from the super-class
defined by the jth decomposition. The pth test pattern is assigned
to the class that is represented by the closest code word, where
distance of the pth pattern to the ith code word is defined as

 ∑

=

−=
B

j
pjijjlpi qZD

1

ˆα kl ,...1= (1)

where αjl allows for lth class and jth classifier to be assigned a
different weight. If α=1 in equ. (1), Hamming decoding uses hard
decision and L1 norm decoding uses soft decision.

To obtain the OOB estimate, the pth pattern is classified using
only those classifiers that are in the set OOBm, defined as the set of
classifiers for which the pth pattern is OOB. For the OOB
estimate, the summation in equ. (1) is therefore modified to

 ∑
∈ mOOBj

In other words columns of Z are removed if they

 correspond to classifiers that used the pth pattern for training.
In this paper we introduce a different weighted decoding

scheme, that treats the outputs of the base classifiers as binary
features. By using the diagonal matrix {Zij = 1 if and only if i = j}
the problem is recoded as k 2-class problems where each problem
is defined by a different binary-to-binary mapping. There are
many strategies that may be used to learn this mapping, but we use
a weighted vote with weights set by class-separability measure
applied to the training data, defined in [12].

Let ymj indicate the binary output of the jth classifier applied to
the mth training pattern, so that the output of base classifiers for
the mth pattern is given by

),(21 mBmmmj yyyy L=

Assuming in equ. (2) that a value of 1 indicates agreement of

the output with target label and 0 disagreement, we can define
counts for jth classifier as follows

njmjj yyN ∧=11
and njmjj yyN ∧=00

where the mth and nth pattern are chosen from different classes.

The weight for the jth output is then defined as
  −= ∑ ∑

allpairs allpairs
jjj NN

K
w 00111

where K is a normalization constant and the summation is over

all pairs of patterns from different class.

The motivation behind equ. (4) is that the weight is computed

as the difference between positive and negative correlation with
respect to target class. In [12] this is shown to be a measure of
class separability.

3 DATASET & EXPERIMENTAL EVIDENCE

The Cohn-Kanade database [13] contains posed expression
sequences from a frontal camera from 97 university students. Each
sequence goes from neutral to target display but only the last
image is au coded. Facial expressions in general contain
combinations of action units (aus), and in some cases aus are non-

(2)

(3)

(4)

27

additive (one action unit is dependent on another). To automate
the task of au classification, a number of design decisions need to
be made, which relate to the following 1) subset of image
sequences chosen from the database 2) whether or not the neutral
image is included in training 3)image resolution 4)normalisation
procedure 5)size of window extracted from the image, if at all 6)
features chosen for discrimination. Furthermore classifier
type/parameters, and training/testing protocol need to be chosen.
Researchers choose different decisions in these areas, and in some
cases are not explicit about which choice has been made.
Therefore it is difficult to make a fair comparison with previous
results.

We concentrate on the upper face around the eyes, involving
au1(inner brow raised), au2(outer brow raised), au4(brow
lowered), au5(upper eyelid raised), au6(cheek raised), and
au7(lower eyelid tightened). We chose an MLP ensemble and
random training/test split of 90/10 repeated twenty times and
averaged. Other design decisions we made were:

1) All image sequences of size 640 x 480 chosen
2) Last image in sequence (no neutral) chosen giving 424

images, 115 containing au1
3) Full image resolution, no compression
4) Manually located eye centres plus rotation/scaling into 2

common eye coordinates
5) Window extracted of size 150 x 75 pixels centred on eye

coordinates
6) PCA applied to raw image with PCA ordering

With reference to 2), some studies use only the last image in
the sequence but others use the neutral image to increase the
numbers of non-aus. Furthermore, some researchers consider only
images with single au, while others use combinations of aus. We
consider the more difficult problem, in which neutral images are
excluded and images contain combinations of aus. With reference
to 4) there are different approaches to normalisation and extraction
of the relevant facial region. To ensure that our results are
independent of any eye detection software, we manually annotate
the eye centres of all images, and subsequently rotate and scale the
images to align the eye centres horizontally. A further problem is
that some papers only report overall error rate. This may be mis-
leading since class distributions are unequal, and it is possible to
get an apparently low error rate by a simplistic classifier that
classifies all images as non-au. For the reason we report area
under ROC curve, similar to [5].

There are two sets of experiments aimed at 2-class and multi-
class formulations of au classification. In both sets of experiments,
the MLP ensemble uses two hundred single hidden-layer MLP
base classifiers, with Levenberg-Marquardt training algorithm and
default parameters. Random perturbation of the MLP base
classifiers is caused by different starting weights on each run,
combined with bootstrapped training patterns. In our framework,
we vary the number of hidden nodes, with a single node for linear
perceptron, and keep the number of training epochs fixed at 20.

The ultimate goal in au classification is to detect combination
of aus. In the ECOC approach, a random 200x12 code matrix is
used to consider each au combination as a different class. After
removing classes with less than four patterns this gives a 12-class
problem with au combinations as shown in Table 1. To compare
the results with 2-class classification, we compute test error by
interpreting super-classes as 2-class problems, defined as either
containing or not containing respective au. For example, sc2, sc3,
sc6, sc11, sc12 in Table 1 are interpreted as au1, and remaining
super-classes as non-au1

The first set of experiments detects au1, au2, au4, au5, au6,
au7 using six different 2-class classification problems, where the
second class contains all patterns not containing respective au. The
MLP ensemble uses majority vote combining rule. The best error
rate of 9.4% for au1 was obtained with 16 nodes and 28 features.
The 9.4% error rate for au1 is equivalent to 73% of au1s correctly
recognised. However, by changing the threshold for calculating
the ROC, it is clearly possible to increase the true positive rate at
the expense of overall error rate. The best ensemble error rate, area
under ROC with number of features and number of nodes for all
upper face aus are shown in the first two columns of Table 2. Note
that number of nodes for best area under ROC is generally higher
than for best error rate, indicating that error rate is more likely to
be susceptible to over-fitting.

The second set of experiments uses ECOC method described in
Section 2, and figure 1 shows area under ROC for the six aus, as
number of PCA features is reduced. Columns 3 and 4 in Table 2
show best L1 norm decoding classification error and area under
ROC, while last 2 columns show respective weighted decoding. It
may be seen that weighted outperforms L1 norm decoding. Also it
may be seen from Table 2 that 2-class classification with
optimized PCA features (columns 1 and 2) on average slightly
outperforms ECOC. However, the advantage of ECOC is that all
problems are solved simultaneously with 200 classifiers, and
furthermore the combination of aus is recognized. As a 12-class
problem, the mean best error rate over the twelve classes defined
in Table 1 is 38.2 %, showing that recognition of combination of
aus is a difficult problem.

4 DISCUSSION

The results for upper face aus, shown in Table 2, are believed to
be among the best on this database (recognising the difficulty of
making fair comparison as explained in Section 3).There are two
possible reasons why the ECOC decoding strategy works well.
Firstly, the data is projected into a high-dimensional space and
therefore more likely to be linearly separable [14]. Secondly,
although the full training set is used to estimate the weights, each
base classifier is bootstrapped and therefore is trained on a subset
of the data, which guards against over-fitting. As indicated in
Section 2, bootstrapping also facilitates the OOB estimate for
removing irrelevant features without validation. The effect of
bootstrapping can be understood using bias/variance of 0/1 loss

28

function [15]. In [6] it is shown that a bootstrapped ensemble
benefits from reduced bias at the expense of increased variance.

Some preliminary results on other techniques to learn the
binary-to-binary mappings defined in Section 2, indicate that the
decoding strategy is fairly insensitive to the method of setting the
weights. For example, similar results were obtained by using
Adaboost logarithmic formula [16].

5 CONCLUSION

For upper face au classification, weighted decoding ECOC
achieves comparable performance to optimized 2-class classifiers.
However, ECOC has the advantage that all aus are detected
simultaneously, and further work is aimed at determining whether
problem-dependent rather than random codes can improve results.

References

[1] Y. Tian, T. Kanade and J. F. Cohn, Recognising action units for

facial expression analysis, IEEE Trans. PAMI 23(2), 2001, 97-
115.

[2] G Donato, M S Bartlett, J C Hager, P Ekman and T J Sejnowski,
Classifying facial actions, IEEE Trans. PAMI 21(10), 1999, 974-
989.

[3] Bartlett, M.S. Littlewort, G. Lainscsek, C. Fasel, I.
Movellan, J. Machine learning methods for fully automatic
recognition of facial expressions and facial actions, IEEE Conf.
Systems, Man and Cybernetics, Oct 2004, Vol. 1, 592- 597.

[4] P. Silapachote, D. R. Karuppiah, and A. R. Hanson, Feature
Selection using Adaboost for Face Expression Recognition,
Proc. Conf. on Visualisation, Imaging and Image Processing,
Marbella, Spain, Sept. 2004, 84-89.

[5] M S Bartlett, G Littlewort, M Frank, C Lainscsek, I Fasel and J
Movellan, Fully automatic facial action recognition in
spontaneous behavior, Proc 7th Conf. On Automatic Face and
Gesture Recognition, 2006, ISBN 0-7695-2503-2, 223-238.

[6] T Windeatt, K Dias, Feature-ranking ensembles for facial action
unit classification, IAPR Third Int. Workshop on artificial neural
networks in pattern recognition, Paris, July, 2008, accepted.

[7] T. Windeatt., M. Prior, N. Effron, N. Intrator, Ensemble-based
Feature Selection Criteria, Proc. Conference on Machine
Learning Data Mining MLDM2007, Leipzig, July 2007, ISBN
978-3-940501-00-4, pp 168-182

[8] T Windeatt, M Prior, Stopping Criteria for Ensemble-based
Feature Selection, Proc. 7th Int. Workshop Multiple Classifier
Systems, Prague May 2007, Lecture notes in computer science,
Springer-Verlag, 271-281

[9] Guyon I., Weston J., Barnhill S. and Vapnik V., Gene selection
for cancer classification using support vector machines, Machine
Learning 46(1-3), 2002, 389-422.

[10] T. G. Dietterich ,G. Bakiri, Solving multiclass learning problems
via error-correcting output codes, J. Artificial Intelligence
Research 2, 1995, 263-286

[11] T Windeatt and R Ghaderi, Coding and Decoding Strategies for
multiclass learning problems, Information Fusion, 4(1), 2003,
11-21.

[12] T Windeatt, Accuracy/Diversity and Ensemble Classifier
Design, IEEE Trans. Neural Networks 17(5), 2006, 287-297.

[13] T. Kanade, J. F. Cohn and Y. Tian, Comprehensive Database for
facial expression analysis, Proc. 4th Int. Conf. automatic face and
gesture recognition, Grenoble, France, 2000, 46-53.

[14] T.M. Cover, Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition, IEEE
Trans. Information Theory, vol. EC-14, 1965, 326-334.

[15] G. Valentini, T. G. Dietterich, Bias-variance analysis of Support
Vector Machines for the development of SVM-based ensemble
methods, Journal of Machine Learning Research, 5 , 2004,
MIT Press, 725-775.

[16] Y. Freund and R.E. Schapire. A decision-theoretic generalisation
of on-line learning and an application to boosting, J. of
Computer and System Science, 55(1), 1997, 119-139.

ID sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9 sc10 sc11 sc12
superclass {} 1,2 1,2,5 4 6 1,4 1,4,7 4,7 4,6,7 6,7 1 1,2,4
#patterns 149 21 44 26 64 18 10 39 16 7 6 4

 Table 1. ECOC super-classes of action units and number of patterns

29

 2-class

Test
Error %

2-class
area under
ROC

ECOC
Test
Error %

ECOC
area under
ROC

ECOC
Weighted
Error %

ECOC
Weighted
ROC

au1 9.4/16/28 0.97/16/36 10.3/1/10 0.92/16/46 9.2/4/36 0.94/16/36
au2 3.5/4/36 0.99/16/22 3.4/1/36 0.96/16/28 2.8/16/22 0.98/1/46
au4 9.1/16/36 0.95/16/46 12.0/16/28 0.92/4/28 9.5/1/28 0.94/4/28
au5 5.5/1/46 0.97/1/46 3.6/16/36 0.99/1/36 3.2/1/36 0.99/1/36
au6 10.5/1/36 0.94/4/28 13.1/1/77 0.88/1/77 12.8/1/77 0.90/1/28
au7 10.3/1/28 0.92/16/60 11.6/1/28 0.89/4/46 10.9/4/46 0.92/1/36
mean 8.1 0.96 9.0 0.93 8.1 0.95

100 77 60 46 36 28 22 17 13 10

0.88

0.9

0.92

ar
ea

(a) au1

100 77 60 46 36 28 22 17 13 10

0.94

0.95

0.96

0.97

(b) au2

100 77 60 46 36 28 22 17 13 10

0.86

0.88

0.9

0.92

ar
ea

(c) au4

100 77 60 46 36 28 22 17 13 10
0.95

0.96

0.97

0.98

(d) au5

100 77 60 46 36 28 22 17 13 10

0.8

0.85

0.9

PCA dimension

ar
ea

(e) au6

 1
 4
16

100 77 60 46 36 28 22 17 13 10
0.8

0.85

0.9

PCA dimension

(f) au7

Table 2: Mean best test error rates (%) and area under ROC showing #nodes/#features for au classification
with optimized PCA features and MLP ensemble

Figure 1: Area under ROC for weighted decoding ECOC MLP ensemble [1,4,16] hidden nodes 20 epochs
versus number PCA features (logscale)

30

The Neighbors Voting Algorithm
Gabriele Lombardi and Elena Casiraghi and Paola Campadelli

{lombardi,casiraghi,campadelli}@dsi.unimi.it
Dipartimento di Scienze dell’Informazione

Università degli Studi di Milano

Abstract. In the last ten years the tensor voting framework (TVF),
proposed by Medioni at al., has proved its effectiveness in perceptual
grouping of arbitrary dimensional data. In the computer vision and
image processing fields, this algorithm has been applied to solve va-
rious problems like stereo-matching, 3D reconstruction, and image
inpainting.

In this paper we propose a new technique, inspired to the TVF, that
allows to estimate the dimensionality and normal orientation of the
manifolds underlying a given point set. These informations are en-
coded in tensors that can be considered as weak classifiers for the di-
mensionality classification problem; their linear combination is then
used as a strong manifold dimensionality classifier. To prove the ef-
fectiveness of the described algorithm, two problems are faced: clus-
tering by dimensionality estimation, and image inpainting by texture
learning.

1 Introduction

The Tensor Voting Framework (TVF) proposed in [2] by Medioni
at al., and further developed over the past ten years [6, 7], is a com-
putational framework that can address a wide range of computer vi-
sion problems in a unified way. The framework has been designed
based on perceptual principles, formulated by Gestalt psychologists,
to infer salient structures from sparse and noisy data. It has been
successfully applied to stereo matching [3, 5], image repairing [10],
boundary inference [8], and motion segmentation [11].

The TVF is a general methodology suitable for problems of any
dimensionality that can be formulated as a perceptual organization
problem. In [4] Medioni at al. applied tensor voting to the problem
of learning a target function from a set of points. To this aim they pro-
posed a new implementation which can deal efficiently with data in
arbitrary dimensional spaces. In [9] a new vote generation algorithm
was proposed and a new family of decay functions was defined. In [1]
Medioni and Tang described an augmentation of the TVF consisting
in the estimation of the manifold’s curvature and its usage to the aim
of improving the manifold’s inference precision.

In this paper we present a data analysis technique, the Neighbors
Voting algorithm (NV), inspired to the TVF, that allows to estimate the
dimensionality and normal orientation of the manifolds underlying a
set of given points. The NV algorithm is iterative and consists in the
generation of tensorial votes between neighboring points. Each pair
“point-tensor” can be considered as a (weak) classifier for the di-
mensionality classification problem; the linear combination of weak
classifiers is then used as a strong classifier to infer the dimension of
the underlying manifold. In this work we demonstrate the efficiency
and effectiveness of our approach with both synthetic and real data.

This paper is organized as follows: Section 2 briefly recalls the
TVF; Section 3 presents the NV theory and describes the developed
algorithm; Section 4 presents results and discusses future works.

2 The tensor voting framework

The TVF is a mechanism that forces the interaction among input
tokens (points) in order to infer salient perceptual structures. Each
token is associated to a local potential orientation of the manifold go-
ing through it. The orientation information is propagated from each
token to its neighbors via a voting operation. Votes are casted from
one location to each other, forcing orientation updates. Tokens that
receive no vote can be classified as outliers. Tokens that receive votes
from almost every direction, identify a locally unoriented manifold.
Tokens that receive votes mainly from a well defined direction, de-
scribe an oriented manifold.

Every token is a location where an orientation is defined. To man-
age orientations, symmetric non-negatively defined second order ten-
sors 1 are used. The eigensystem of this structures, in �n, consists
of n orthonormal eigenvectors, and n non-negative associated eigen-
values. The eigenvectors describe the orientation of the underlying
manifold, whilst the eigenvalues give a confidence for each direc-
tion; geometrically, each tensor represents an hyper-ellipsoid. Each
vote, casted by emitters, is itself a tensor.

Given the eigensystem (X,Λ), where X is an orthogonal matrix
composed column wise by the orthonormal eigenvectors, and Λ is a
diagonal matrix containing the corresponding eigenvalues, the asso-
ciated tensor can be computed as: T = XΛXT =

∑n
i=1 λieieT

i , where
the λi are the eigenvalues in non-increasing order, and the ei are the
corresponding eigenvectors. T can be decomposed in base tensors,
as follows:

T =
n−1∑
i=1

(λi − λi+1)
i∑

j=1

e jeT
j

 + λn

n∑
j=1

e jeT
j (1)

with i non null eigenvalues (1 ≤ i ≤ n). The last term in Equation (1)
is an unoriented (ball) tensor, the other n − 1 terms are oriented ten-
sors. The (λi − λi+1) and the λn coefficients are called saliency values
and denoted by si. Each decomposed tensor term is useful to identify
a manifold dimensionality: as an example, in�2 the ball tensor iden-
tifies filled regions, and the oriented tensor (stick) describes curves.
Tensor composition can be obtained summing tensors component by
component, thus allowing to merge uncertainties, and to reinforce
coherent orientations.

In the TVF, each token casts tensorial votes to neighboring tokens,
and it is updated substituting its tensor with the sum of received

1 In the following they will be simply referred as tensors.

31

votes. The voting fields, emitted by tokens, play a central role in the
data information propagation process, so that the votes generating
function must be chosen carefully. The simplest voting field is the
stick field in �2: given a stick tensor E (emitter), and a point p (re-
ceiver), the vote V computed in p, shown in Figure 1, represents the
most likely normal, in p, to the curve that we want to infer, according
to the curve’s normal defined by the voter E.

Figure 1. The stick vote in�2: in p the best orientation V is the normal to
the osculating circle oc.

E

V

oc

p

θ

The vote V can be computed as follows:

Vstick(p) = DF(p) ·
[− sin(2θ)

cos(2θ)

]
[− sin(2θ) cos(2θ)] (2)

where the dependency of Vstick from E is in the computation of the
angle θ, and DF(·) is the decay function that controls the vote inten-
sity with respect to the length s and curvature k of the arc c. More
precisely:

DF(p;σ) = exp

(
− s(p)2 + ck(p)2

σ2

)
(3)

The parameter σ controls the scale, whereas the constant c is used to
maintain the isotropy. The arc length and the curvature are calculated
as follows:

s(p) = θ‖p‖
sin(θ) ; k(p) = 2 sin(θ)

‖p‖ (4)

Moreover, the decay function is forced to zero when θ > π4 .
Given the stick field in�2, the ball field can be obtained integrat-

ing the stick one over all its possible rotations, that is:

Vball(p) =
∫ π

0
RαVstick(Rαp)RT

αdα (5)

where Rα represents a 2 × 2 rotation matrix.
The voting algorithm is conceptually a simple task: given a set

of points {pi ∈ �D}, a ball tensor (identity) is generated as initial
emitter for each pi; then voting passes are iterated at least two times
to improve the manifolds’ orientation estimation encoded in the set
of tensors Ti associated to the points. A voting pass consists of the
following steps:

1. each receiver is initialized with a null tensor;
2. for each emitter (pi,Ti):

(a) determine the set of the receivers (p j,T j) distant less than 3σ
from the voter 2;

(b) for each receiver j compute the vote Vj
i casted to it by the emit-

ter i, as follows:

i. decompose Ti as defined in Equation (1) obtaining the base
tensors Ti,k, with 1 ≤ k ≤ D;

ii. for each base tensor Ti,k compute the tensorial vote V j
i,k casted

according to the associated voting field; as an example, in�2

the computed votes are: the stick vote (see Equation (2)), and
the ball one (see Equation (5));

2 The radius depends on the voting field edge size. The value 3σ allows to
capture more than the 99% of the decay volume.

iii. compute the emitted vote as V j
i =

∑
k skV j

i,k where sk are the
saliency values of Ti;

(c) update the receiver’s tensor by adding to it Vj
i .

After each voting pass execution, the output tensors accumulated in
the receivers can be used as emitters during the next voting pass.

In [4] a direct method to compute tensorial votes, without the us-
age of integrals like the one reported in Equation (5), is presented; it
allows to work in spaces of high dimensionality relaxing the memory
requirement constraints and removing the tensorial fields’ precom-
putation step. In [9] a new algorithm to compute tensorial votes is
presented, that employs a new family of decay functions to reduce
the additive noise effects on the inferred structure. The new decay
functions presented there were:

NDF(p;C, σ) = exp

(
−‖C · p‖

2

2σ2

)
(6)

C(p,dir; per, ha, in) = 1 + in

∣∣∣∣∣∣p · dir

‖p‖2ha

∣∣∣∣∣∣
per

(7)

The TVF is a general technique that could be applied in arbitrary
dimensional spaces; nevertheless, when the space dimensionality is
high this method cannot be used in practice, due to its high time and
space complexity. Indeed, due to the curse of dimensionality, its time
and space complexity grows as Θ(N log(N)D3) and O(ND3), where
N is the number of data points and D is the space dimensionality3.
The technique proposed in this paper is much faster in high dimen-
sional spaces; it has a lower time complexity (Θ(N log(N)D2)), and
has less memory requirements (O(ND2)). The drawback is that the
NV technique is an approximation of the TVF, thus generating less
precise results.

3 The Neighbors Voting algorithm

In this section we describe an algorithm that is a simplified version
of the TVF; it obtains similar results with a lower time and space
computational cost. To reduce the complexity we simplify the vote
generation algorithm by avoiding the base tensors decomposition
step, so that each emitter directly generates the vote on each receiver.
Moreover, our voting scheme approximates tensors’ orientation, thus
preventing the onerous tensor rotation operations. To compensate for
the missing information we add a nonlinear filtering step that allows
to generate a local classification for the manifold dimensionality.

As in the TVF, the initialization of the NV algorithm associates ball
tensors to each point pi in the D dimensional space, so that “tokens”
are defined with the pairs (pi,Ti). With this initialization no infor-
mation is available about the manifolds’ orientations, so that the first
voting pass is different from the others; in [4] Medioni et. al. give the
following equation to compute the ball tensorial vote casted from the
emitter i to the receiver j:

T j
i = W j

i

(
I −

(p j − pi)(p j − pi)T

‖p j − pi‖2

)
(8)

where W j
i = DF(p j − pi) is the ball decay function, that is the un-

normalized gaussian function. Summing over all the emitters i, we
obtain the vote at the receiver j:

T j =
∑
∀i

T j
i = W jI −

∑
∀i

W j
i

(p j − pi)(p j − pi)T

‖p j − pi‖2
= W jI − A j (9)

3 The N log(N) part of the Θ(·) mean-case complexity notation is due to the
(realistic) hypothesis that there are approximately log(N) neighbors to each
data point, and that the used data structure allows to find them in logarith-
mic time.

32

where ‖ · ‖ is the euclidean norm, W j =
∑
∀i W j

i , and A j =∑
∀i W j

i
(p j−pi)(p j−pi)

T

‖p j−pi‖2
. Representing the spectral norm with ‖·‖ρ, and

defining sj
i =

(p j−pi)

‖p j−pi‖
, we can demonstrate that

∥∥∥W jI
∥∥∥
ρ
= W j ≥

∥∥∥A j
∥∥∥
ρ
:

∥∥∥A j
∥∥∥
ρ
=

∥∥∥∥∥∥∥
∑
∀i

W j
i

(p j − pi)(p j − pi)T

‖p j − pi‖2

∥∥∥∥∥∥∥
ρ

=

∥∥∥∥∥∥∥
∑
∀i

W j
i s j

i (s j
i)

T

∥∥∥∥∥∥∥
ρ

≤
∑
∀i

W j
i

∥∥∥s j
i (s j

i)
T
∥∥∥
ρ︸�����︷︷�����︸

1

= W j (10)

Next, we show that

T j

‖T j‖ρ
= I − A j

‖A j‖ρ
⇔

∥∥∥A j
∥∥∥
ρ
= W j (11)

At first, we note that if
∥∥∥A j

∥∥∥
ρ
= W j, from Equation (10) it must be:

∥∥∥∥∥∥∥
∑
∀i

W j
i s j

i (s j
i)

T

∥∥∥∥∥∥∥
ρ

=
∑
∀i

W j
i

∥∥∥s j
i (s j

i)
T
∥∥∥
ρ

(12)

Since ∀i, j we have that W j
i > 0 ∧ ‖s j

i ‖ = 1, from Equation (12)
it follows that ∀i, j, k; |s j

i · s j
k| = 1; therefore, rank(A j) = 1 and

min
(
λ
(

Aj

‖Aj‖ρ

))
= 0, where λ (·) is the function that computes the

eigenvalues of a given matrix. Thanks to this demonstration we can
write:

T j = W j I − A j =W j

(
I − A j

W j

)

⇒ T j

W j
= I − A j

W j
⇒ T j

‖A j‖ρ
= I − A j

‖A j‖ρ
(13)

and

∥∥∥T j
∥∥∥
ρ
=

∥∥∥A j
∥∥∥
ρ

∥∥∥∥∥∥I − A j

‖A j‖ρ

∥∥∥∥∥∥
ρ

=
∥∥∥A j

∥∥∥
ρ


1 − min

(
λ

(
Aj

‖Aj‖ρ

))
︸��������������︷︷��������������︸

0


=

∥∥∥A j
∥∥∥
ρ

(14)

Thus, we have demonstrated the “if” part of Equation (11); the
“only if” part can be demonstrated in a similar way. Thus the compu-
tation of T j can be substituted by T j

‖T j‖ρ
= I− A j

‖A j‖ρ
when

∥∥∥A j
∥∥∥
ρ
= W j;

nevertheless, since the second order tensor T̂ j = I− A j

‖A j‖ρ
is generally

positive semi-definite, we always compute T̂ j as the vote at receiver
j, also when the condition in Equation (11) does not hold. This is
useful for it enforces the classified dimensionality d to be 0 < d < D,
and ∀ j,

∥∥∥T̂ j
∥∥∥
ρ
≤ 1.

In the NV algorithm, voting passes executed after the first use the
tensorial information computed during the previous voting passes to
generate oriented votes on target points. More precisely, each emitter
(pi,Ti) generates tensor votes equal to WiTi, where Wi is a weight
computed according to an unnormalized gaussian decay function
centered in pi. To face additive noise, and to cast strongest votes in
the direction tangent to the underlying manifold, the decay function
is elongated proportionally to a scale parameter σ on the tangent
space, and proportionally to a noise standard deviation parameter γ
(γ ≤ σ) on the normal space. To build such a gaussian function, we at

first classify the dimensionality of the underlying manifold by select-
ing the maximum saliency value, sh; then, we synthesize the preci-
sion matrix Pi = XiΛiXT

i , describing the gaussian function, by setting
the eigenvalues in the diagonal matrix Λi to λk =

1
σ2 for 1 ≤ k ≤ h,

and λk =
1
γ2 for h < k ≤ D, while Xi is the matrix of the eigenvectors

of the tensor obtained from the previous voting pass. Once the preci-
sion matrix is obtained the scaling values Wi are computed and used
to cast tensorial votes.

In this setting, each emitter pair (pi,Ti) can be viewed as a weak
classifier trained by iterating voting passes. After the training step,
the vote WiT j

i casted from the emitter i to the receiver position p j, can
be considered as the precision matrix of the unnormalized gaussian

function N
(
x; p j,WiT j

i

)
= e−(x−p j)

T WiT j
i (x−p j)/2 which is proportional

to the generalized probability density function, P(x ∈ Mp j | (pi,Ti)),
associating to each point x ∈ �D the probability to be on the mani-
foldMp j underlying the point p j, conditioned to (pi,Ti). Since:

P
(
x ∈ Mp j

)
= N

(
x; p j,T j

)
= N

x; p j,
∑
∀i

WiT j
i


=

∏
∀i

N
(
x; p j,W

iT j
i

)
=

∏
∀i

P
(
x ∈ Mp j | (pi,Ti)

)
(15)

the accumulated vote T j represents the joint distribution in p j;
therefore, the strong dimensionality classifier obtained by employing
P

(
x ∈ Mp j

)
is an ensemble classifier made by combining the weak

classifiers obtained by employing the P
(
x ∈ Mp j | (pi,Ti)

)
for each i.

3.1 Point clustering

Given a set of points P = {pi}, the NV algorithm can be used to
train an ensemble classifier. Each point pi can then be classified ac-
cording to the dimensionality of the inferred manifold going trough
it; point clustering is therefore realized by grouping points belonging
to inferred manifolds with the same dimensionality.

To the aim of manifold dimensionality inference, the NV algorithm
starts from a set of pairs (pi,Ti), and iterates voting passes, to modify
(train) the Tis by means of the information exchanged among neigh-
boring points. This information diffusion process allows to improve
the dimensionality and local orientation estimation, encoded in Ti,
with respect to the underlying manifold going trough pi.

After each voting pass the inferred dimensionality information is
reinforced by applying a nonlinear filtering, as follows:

1. the eigensystem Ti = XiΛiXT
i is computed;

2. the saliency values are computed, as described in Section 2;
3. the maximum saliency value, sh, is found to select the most likely

dimensionality of the underlying manifold;
4. a new eigenvalue matrix Λ̄i is generated by setting to zero the

eigenvalues corresponding to the tangent directions, and to one
the others;

5. the filtered tensor is T̄i = XiΛ̄iXT
i .

The described algorithm allows to efficiently classify the dimen-
sionality of the underlying manifold going trough each input data
point, so that points related to manifolds with different dimension-
ality can be separated. In section Section 4 results are shown in a
synthetic case.

3.2 Image Inpainting with NV

In [10] a TVF-based image inpainting technique was proposed. In
this section we describe how to solve this problem in a similar way,
by using a NV-based technique.

33

Given an image region, a set Ω of (2r + 1 × 2r + 1)-pixels sub-
images (training patches) can be extracted; each patch can be seen as
a vector in �(2r+1)2

. The NV algorithm is then applied to Ω to obtain
a set of trained tensors T , that describe an estimate of the underlying
manifold; therefore, they can be used to recover missing information.

A “patch vector” p containing unspecified coefficients identifies
the submanifold M ⊂ �(2r+1)2

. To recover the missing information
in p, we select from the set of tensors T = {(pi,Ti)} the pair (ph,Th)
so that the distance ‖p̃− p̃h‖ is minimum with respect to all the train-
ing patches4. Being d the estimated dimensionality of the manifold
underlying ph, TS the tangent space identified by the tensor Th, and
e j (1 ≤ j ≤ d) its column vectors, the inferred patch p̄ can be com-
puted as follows:

p̄ =
(p̃h − ph) · p̄′

‖p̃h − ph‖2
p̄′ + ph (16)

where

p̄′ =
d∑

l=1

el · (p̃h − ph)el (17)

These equations compute p̄ as the point, nearest to p̃h, and con-
strained on the linear space span

〈
{e j}dj=1

〉
∩M.

Every patch p̄, inferred for a partially specified patch p, is an esti-
mate of the unknown real patch and contains the estimated pixel gray
levels p̄x,y. Inferring overlapping patches allows to generate different
gray level estimates for the same pixel; their mean value is the max-
imum likelihood estimation of the unknown pixel gray level. Given
an unknown image region, its boundary patches are the easiest to be
recovered since they have less unknown coordinates.

Based on these considerations, the inpainting algorithm proceeds
by iterating the following steps:

1. the external edge pixels, pi, of the unknown region are identified
morphologically;

2. for each pi:

(a) a partially specified patch is centered on pi and its unknown
pixel values are inferred;

(b) the inferred pixel values are accumulated in a working image
and a counter image is used to count the number of contribu-
tions for each pixel;

3. the maximum value mc in the counter image is found and the gray
levels of pixels pk with at least

⌈
8
9 mc

⌉
contributions are estimated

by averaging;
4. the pixels pk are removed from the unknown region.

These steps are iterated until the unknown region becomes empty.
This algorithm stops after few steps and has proved to produce
promising results, that are described in Section 4.

4 Results

In this section we report qualitative results obtained both by clus-
tering through dimensionality classification, and by inpainting.

4.1 Clustering

To test our point clustering algorithm we create two manifolds,M
and N , of dimensionality d and e, respectively (with d � e);M and
N are imbedded in�D, andM∩N � ∅. Two sets of points PM and

4 We represent with the notation x̃ the projection of a point x ∈ �(2r+1)2
on

M.

PN are drawn from M and N , respectively, and P = PM ∪ PN is
used as input to the NV algorithm, whose aim is to classify each point
as belonging to eitherM or N .

As an example, consider the dataset P depicted in Figure 2: it con-
tains a curve and a surface that intersect in�3. After executing the NV
algorithm with 5 voting passes, tensors are oriented normally with re-
spect to the underlying manifolds; therefore, we compute the saliency
values of each tensor, and use them to infer the dimensionality of the
manifold from which each point is drawn.

In Figure 3 the three saliency values for each data point are shown
after the first and the last voting passes, respectively; note that af-
ter the last voting pass the saliency values are either ≈ 1, or ≈ 0.
Therefore, they clearly identify the dimensionality of the manifold
from which each point is drawn. In Figure 4 the clustered geometri-
cal structures are shown; for this test we used σ = 0.1 and γ = σ/10.

Figure 2. The input dataset.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Ball
Plate
Stick

Ball
Plate
Stick

Figure 3. Saliency values after 1 and 5 votings.

4.2 Inpainting

We have tested our image inpainting algorithm on a set of 50
generic images, where the unknown region and the training region
have been manually chosen. We have used 7 × 7 square patches,
σ = 0.2, and γ = σ/10; experiments have proved that good inpaint-
ing results can be obtained by employing the first voting pass only,
thus increasing the efficiency of the overall algorithm. In Figure 5
examples of inpainting results are shown. The inpainting algorithm

34

Figure 4. The clustered geometrical structures and their normal directions.

has demonstrated to be very efficient during the reconstruction step;
the time complexity is indeed dominated by the training step. Us-
ing an Intel Centrino Duo 2.0GHz CPU with 2.0GB RAM, our Matlab
implementation has taken on average 18.156s to infer, on average,
1171 pixel values per image, starting from a training set of about 550
training patches.

4.3 Conclusions and future works

In this work we have described a new normal space inference tech-
nique, inspired to the tensor voting framework, that employs an en-
semble classifier. Our technique is less precise but more efficient, and
its effectiveness has been proved by experimental results.

In the future we aim to improve the point clustering algorithm
by adding spatial information, to separate structures of the same di-
mensionality, and by using a distance function between orientations,
to separate intersecting structures of the same dimensionality. The
inpainting algorithm is promising; its extension to color images is
straight forward, and it can be made more efficient by computing
the tensors only when needed, and storing them in a lazy-evaluation
fashion.

Finally, considering that the NV algorithm trains weak classifiers
by allowing them to interact through an information diffusion pro-
cess, we plan to further explore ensemble methods where weak clas-
sifiers interact also during the training phase.

References

[1] C. K. Tang G. Medioni, ‘Curvature-augmented tensor voting for shape
inference from noisy 3d data’, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, No. 6, 858–863, (June 2002).

[2] G. Guy G. Medioni, ‘Inferring global perceptual contours from local
features’, International journal of Computer Vision, 113–133, (1996).

[3] P. Mordohai G. Medioni, ‘Dense multiple view stereo with general
camera placement using tensor voting’, 3D Data Processing, Visual-
ization and Transmission, 725–732, (September 2004).

[4] P. Mordohai G. Medioni, ‘Dimensionality estimation and manifold
learning using tensor voting’, Technical report, Institute for Robotics
and Intelligent Systems, University of Southern California, (2005).

[5] P. Mordohai G. Medioni, ‘Stereo using monocular cues within the ten-
sor voting framework’, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 28, No. 6, 968–982, (June 2006).

[6] P. Mordohai G. Medioni, Tensor Voting: A Perceptual Organization Ap-
proach to Computer Vision and Machine Learning, Morgan and Clay-
pool Publishers, first edn., 2006.

[7] G. Medioni S. B. Kang, Emerging topics in Computer Vision, Prentice
Hall, first edn., 2004.

Figure 5. Left: images with unknown regions. Right: inpaintin results.

[8] W. S. Tong at al., ‘First order augmentation to tensor voting for bound-
ary inference and multiscale analysis in 3d’, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 26, No. 5, 858–863, (May
2004).

[9] Paola Campadelli and Gabriele Lombardi, ‘Tensor voting fields: Di-
rect votes computation and new saliency functions’, in ICIAP, ed., Rita
Cucchiara, pp. 677–684. IEEE Computer Society, (2007).

[10] Jiaya Jia and Chi-Keung Tang, ‘Image repairing: Robust image synthe-
sis by adaptive nd tensor voting’, CVPR, 01, 643, (2003).

[11] Mircea Nicolescu and Gérard G. Medioni, ‘Motion segmentation with
accurate boundaries - a tensor voting approach.’, in CVPR (1), pp. 382–
389. IEEE Computer Society, (2003).

35

Multi-Class Modeling with Ensembles of Local Models
for Imbalanced Misclassification Costs

Sebastian Nusser 1, 2 and Clemens Otte 1 and Werner Hauptmann 1

Abstract. In this paper, we will discuss different strategies of ex-
tending an ensemble approach based on local binary classifiers to
solve multi-class problems. The ensembles of binary classifiers were
developed with the objective of providing interpretable local models
for use in safety-related application domains. The ensembles assume
highly imbalanced misclassification costs between the two classes.
The extension to multi-class problems is not straightforward because
common multi-class extensions might induce inconsistent decisions.
We propose an approach that avoids such inconsistencies by intro-
ducing a hierarchy of misclassification costs. We will show that by
following such a hierarchy it becomes feasible to extend the binary
ensemble and to achieve a good predictive performance.

1 Introduction
Safety-related systems are systems whose malfunction or failure may
lead to death or serious injury of people, loss or severe damage of
equipment, or environmental harm. They are deployed, for instance,
in aviation, automotive industry, medical systems and process con-
trol. In [13] we proposed a binary ensemble framework for use in
safety-related domains. The main design criterion of this approach is
to provide an ensemble of binary classification models that use small
subspaces of the complete input space enabling the visual interpre-
tation of the models. Because machine learning approaches are re-
garded with suspiciousness in the field of safety-related domains, the
possibility to visualize each local model greatly facilitates the do-
main experts’ acceptance of the data-driven generated models. An
interpretable solution is often required for applications where the
available training data is too sparse and the number of input dimen-
sions is too large to sufficiently apply statistical risk estimation meth-
ods in practical application tasks. In most cases, high-dimensional
models are required to solve a given problem. Unfortunately, such
high-dimensional models are hard to verify (curse of dimensional-
ity), may tend to overfitting, and the interpolation and extrapolation
behavior is often unclear. An example of such counterintuitive and
unintended behavior is illustrated in Fig. 1, where the prediction of
the model changes in a region not covered by the given data set.
Such behavior becomes even more likely and much more difficult to
discover in the high-dimensional case. Our ensemble approach pro-
vides an insight into each local model, which can be evaluated ac-
cording domain knowledge and, thus, the correct interpolation and
extrapolation behavior of the model can be guaranteed. The exten-
sion of our binary classification ensemble to multi-class problems is

1 Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81730 Munich,
Germany, email: {sebastian.nusser.ext, clemens.otte, werner.hauptmann}
@siemens.com

2 School of Computer Science, Otto-von-Guericke-University of Magdeburg,
Universitätsplatz 2, 39106 Magdeburg, Germany

Figure 1. Counterintuitive extrapolation behavior in a region not covered
by the given data set. This two-class problem is solved by a support vector
machine (SVM) with an acceptable classification performance on the given
data. However, in a region not covered by any data the decision of the SVM
changes arbitrarily.

not straightforward, since commonly used methods like one-against-
one or one-against-rest voting [5, 10] may introduce inconsistencies.
We will show that such inconsistencies can be avoided by introduc-
ing a hierarchy of misclassification costs. The crucial aspect is to find
a suitable trade-off between the generation of an interpretable and
verifiable model and the realization of a high predictive accuracy. In
most situations, more complex models will be able to achieve a bet-
ter predictive performance on the available data compared to simpler
models. However, a higher complexity of the model will usually lead
to an increased effort for model verification.

This contribution is organized as follows: in Section 2 we recall
our binary ensemble approaches for use in safety-related domains. In
Section 3, two commonly used approaches of extending binary clas-
sifiers to multi-class problems are briefly discussed and the inconsis-
tencies are illustrated that might arise when applying them. Section 4
extends the binary classification framework to also solve multi-class
problems. Experiments on well-known benchmark problems are dis-
cussed in Section 5 and Section 6 concludes.

2 The Binary Ensemble Framework
This section introduces the basic concepts of our ensemble approach.
In Section 4, these algorithms are extended to solve multi-class prob-
lems. The algorithms are designed to solve binary classification
problems. The task is to find an estimate of the unknown function
f : V n → Y , where V n =

∏n
ı=1Xı with Xı ⊆ IR is the

input space and Y is the target value, given an observed data set:
D = {(~v1, y1), ..., (~vm, ym)} ⊂ V n × Y .

Basic Idea. Our ensemble framework, which was introduced
in [13], is motivated by Generalized Additive Models [14, 9] and

36

separate-and-conquer approaches [7]. It can be interpreted as a vari-
ant of the projection pursuit [6, 11]. Both approaches are designed to
find an estimate of the unknown function f : V n → IK, where
IK ⊂ IN is the set of class labels. Our approaches are based on
the projections of the high-dimensional data to low-dimensional sub-
spaces. Local models gj are trained on these subspaces. By regarding
only low-dimensional subspaces a visual interpretation becomes fea-
sible and, thus, the avoidance of unintended extrapolation behavior is
possible. The ensemble of local models boosts the overall predictive
accuracy and overcomes the limited predictive performance of each
single local model, while the global model remains interpretable.

Projection of High-Dimensional Data Set. The projection π
maps the n-dimensional input space V n to an arbitrary subspace of
V n. This mapping is determined by a given index set β ⊂ {1, ..., n}.
The index set defines the dimensions of V n that will be included in
the subspace Vβ . Thus, the projection π on the input space V n given
the index set β is defined as:

πβ(V
n) = Vβ =

∏
ı∈β

Xı . (1)

Local Models. The j-th local model is defined as:

gj : πβj (V
n)→ IK, (2)

where βj denotes the index set of the subspace where the classifi-
cation error of the local model gj is minimal. The best projections
are determined by a wrapper method for feature selection [12]. The
final function estimate f̂ of the global model is determined by the
aggregation of the results of all local models gj(πβj (~v)).

DecisionTree-like Ensemble. This approach replaces the classi-
fication nodes in a common decision tree by strong classifiers. The
classification nodes in the tree are restricted to two input dimensions.
This facilitates the visualization of the relevant decision region and
avoids overfitting. The best local model gj is used to divide the train-
ing set into new subsets Dnew

θ := {(~v, y)|gj(πβj (~v)) = θ}, where
θ ∈ IK. The local models for these subsets are built recursively, until
an appropriate termination criterion is fulfilled. The leaf nodes of the
tree represent the final classification labels.

Non-hierarchical Ensemble. This method incorporates prior
knowledge about the subgroups of the given problem and avoids hier-
archical dependencies of the local models as in the DecisionTree-like
Ensemble approach. It is required that the so-called preferred class
cpref must not be misclassified by any of the trained local models:
∀y = cpref : |y − g(πβ(~v))|

def
=0. This requirement typically leads

to imbalanced misclassification costs. The local models are trained
on low-dimensional projections of the high-dimensional input space
with the objective to avoid the misclassification of the preferred class.
The local models greedily separate the samples of the other class
from the preferred class samples. Missed samples of the other class
are used to build further sub-experts. This yields the following final
function estimate: f̂(~v) =

∨
gj∈Exp gj(πβj (~v)), where Exp is the

set of all local models. For the sake of simplicity it is defined that
the preferred class cpref is always encoded as 0 and the other class is
always encoded as 1 by the local models gj .

3 Multi-Class Extensions of Binary Classifiers
There are two commonly used approaches to extend binary classi-
fiers to solve multi-class problems: (1) a one-against-one extension

A
 v

s.
 B

C

B vs. AC

C vs. AB

A,B,C?
B,C?

A,B?

A,C?

Class A
Class B
Class C

(a) One-against-rest extension.

A vs. B

A vs
. C

B vs. C
?

Class A
Class B
Class C

(b) One-against-one extension.

Figure 2. Illustration of multi-class extensions based on binary classifiers.
There are three classes: A, B, C. The discriminant functions are given as black
lines. Regions with possible inconsistent decisions are labeled with question
marks.

and (2) a one-against-rest extension. A detailed comparison of these
methods and an experimental evaluation for support vector machines
is given in [10]. Figure 2 illustrates both approaches.

One-against-rest multi-class extension. This method constructs
k classifiers, where k = |IK| is the number of classes. The model fck

for class ck ∈ IK is trained on all samples of class ck against all sam-
ples from the remaining classes which are combined to a new class
c∗k = IK \ ck, for the sake of simplicity the class label of c∗k is set to
−1. A new data point ~v is assigned to: f(~v) = arg maxc∈IK fc(~v) .

One-against-one multi-class extension. This method builds
k(k − 1)/2 classifiers, each for the pair-wise combination of the
classes ck, cl ∈ IK, k 6= l. The final classification is performed by
majority voting – that is the most frequent predicted class label is
returned as prediction of the multi-class model.

Risk of inconsistent decisions. The issue of inconsistent deci-
sions of combining binary classifiers to multi-class classifiers is ad-
dressed in [16], for instance. As illustrated in Figure 2, there can
be regions of the input space where the decision of the multi-class
models might be inconsistent. Those regions are marked with ques-
tion marks in each figure. For the one-against-rest method, there are
two possibilities of an inconsistent decision: (1) there are several bi-
nary classifiers predicting different class labels for one given data
point. Such regions are (A,B ?), (A,C ?), (B,C ?). (2) there are re-
gions, where all classifiers are predicting the “rest” class, (A,B,C ?).
For the one-against-one method, there is only one kind of inconsis-
tent decisions possible: several binary classifiers are predicting dif-
ferent class label for one given data point. The problem of several
classifiers predicting different class labels can be solved by assign-
ing the class label at random [10] or to assign the data point to the
class with the highest posterior probability [16]. The second kind of
inconsistent decisions of the one-against-rest method can be accept-
able for some problems, where “no decision” might be better than a
“wrong decision”. Otherwise, one can use the same strategy as for
the other kind of inconsistent decisions.

4 The Multi-Class Ensemble Framework
Our ensemble framework leads to the following two levels where the
binary classification approaches can be extended to solve multi-class
problems:

1. The multi-class decision is made on the level of the local models
(Local Multi-Class Ensemble).

37

Table 1. Confusion Matrix for multi-class local models in a Non-
hierarchical Ensemble. The following hierarchy of misclassification costs is
assumed: penalty(c1) > penalty(c2) > penalty(c3) > penalty(c4) >
penalty(...)

predicted class
true class c1 c2 c3 c4 ...

c1 n1,1 0 0 0 ...
c2 n2,1 n2,2 0 0 ...
c3 n3,1 n3,2 n3,3 0 ...
c4 n4,1 n4,2 n4,3 n4,4 ...
...

2. Local models are binary classifiers, the multi-class classification
task is performed by the ensemble. There are two variants:

(a) the One-versus-Rest Ensemble and
(b) the Hierarchical Separate-and-Conquer Ensemble .

Another algorithm based on one-against-one classifier combina-
tion is given in [15]. This algorithm uses a one-against-one approach
to extend binary classifiers to solve multi-class problems. The im-
portant similarity of this approach to our framework is that it is also
based on a dimensionality-reduction on the level of local models.
In contrast to our approach, the number of dimensions of the local
models is not limited – all input dimensions that provide statistically
sufficient information are included in the training set to build a sin-
gle local model to separate the pair of classes. Our approach may use
several local models with limited dimensionality to solve the same
subproblem, while each local model remains visually interpretable.

For safety-related problems it is important to take into account
that the commonly used strategies of extending binary classifiers to
multi-class classifiers, which are illustrated in Figure 2, may lead to
regions with inconsistent decisions. In order to avoid an unintended
labeling the inconsistent decisions are solved according to a hierar-
chy of misclassification costs: for a given new data point ~v that class
label of all predicted class labels is chosen which has the largest mis-
classification penalty.

Local Multi-Class Ensemble. Using local multi-class models in
a Non-hierarchical Ensemble requires a hierarchy of misclassifica-
tion costs, i.e. it is assumed that there exists an ordering of the class
labels, which allows statements like: “class c1 samples should never
be misclassified, class c2 samples might be misclassified only as class
c1 samples, class c3 might be classified as class c1 or c2 samples, ...”

penalty(c1) > penalty(c2) > penalty(c3) > ... (3)

Such a hierarchy of misclassification costs leads to a confusion ma-
trix as depicted in Table 1. This issue is closely related to ordinal
classification problems. An SVM-based approach for ordinal classi-
fication can be found in [2].

Combining several local multi-class models becomes difficult be-
cause one can only rely on the prediction of the class ck, which has
the minimal misclassification cost – all other class label predictions
might be false positives. Thus, it is necessary to include all sam-
ples that are not predicted as class ck in the training for the next
local model. This fact leads directly to the Hierarchical Separate-
and-Conquer Ensemble approach, which is described in the follow-
ing paragraph.

The extension of the DecisionTree-like Ensemble approach to
solve a multi-class problem is straightforward – a novel subtree is
generated for each class predicted by the local model of the current
node. The final classification decision is determined by the leaf node

A vs B

C vs AB

Class A
Class B
Class C

(a) Discriminant functions.

predicted class
true class A B C

A 36 0 0
B 0 38 0
C 0 6 41

(b) Confusion matrix.

Figure 3. Hierarchical Separate-and-Conquer Ensemble trained on the data
from Figure 2. The following hierarchy of misclassification costs is assumed:
penalty(A) > penalty(B) > penalty(C).

A
 v

s.
 B

C

B vs. AC

C vs. AB

missed
sampels

?

?

?

Class A
Class B
Class C

(a) Discriminant functions. Ambigu-
ous regions are labeled with ’?’.

predicted class
true class A B C ?

A 22 0 0 14
B 0 31 0 7
C 0 0 41 6

(b) Confusion matrix. The last
column denotes missed samples.

Figure 4. One-versus-Rest Ensemble trained on the data from Figure 2.
Each model for class ck is trained with the objective to avoid the misclas-
sification of the samples belonging to c∗k = IK \ ck.

of the learned tree – similar to standard decision tree approaches. To
avoid inconsistent decisions it is encouraged to also use a hierarchy
of misclassification costs in this approach.

Hierarchical Separate-and-Conquer Ensemble. This approach
requires a hierarchy of the misclassification costs as already intro-
duced for the Local Multi-Class Ensemble approach. It is related to
the commonly used one-against-rest approach. Instead of building
all one-against-rest combinations of models, the class with the min-
imal classification costs is separated from all samples of the other
classes via binary local models. This approach is illustrated in Fig-
ure 3. The procedure is the same as for the Non-hierarchical Ensem-
ble, which is described in Section 2. If the problem is solved for this
class or there are no further improvements possible, all samples of
this class are removed from the training data set and the procedure
is repeated for the class which has now the smallest misclassification
costs. This procedure is repeated until the data set of the next itera-
tion has only a single class label. The resulting binary classifiers are
evaluated according to the misclassification hierarchy, that is in the
first step all local models of the class with minimal misclassification
costs are evaluated. If the novel sample cannot be assigned to the
class with minimal misclassification costs, the procedure is repeated
for the next class in the hierarchy of misclassification costs. If no
local model predicts the novel sample the sample is assigned to the
class with maximal misclassification costs.

One-versus-Rest Ensemble. This approach follows the one-
against-rest multi-class classification approach. It is illustrated in
Figure 4. For every class ck ∈ IK versus c∗k = IK \ ck a complete

38

binary Non-hierarchical Ensemble f̂ck(~v) is trained. The class c∗k is
chosen as the preferred class cpref to avoid the misclassification of
any sample belonging to IK \ ck. For the sake of simplicity c∗k is
encoded as −1. The resulting binary models can be combined by
determining the maximum: f̂(~v) = arg maxck∈IK f̂ck(~v) .

This approach is the easiest way to extend the binary local model-
ing approach to multi-class modeling, but it shows a lack of perfor-
mance for overlapping data sets: it is possible that certain data points
will be assigned to the class c∗k by every local model and some classes
cannot be separated from the other classes due to overlapping of the
classes in all projections. This approach still yields ambiguous deci-
sions within the input space, as shown in Figure 4. Such ambiguities
can be resolved by the hierarchy of misclassification costs.

5 Experiments
Table 2 summarizes the experiments performed on several bench-
mark data sets. All data sets can be obtained from [1] – except for
the CUBESMULT data set. The predictive error is estimated by a 10-
fold-crossvalidation procedure where the error is computed on the
complete data set. For every data set we used 10 different fold ini-
tializations. Two error types are determined: (1) the relative misclas-
sification error, which represents the number of all misclassified sam-
ples, and (2) the critical error, which represents the relative number
of samples that do not satisfy the hierarchy of misclassification costs.
The critical error is the more important error measurement because
it corresponds to a violation of given domain knowledge.

Our ensemble methods are compared with a standard SVM im-
plementation (libSVM) from [3] and a CART classification tree
(treefit in Matlab). In Table 2 the Hierarchical Separate-and-
Conquer Ensemble is abbreviated as HSCE, the Local Multi-Class
Ensemble is abbreviated as LMCE, and the One-versus-Rest Ensem-
ble is abbreviated as OvRE. The local models of our ensemble mod-
els are SVMs with Gaussian kernels. The parameter sets of the SVMs
are chosen manually in order to obtain smooth decision surfaces in
the local models. The same parameter sets are used for the high-
dimensional SVM. For feature selection, our ensemble performs a
search through all possible pairs of features.

CUBESMULT data set. The task of this artificial data set is to
solve a four-class problem. The samples of CLASS 1 are drawn from
N(en + i · 0.5, 0.2 · I), i ∈ {0, 1, 2}, where ei is a unit vec-
tor in IR3 and I is the identity matrix. The samples of CLASS 2,
CLASS 3, and CLASS 4 are drawn from N((0.0, 0.0, 0.0)T , 0.2 · I),
N((0.5, 0.5, 0.5)T , 0.2 · I), and N((1.0, 1.0, 1.0)T , 0.2 · I), respec-
tively. For this problem the following hierarchy of misclassifica-
tion costs is assumed: penalty(CLASS 4) > penalty(CLASS 3) >
penalty(CLASS 2) > penalty(CLASS 1).

FISHER’S IRIS data set. This well-known data set from [4] con-
tains three classes (IRIS SETOSA – CLASS 1, IRIS VERSICOLOR – CLASS 2,
and IRIS VIRGINICA – CLASS 3) of 50 instances each. The input space
consists of four numeric attributes. CLASS 1 is linearly separable from
the other two classes; CLASS 2 and CLASS 3 are not linearly sepa-
rable from each other. The following hierarchy of misclassifica-
tion costs is assumed: penalty(CLASS 3) > penalty(CLASS 1) >
penalty(CLASS 2).

WINE data set. This data set consists of the results of a chemi-
cal analysis of wines grown in the same region in Italy but derived
from three different cultivars. The analysis determined the quanti-
ties of 13 constituents found in each of the three types of wines.

Table 2. 10-fold crossvalidation on multi-class problems. The models are
trained on 90% of the given data set and the error is estimated on the whole
data set. The error is averaged over 10 random fold initializations. #M denotes
the number of all models within the ensemble or decision nodes within the
classification tree. #D denotes the dimensionality of each model or decision
node. The error represents the relative number of misclassified samples. The
critical error represents the number of samples that violate the hierarchy of
misclassification costs.

Method #M #D Error Critical Error
mean (std) min mean (std) min

CUBESMULT data set
HSCE 4 2 4.05% (0.33) 2.93% 0.02% (0.05) 0.00%
LMCE 4 2 3.21% (0.86) 2.00% 1.77% (1.11) 0.53%
OvRE 2 2 43.32% (0.35) 42.13% 0.02% (0.04) 0.00%
libSVM 1 3 2.96% (0.24) 2.40% 0.02% (0.05) 0.00%
treefit 23 1 4.05% (1.31) 1.60% 0.39% (0.22) 0.00%

FISHER’S IRIS data set
HSCE 2 2 6.37% (1.56) 2.67% 0.06% (0.21) 0.00%
LMCE 1 2 3.50% (0.47) 2.67% 1.92% (0.61) 0.67%
OvRE 3 2 12.32% (2.21) 7.33% 0.06% (0.21) 0.00%
libSVM 1 4 3.04% (0.35) 2.67% 0.05% (0.18) 0.00%
treefit 6 1 6.37% (1.05) 4.00% 0.18% (0.35) 0.00%

WINE data set
HSCE 4 2 4.20% (1.00) 1.69% 0.03% (0.13) 0.00%
LMCE 4 2 1.62% (0.61) 0.56% 0.95% (0.39) 0.00%
OvRE 7 2 10.34% (1.78) 6.18% 0.01% (0.06) 0.00%
libSVM 1 13 0.19% (0.31) 0.00% 0.08% (0.20) 0.00%
treefit 7 1 2.75% (1.19) 0.56% 0.25% (0.42) 0.00%

DERMATOLOGY data set
HSCE 7 2 6.77% (0.66) 4.92% 0.23% (0.20) 0.00%
LMCE 10 2 1.39% (0.62) 0.55% 1.08% (0.45) 0.55%
OvRE 12 2 20.14% (2.30) 15.30% 0.03% (0.09) 0.00%
libSVM 1 33 0.30% (0.26) 0.00% 0.17% (0.21) 0.00%
treefit 19 1 3.14% (0.93) 1.37% 0.49% (0.31) 0.00%

SEGMENTATION data set
HSCE 11 2 3.83% (0.69) 2.38% 0.55% (0.46) 0.00%
LMCE 8 2 3.35% (1.55) 0.48% 2.43% (1.40) 0.48%
OvRE 14 2 18.97% (2.22) 13.81% 0.34% (0.39) 0.00%
libSVM 1 18 1.12% (0.74) 0.00% 0.58% (0.54) 0.00%
treefit 16 1 11.02% (2.79) 4.29% 0.72% (0.70) 0.00%

POST-OP data set
HSCE 4 2 25.13% (1.21) 23.33% 0.27% (0.50) 0.00%
LMCE 1 2 25.74% (0.53) 25.56% 2.36% (0.40) 2.22%
OvRE 4 2 82.07% (3.78) 71.11% 0.04% (0.27) 0.00%
libSVM 1 7 23.23% (0.78) 22.22% 0.34% (0.56) 0.00%
treefit 16 1 73.67% (9.20) 52.22% 0.82% (0.92) 0.00%

penalty(CLASS 3) > penalty(CLASS 2) > penalty(CLASS 1) is as-
sumed as hierarchy of misclassification costs.

DERMATOLOGY data set. This example is an challenging prob-
lem in dermatology [8]. The task is to discriminate six differential
diagnostics of erythemato-squamous diseases. The data set consists
of 366 records and each record has 33 attributes. The age attribute of
the original data set from the UCI Machine Learning Repository [1]
is omitted here, because it has some missing values. The following
hierarchy of misclassification costs is assumed: penalty(CLASS 6) >
penalty(CLASS 5) > penalty(CLASS 4) > penalty(CLASS 3) >
penalty(CLASS 2) > penalty(CLASS 1).

SEGMENTATION data set. The 2310 instances of this data set are
drawn randomly from a database of seven outdoor images. Each in-
stance is described by 19 continuous attributes. The third attribute
is ignored because it does not change for all instances. The task
is to distinguish six different surface textures. The following hier-
archy of misclassification costs is assumed: penalty(CLASS 6) >
penalty(CLASS 5) > penalty(CLASS 4) > penalty(CLASS 3) >

39

penalty(CLASS 2) > penalty(CLASS 1).

POST-OP data set. The classification task of this database is to
determine where patients in a postoperative recovery area should be
sent to next: PATIENT SENT TO INTENSIVE CARE UNIT – CLASS 1, PATIENT

SENT TO GENERAL HOSPITAL FLOOR – CLASS 2, and PATIENT PREPARED TO GO

HOME – CLASS 3. There are 90 instances and eight attributes. The ’com-
fort’ attribute is ignored within the experiments because it has miss-
ing values. The following hierarchy of misclassification costs is as-
sumed: penalty(CLASS 1) > penalty(CLASS 2) > penalty(CLASS 3).

Discussion. For almost all data sets the One-versus-Rest Ensem-
ble achieves the best performance by regarding the critical error. On
the other hand, the overall error of this approach is worse compared
to all other methods. This poor performance is due to a large number
of samples that are missed by the local models and are assigned to
the ”other” class. Nevertheless, samples that are labeled as ”unrecog-
nized” might be acceptable for some application problems. The Hier-
archical Separate-and-Conquer Ensemble approach provides a good
trade-off between the predictive performance – on both, the over-
all error and the critical error – and the interpretation of the models
compared to the SVM solution that achieves the least overall error on
all data sets but incorporates always the complete input space. The
critical error of the Local Multi-Class Ensemble approach is quite
large in all experiments because the hierarchy of misclassification
costs is ignored within our experiments. On the other hand, this en-
semble approach is the only variant that does not require a hierarchy
of misclassification costs to build a multi-class model. While inter-
preting the decision boundaries of a high-dimensional SVM is quite
infeasible, all ensemble approaches allow a visualization of the local
models and, thus, facilitate the incorporation of domain knowledge
via an interactive model selection process. The incorporation of do-
main knowledge can yield a higher accuracy of the solution as shown
in Table 2 with the columns that show the minimal predictive errors
of each approach.

6 Conclusions
To apply machine learning approaches in the field of safety-related
problems it is crucial to provide interpretable and verifiable mod-
els. Unfortunately, it is infeasible to interpret high-dimensional
models sufficiently. Therefore, for safety-related problems, high-
dimensional models are not to be applied. On the other hand, sim-
ple models which are easier to interpret show a lack of predictive
performance. The framework proposed in this paper provides a good
trade-off between the interpretation and verification of the learned
(local) models, avoiding an unintended extrapolation behavior, and
the achievement of a high predictive accuracy. Each local model can
be interpreted visually and the ensemble of the local models com-
pensates for the limited predictive performance of each single lo-
cal model. In contrast to dimensionality reduction methods, which
combine several dimensions of the input space, the local models are
trained on the original dimensions, allowing domain experts to evalu-
ate the trained models directly. In our experiments, the data sets from
the UCI Machine Learning Repository were successfully tested, pro-
viding good results.

REFERENCES
[1] Arthur Asuncion and David J. Newman. UCI Machine Learn-

ing Repository, 2007. Available at http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

[2] Jaime S. Cardoso, Joaquim F. Pinto da Costa, and Maria J. Cardoso,
‘Modelling ordinal relations with SVMs: An application to objective
aesthetic evaluation of breast cancer conservative treatment’, IEEE
Transactions on Neural Networks, 18(5-6), 808–817, (2005).

[3] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support
vector machines, 2001. Software available at http://www.csie.ntu.edu.
tw/∼cjlin/ libsvm.

[4] Ronald A. Fisher, ‘The use of multiple measurements in taxonomic
problems’, Annals of Eugenics, 7, 179–188, (1936).

[5] Jerome H. Friedman, ‘Another approach to polychotomous classifica-
tion’, Technical report, Department of Statistics, Stanford University,
(1996).

[6] Jerome H. Friedman and John W. Tukey, ‘A projection pursuit algo-
rithm for exploratory data analysis’, IEEE Transactions on Computers,
23(9), 881–890, (1974).

[7] Johannes Fürnkranz, ‘Separate-and-conquer rule learning’, Artificial
Intelligence Review, 13(1), 3–54, (1999).

[8] H. Altay Güvenir, Gülsen Demiröz, and Nilsel Ilter, ‘Learning differ-
ential diagnosis of erythemato-squamous diseases using voting feature
intervals’, Artificial Intelligence in Medicine, 13(3), 147–165, (1998).

[9] Trevor Hastie and Robert Tibshirani, Generalized Additive Models,
Chapman&Hall, 1990.

[10] Chih-Wei Hsu and Chih-Jen Lin, ‘A comparison of methods for mul-
ticlass support vector machines’, IEEE Transactions on Neural Net-
works, 13(2), 415–425, (2002).

[11] Peter J. Huber, ‘Projection pursuit’, The Annals of Statistics, 13(2),
435–475, (1985).

[12] Ron Kohavi and George H. John, ‘Wrappers for feature subset selec-
tion’, Artificial Intelligence, 97(1-2), 273–324, (1997).

[13] Sebastian Nusser, Clemens Otte, and Werner Hauptmann, ‘Learning
binary classifiers for applications in safety-related domains’, in Pro-
ceedings of 17th Workshop Computational Intelligence, pp. 139–151.
Universitätsverlag Karlsruhe, (2007).

[14] Charles J. Stone, ‘Additive regression and other nonparametric models’,
The Annals of Statistics, 13(2), 689–705, (1985).

[15] Gero Szepannek and Claus Weihs, ‘Local modelling in classification on
different feature subspaces’, in Industrial Conference on Data Mining,
pp. 226–238, Leipzig, Germany, (2006).

[16] David M. J. Tax and Robert P. W. Duin, ‘Using two-class classifiers
for multiclass classification’, in Proceedings of the 16th International
Conference on Pattern Recognition, volume 2, pp. 124–127, Quebec,
Canada, (2002).

40

A Taxonomy and Short Review of Ensemble Selection
Grigorios Tsoumakas and Ioannis Partalas and Ioannis Vlahavas1

Abstract. Ensemble selection deals with the reduction of an en-
semble of predictive models in order to improve its efficiency and
predictive performance. The last 10 years a large number of very di-
verse ensemble selection methods have been proposed. In this paper
we make a first approach to categorize them into a taxonomy. We
also present a short review of some of these methods. We particu-
larly focus on a category of methods that are based on greedy search
of the space of all possible ensemble subsets. Such methods use dif-
ferent directions for searching this space and different measures for
evaluating the available actions at each state. Some use the training
set for subset evaluation, while others a separate validation set. This
paper abstracts the key points of these methods and offers a general
framework of the greedy ensemble selection algorithm, discussing its
important parameters and the different options for instantiating these
parameters.

1 Introduction
Ensemble methods [5] have been a very popular research topic dur-
ing the last decade. They have attracted scientists from several fields
including Statistics, Machine Learning, Pattern Recognition and
Knowledge Discovery in Databases. Their popularity arises largely
from the fact that they offer an appealing solution to several interest-
ing learning problems of the past and the present.

First of all, ensembles lead to improved accuracy compared to
a single classification or regression mode. This was the main mo-
tivation that led to the development of the ensemble methods area.
Ensembles achieve higher accuracy than individual models, mainly
through the correction of their uncorrelated errors. Secondly, en-
sembles solve the problem of scaling inductive algorithms to large
databases. Most inductive algorithms are too computationally com-
plex and suffer from memory problems when applied to very large
databases. A solution to this problem is to horizontally partition the
database into smaller parts, train a predictive model in each of the
smaller manageable part and combine the predictive models. Thirdly,
ensembles can learn from multiple physically distributed data sets.
Often such data can’t be collected to a single site due to privacy
or size reasons. This problem can be overcome through the com-
bination of multiple predictive models, each trained on a different
distributed data set. Finally, ensembles are useful for learning from
concept-drifting data streams. The main idea here is to maintain an
ensemble of classifiers that are trained from different batches of the
data stream. Combining these classifiers with a proper methodology
can solve the problem of data expiration that occurs when the learn-
ing concept drifts.

Typically, ensemble methods comprise two phases: the production
of multiple predictive models and their combination. Recent work

1 Dept. of Informatics, Aristotle University of Thessaloniki, Thessaloniki
54124, Greece, email: {greg,partalas,vlahavas}@csd.auth.gr

[13, 9, 12, 7, 21, 4, 14, 1, 16, 24, 17], has considered an additional
intermediate phase that deals with the reduction of the ensemble size
prior to combination. This phase is commonly called ensemble prun-
ing, selective ensemble, ensemble thinning and ensemble selection,
of which we shall use the last one within this paper.

Ensemble selection is important for two reasons: efficiency and
predictive performance. Having a very large number of models in
an ensemble adds a lot of computational overhead. For example, de-
cision tree models may have large memory requirements [13] and
lazy learning methods have a considerable computational cost dur-
ing execution. The minimization of run-time overhead is crucial in
certain applications, such as in stream mining. Equally important is
the second reason, predictive performance. An ensemble may consist
of both high and low predictive performance models. The latter may
negatively affect the overall performance of the ensemble. Pruning
these models while maintaining a high diversity among the remain-
ing members of the ensemble is typically considered a proper recipe
for an effective ensemble.

The last 10 years a large number of very diverse ensemble se-
lection methods have been proposed. In this paper we make a first
approach to categorize them into a taxonomy. We hope that com-
munity feedback will help fine-tuning this taxonomy and shape it
into a proper starting place for researchers designing new methods.
In addition, we delve a little deeper into a specific category in this
taxonomy: greedy search-based methods.

A number of ensemble selection methods that are based on a
greedy search of the space of all possible ensemble subsets, have
recently been proposed [13, 7, 4, 14, 1]. They use different direc-
tions for searching this space and different measures for evaluating
the available actions at each state. Some use the training set for sub-
set evaluation, while others a separate validation set. In this paper we
attempt to highlight the salient parameters of greedy ensemble selec-
tion algorithms, offer a critical discussion of the different options for
instantiating these parameters and mention the particular choices of
existing approaches. The paper steers clear of a mere enumeration of
particular approaches in the related literature, by generalizing their
key aspects and providing comments, categorizations and complex-
ity analysis wherever possible.

The remainder of this paper is structured as follows. Section 2
contains background material on ensemble production and combi-
nation. Section 3 presents the proposed taxonomy including a short
account of methods in each category. The category of clustering-
based methods is discussed at a greater detail, from a more critical
point of view. Section 4 discusses extensively the category of greedy
search-based ensemble selection algorithms. Finally Section 5 con-
cludes this work.

41

2 Background
This section provides background material on ensemble methods.
More specifically, information about the different ways of produc-
ing models are presented as well as different methods for combining
the decisions of the models.

2.1 Producing the Models
An ensemble can be composed of either homogeneous or heteroge-
neous models. Homogeneous models derive from different execu-
tions of the same learning algorithm. Such models can be produced
by using different values for the parameters of the learning algorithm,
injecting randomness into the learning algorithm or through the ma-
nipulation of the training instances, the input attributes and the model
outputs [6]. Popular methods for producing homogeneous models are
bagging [2] and boosting [18].

Heterogeneous models derive from running different learning al-
gorithms on the same data set. Such models have different views
about the data, as they make different assumptions about it. For ex-
ample, a neural network is robust to noise in contrast with a k-nearest
neighbor classifier.

2.2 Combining the Models
Common methods for combining an ensemble of predictive models
include voting, stacked generalization and mixture of experts.

In voting, each model outputs a class value (or ranking, or proba-
bility distribution) and the class with the most votes is the one pro-
posed by the ensemble. When the class with the maximum number
of votes is the winner, the rule is called plurality voting and when
the class with more than half of the votes is the winner, the rule is
called majority voting. A variant of voting is weighted voting where
the models are not treated equally as each of them is associated with
a coefficient (weight), usually proportional to its classification accu-
racy.

Let x be an instance and mi, i = 1..k a set of models that output
a probability distribution mi(x, cj) for each class cj , j = 1..n. The
output of the (weighted) voting method y(x) for instance x is given
by the following mathematical expression:

y(x) = arg max
cj

k∑
i=1

wimi(x, cj),

where wi is the weight of model i. In the simple case of voting (un-
weighted), the weights are all equal to one, that is, wi = 1, i = 1..k.

Stacked generalization [23], also known as stacking is a method
that combines models by learning a meta-level (or level-1) model that
predicts the correct class based on the decisions of the base level (or
level-0) models. This model is induced on a set of meta-level training
data that are typically produced by applying a procedure similar to
k-fold cross validation on the training data. The outputs of the base-
learners for each instance along with the true class of that instance
form a meta-instance. A meta-classifier is then trained on the meta-
instances. When a new instance appears for classification, the output
of the all base-learners is first calculated and then propagated to the
meta-classifier, which outputs the final result.

The mixture of experts architecture [10] is similar to the weighted
voting method except that the weights are not constant over the in-
put space. Instead there is a gating network which takes as input an
instance and outputs the weights that will be used in the weighted

voting method for that specific instance. Each expert makes a deci-
sion and the output is averaged as in the method of voting.

3 A Taxonomy of Ensemble Selection Algorithms

We propose the organization of the various ensemble selection meth-
ods into the following categories: a) Search-based, b) Clustering-
based c) Ranking-based and d) Other.

3.1 Search Based Methods

The most direct approach for pruning an ensemble of predictive mod-
els is to perform a heuristic search in the space of the possible dif-
ferent model subsets, guided by some metric for the evaluation of
each candidate subset. We further divide this category into two sub-
categories, based on the search paradigm: a) greedy search, and b)
stochastic search. The former is among the most popular categories
of ensemble pruning algorithms and is investigated at depth in Sec-
tion 4. Stochastic search allows randomness in the selection of the
next candidate subset and thus can avoid getting stuck in local op-
tima.

3.1.1 Stochastic Search

Gasen-b [25] performs stochastic search in the space of model sub-
sets using a standard genetic algorithm. The ensemble is represented
as a bit string, using one bit for each model. Models are included
or excluded from the ensemble depending on the value of the corre-
sponding bit. Gasen-b performs standard genetic operations such as
mutations and crossovers and uses default values for the parameters
of the genetic algorithm. The performance of the ensemble is used as
a function for evaluating the fitness of individuals in the population.

Partalas et al. [16] search the space of model subsets using a re-
inforcement learning approach. We categorize this approach into the
stochastic search algorithms, as the exploration of the state space in-
cludes a (progressively reducing) stochastic element. The problem
of pruning an ensemble of n classifiers has been transformed into the
reinforcement learning task of letting an agent learn an optimal pol-
icy of taking n actions in order to include or exclude each classifier
from the ensemble. The method uses the Q-learning [22] algorithm
to approximate an optimal policy.

3.2 Clustering-based methods

The methods of this category comprise two stages. Firstly, they em-
ploy a clustering algorithm in order to discover groups of models that
make similar predictions. Subsequently, each cluster is separately
pruned in order to increase the overall diversity of the ensemble.

3.2.1 Giacinto et al., 2000

Giacinto et al. [9] employ Hierarchical Agglomerative Clustering
(HAC) for classifier pruning. This type of clustering requires the
definition of a distance metric between two data points (here clas-
sifiers). The authors defined this metric as the probability that the
classifiers don’t make coincident errors and estimate it from a val-
idation set in order to avoid overfitting problems. The authors also
defined the distance between two clusters as the maximum distance
between two classifiers belonging to these clusters. This way they
implicitly used the complete link method for inter-cluster distance

42

computation. Pruning is accomplished by selecting a single represen-
tative classifier from each cluster. The representative classifier is the
one exhibiting the maximum average distance from all other clusters.

HAC returns a hierarchy of different clustering results starting
from as many clusters as the data points and ending at a single cluster
containing all data points. This raises the problem of how to chose
the best clustering from this hierarchy. They solve this problem as
follows: For each clustering result they evaluate the performance of
the pruned ensemble on a validation set using majority voting as
the combination method. The final pruned ensemble is the one that
achieves the highest classification accuracy.

They experimented on a single data set, using heterogeneous clas-
sifiers derived by running different learning algorithms with different
configurations. They compared their approach with overproduce and
choose strategies and found that their approach exhibits better clas-
sification accuracy.

This approach is generally guided by the notion of diversity. Di-
versity guides both the clustering process and the subsequent pruning
process. However, the authors use the classification accuracy with a
specific combination method (majority voting) to select among the
different clustering results. This reduces the generality of the method,
as the selection is optimized towards majority voting. Of course this
could be easily alleviated by using at that stage the method that will
be later used for combining the ensemble.

In addition, the authors used a specific distance metric to guide the
clustering process, while it would be interesting to evaluate the per-
formance of other pairwise diversity metrics, like the ones proposed
by Kuncheva [11]. Their limited (datasets) experimental results how-
ever does not guarantee the general utility of their method.

3.2.2 Lazarevic and Obradovic, 2001

Lazarevic and Obradovic [12] use the k-means algorithm to perform
the clustering of classifiers. The k-means algorithm is applied to a ta-
ble of data with as many rows as the classifiers and as many columns
as the instances of the training set. The table contains the predictions
of each classifier on each instance. Similar to HAC, the k-means al-
gorithm suffers from the problem of selecting the number of clus-
ters (k). The authors solve this problem, by considering iteratively a
larger number of clusters until the diversity between them starts to
decrease.

Subsequently, the authors prune the classifiers of each cluster us-
ing the following approach until the accuracy of the ensemble is de-
creased. They consider the classifiers in turn from the least accurate
to the most accurate. A classifier is kept in the ensemble if its dis-
agreement with the most accurate classifier is more than a predefined
threshold and is sufficiently accurate. In addition to simple elimina-
tion of classifiers a method for distributing their voting weights is
also implemented.

They experimented on four different data sets, using neural net-
work ensembles produced with bagging and boosting. They com-
pare the performance of their pruning method with that of unpruned
ensembles and another ad-hoc method that they propose (see other
methods) and find that their clustering-based approach offers the
highest classification accuracy.

Their method suffers from the fact of parameter setting. How does
one set the threshold for pruning models? In addition, the method is
not compared to any other pruning methods and sufficient data sets,
so its utility cannot be determined. It is very heuristic and ad-hoc.

3.2.3 Fu, Hu and Zhao, 2005

The work of [8] is largely based on the two previous methods. Simi-
larly to [12] it uses the k-means algorithm for clustering the models
of an ensemble. Similarly to [9] it prunes each cluster by selecting
the single best performing model and uses the accuracy of the pruned
ensemble to select the number of clusters.

The difference of this work with the other two clustering-based
methods, is merely that the experiments are performed on regression
data sets. However, both previous methods could be relatively easily
extended to handle the pruning of regression models. The experi-
ments of this work are performed on four data sets using an ensem-
ble of neural networks produced with bagging and boosting, similar
to [12].

3.3 Ranking-based

Ranking-based methods order the classifiers in the ensemble once
according to some evaluation metric and select the classifiers in this
order. They differ mainly in the criterion used for ordering the mem-
bers of the ensemble.

A key concept in Orientation Ordering [15] is the signature vec-
tor. The signature vector of a classifier c is a |D|-dimensional vector
with elements taking the value +1 if c(xi) = yi and -1 if c(xi) 6= yi.
The average signature vector of all classifiers in an ensemble is called
the ensemble signature vector and is indicative of the ability of the
Voting ensemble combination method to correctly classify each of
the training examples. The reference vector is a vector perpendicular
to the ensemble signature vector that corresponds to the projection
of the first quadrant diagonal onto the hyper-plane defined by the
ensemble signature vector.

In Orientation Ordering the classifiers are ordered by increasing
values of the angle between their signature vector and the reference
vector. Only the classifiers whose angle is less than π/2 are included
in the final ensemble. Essentially this ordering gives preference to
classifiers, which correctly classify those examples that are incor-
rectly classified by the full ensemble.

3.4 Other

This category includes two approaches that don’t belong to any of the
previous categories. The first one is based on statistical procedures
for directly selecting a subset of classifiers, while the second is based
on semi-definite programming.

Tsoumakas et al. [21, 20] prune an ensemble of heterogeneous
classifiers using statistical procedures that determine whether the dif-
ferences in predictive performance among the classifiers of the en-
semble are significant. Only the classifiers with significantly better
performance than the rest are retained and subsequently combined
with the methods of (weighted) voting. The obtained results are bet-
ter than those of state-of-the-art ensemble methods.

Zhang et al. [24] formulate the ensemble pruning problem as a
mathematical problem and apply semi-definite programming (SDP)
techniques. In specific, the authors initially formulated the ensemble
pruning problem as a quadratic integer programming problem that
looks for a fixed-size subset of k classifiers with minimum misclas-
sification and maximum divergence. They subsequently found that
this quadratic integer programming problem is similar to the “max
cut with size k” problem, which can be approximately solved using
an algorithm based on SDP. Their algorithm requires the number of
classifiers to retain as a parameter and runs in polynomial time.

43

4 Greedy Ensemble Selection
Greedy ensemble selection algorithms attempt to find the globally
best subset of classifiers by taking local greedy decisions for chang-
ing the current subset. An example of the search space for an ensem-
ble of four models is presented in Figure 1.

h B1B, h B2 B, h B3B, h B4 B

 h2, h3, h4 h1, h3, h4 h1, h2, h4 h1, h2, h3

 h3, h4 h1, h3h1, h4 h1, h2 h2, h3 h2, h4

h2h3 h1 h4

F
O

R
W

A
R

D
S

E
L

E
C

T
IO

N

B
A

C
K

W
A

R
D

 E
L

IM
IN

A
T

IO
N

Figure 1. An example of the search space of greedy ensemble selection
algorithms for an ensemble of four models.

In the following subsections we present and discuss on what we
consider to be the main aspects of greedy ensemble selection algo-
rithms: the direction of search, the measure and dataset used for eval-
uating the different branches of the search and the size of the final
subensemble. The notation that will be used is the following.

• D = {(xi, yi), i = 1, 2, . . . , N} is an evaluation set of labelled
training examples where each example consists of a feature vector
xi and a class label yi.

• H = {ht, t = 1, 2, . . . , T} is the set of classifiers or hypotheses
of an ensemble, where each classifier ht maps an instance x to a
class label y, ht(x) = y.

• S ⊆ H , is the current subensemble during the search in the space
of subensembles.

4.1 Direction of Search
Based on the direction of search, there are two main categories of
greedy ensemble selection algorithms: forward selection and back-
ward elimination.

In forward selection, the current classifier subset S is initialized
to the empty set. The algorithm continues by iteratively adding to
S the classifier ht ∈ H\S that optimizes an evaluation function
fFS(S, ht, D). This function evaluates the addition of classifier ht

in the current subset S based on the labelled data of D. For example,
fFS could return the accuracy of the ensemble S ∪ ht on the data
set D by combining the decisions of the classifiers with the method
of voting. Algorithm 1 shows the pseudocode of the forward selec-
tion ensemble selection algorithm. In the past, this approach has been
used in [7, 14, 4] and in the Reduce-Error Pruning with Backfitting
(REPwB) method in [13].

In backward elimination, the current classifier subset S is initial-
ized to the complete ensemble H and the algorithm continues by

Algorithm 1 The forward selection method in pseudocode
Require: Ensemble of classifiers H , evaluation function fFS , eval-

uation set D
1: S = ∅
2: while S 6= H do
3: ht = arg max

h∈H\S

fFS(S, h, D)

4: S = S ∪ {ht}
5: end while

iteratively removing from S the classifier ht ∈ S that optimizes the
evaluation function fBE(S, ht, D). This function evaluates the re-
moval of classifier h from the current subset S based on the labelled
data of D. For example, fBE could return a measure of diversity for
the ensemble S \ {ht}, calculated on the data of D. Algorithm 2
shows the pseudocode of the backward elimination ensemble selec-
tion algorithm. In the past, this approach has been used in the AID
thinning and concurrency thinning algorithms [1].

Algorithm 2 The backward elimination method in pseudocode
Require: Ensemble of classifiers H , evaluation function fBE , eval-

uation set D
1: S = H
2: while S 6= ∅ do
3: ht = arg max

h∈S
fBE(S, h, D)

4: S = S \ {ht}
5: end while

The time complexity of greedy ensemble selection algorithms for
traversing the space of subensembles is O(t2g(T, N)). The term
g(T, N) concerns the complexity of the evaluation function, which
is linear with respect to N and ranges from constant to quadratic with
respect to T , as we shall see in the following subsections.

4.2 Evaluation Function
One of the main components of greedy ensemble selection algo-
rithms is the function that evaluates the alternative branches during
the search in the space of subensembles. Given a subensemble S and
a model ht the evaluation function estimates the utility of inserting
(deleting) ht into (from) S using an appropriate evaluation measure,
which is calculated on an evaluation dataset. Both the measure and
the dataset used for evaluation are very important, as their choice af-
fects the quality of the evaluation function and as a result the quality
of the selected ensemble.

4.2.1 Evaluation Dataset

One approach is to use the training dataset for evaluation, as in [14].
This approach offers the benefit that plenty of data will be available
for evaluation and training, but is susceptible to the danger of over-
fitting.

Another approach is to withhold a part of the training set for eval-
uation, as in [4, 1] and in the REPwB method in [13]. This approach
is less prone to overfitting, but reduces the amount of data that are
available for training and evaluation compared to the previous ap-
proach. It sacrifices both the predictive performance of the ensem-
ble’s members and the quantity of the evaluation data for the sake of
using unseen data in the evaluation. This method should probably be
preferred over the previous one, when there is abundance of training
data.

44

An alternative approach that has been used in [3], is based on k-
fold cross-validation. For each fold an ensemble is created using the
remaining folds as the training set. The same fold is used as the evalu-
ation dataset for models and subensembles of this ensemble. Finally,
the evaluations are averaged across all folds. This approach is less
prone to overfitting as the evaluation of models is based on data that
were not used for their training and at the same time, the complete
training dataset is used for evaluation.

During testing the above approach works as follows: the k models
that where trained using the same procedure (same algorithm, same
subset, etc.) form a cross-validated model. When the cross-validated
model makes a prediction for an instance, it averages the predictions
of the individuals models. An alternative testing strategy that we sug-
gest for the above approach is to train an additional single model
from the complete training set and use this single model during test-
ing.

4.2.2 Evaluation Measure

The evaluation measures can be grouped into two major categories:
those that are based on performance and those on diversity.

The goal of performance-based measures is to find the model that
maximizes the performance of the ensemble produced by adding
(removing) a model to (from) the current ensemble. Their calcula-
tion depends on the method used for ensemble combination, which
usually is voting. Accuracy was used as an evaluation measure
in [13, 7], while [4] experimented with several metrics, including
accuracy, root-mean-squared-error, mean cross-entropy, lift, preci-
sion/recall break-even point, precision/recall F-score, average pre-
cision and ROC area. Another measure is benefit which is based on
a cost model and has been used in [7].

The calculation of performance-based metrics requires the deci-
sion of the ensemble on all examples of the pruning dataset. There-
fore, the complexity of these measures is O(|S|N). However, this
complexity can be optimized to O(N), if the predictions of the cur-
rent ensemble are updated incrementally each time a classifier is
added to/removed from it.

It is generally accepted that an ensemble should contain diverse
models in order to achieve high predictive performance. However,
there is no clear definition of diversity, neither a single measure to
calculate it. In their interesting study, [11], could not reach into a
solid conclusion on how to utilize diversity for the production of ef-
fective classifier ensembles. In a more recent theoretical and exper-
imental study on diversity measures [19], the authors reached to the
conclusion that diversity cannot be explicitly used for guiding the
process of greedy ensemble selection. Yet, certain approaches have
reported promising results [14, 1].

One issue that worths mentioning here is how to calculate the di-
versity during the search in the space of ensemble subsets. For sim-
plicity we consider the case of forward selection only. Let S be the
current ensemble and ht ∈ H \ S a candidate classifier to add to the
ensemble.

One could compare the diversities of subensembles S′ = S ∪ ht

for all candidate ht ∈ H \ S and select the ensemble with the high-
est diversity. Any pairwise and non-pairwise diversity measure can
be used for this purpose. The time complexity of most non-pairwise
diversity measures is O(|S′|N), while that of pairwise diversity mea-
sures is O(|S′|2N). However, a straightforward optimization can be
performed in the case of pairwise diversity measures. Instead of cal-
culating the sum of the pairwise diversity for every pair of classifiers
in each candidate ensemble S′, one can simply calculate the sum of

the pairwise diversities only for the pairs that include the candidate
classifier ht. The sum of the rest of the pairs is equal for all candi-
date ensembles. The same optimization can be achieved in backward
elimination too. This reduces their time complexity to O(|S|N).

Existing methods [14, 1, 19] use a different approach to calcu-
late diversity during the search. They use pairwise measures to com-
pare the candidate classifier ht with the current ensemble S, which is
viewed as a single classifier that combines the decisions of its mem-
bers with voting. This way they calculate the diversity between the
current ensemble as a whole and the candidate classifier. Such an
approach has time complexity O(|S|N), which can be optimized to
O(N) , if the predictions of the current ensemble are updated incre-
mentally each time a classifier is added to/removed from it. However,
these calculations do not take into account the decisions of individual
models.

In the past, the widely known diversity measures disagreement,
double fault, Kohavi-Wolpert variance, inter-rater agreement, gen-
eralized diversity and difficulty were used for greedy ensemble selec-
tion in [19]. Concurrency [1], margin distance minimization, Com-
plementariness [14] and Focused Selection Diversity are four diver-
sity measures designed specifically for greedy ensemble selection.
We next present these measures using a common notation. We can
distinguish 4 events concerning the decision of the current ensemble
and the candidate classifier:

e1 : y = ht(xi) ∧ y 6= S(xi)

e2 : y 6= ht(xi) ∧ y = S(xi)

e3 : y = ht(xi) ∧ y = S(xi)

e4 : y 6= ht(xi) ∧ y 6= S(xi)

The complementariness of a model hk with respect to a subensem-
ble S and a set of examples D = (xi, yi), i = 1, 2, . . . , N is calcu-
lated as follows:

COMD(hk, S) =

N∑
i=1

I(e1),

where I(true) = 1, I(false) = 0 and S(xi) is the classification
of instance xi from the subensemble S. This classification is derived
from the application of an ensemble combination method to S, which
usually is voting. The complementariness of a model with respect to
a subensemble is actually the number of examples of D that are clas-
sified correctly by the model and incorrectly by the subensemble. A
selection algorithm that uses the above measure, tries to add (remove)
at each step the model that helps the subensemble classify correctly
the examples it gets wrong.

The concurrency of a model hk with respect to a subensemble S
and a set of examples D = (xi, yi), i = 1, 2, . . . , N is calculated as
follows:

COND(hk, S) =

N∑
i=1

(
2 ∗ I(e1) + I(e3)− 2 ∗ I(e4)

)

This measure is very similar to complementariness with the differ-
ence that it takes into account two extra cases.

The focused ensemble selection method [17] uses all the events
and also takes into account the strength of the current ensemble’s de-
cision. Focused ensemble selection is calculated with the following

45

form:

FES(hk, S) =

N∑
i=1

(
NTi ∗ I(e1)−NFi ∗ I(e2) +

+NFi ∗ I(e3)−NTi ∗ I(e4)
)
,

where NTi denotes the proportion of models in the current ensemble
S that classify example (xi, yi) correctly, and NFi = 1 − NTi

denotes the number of models in S that classify it incorrectly.
The margin distance minimization method [14] follows a different

approach for calculating the diversity. For each classifier ht an N -
dimensional vector, ct, is defined where each element ct(i) is equal
to 1 if the tth classifier classifies correctly instance i, and -1 other-
wise. The vector, CS of the subensemble S is the average of the in-
dividual vectors ct, CS = 1

|S|
∑|S|

t=1 ct. When S classifies correctly
all the instances the corresponding vector is in the first quadrant of
the N -dimensional hyperplane. The objective is to reduce the dis-
tance, d(o, C), where d is the Euclidean distance and o a predefined
vector placed in the first quadrant. The margin, MARD(hk, S), of
a classifier k with respect to a subensemble S and a set of examples
D = (xi, yi), i = 1, 2, . . . , N is calculated as follows:

MARD(hk, S) = d

(
o,

1

|S|+ 1

(
ck + CS

))

4.3 Size of Final Ensemble

Another issue that concerns greedy ensemble selection algorithms, is
when to stop the search process, or in other words how many models
should the final ensemble include.

One solution is to perform the search until all models have been
added into (removed from) the ensemble and select the subensemble
with the highest accuracy on the evaluation set. This approach has
been used in [4]. Others prefer to select a predefined number of mod-
els, expressed as a percentage of the original ensemble [13, 7, 14, 1].

5 Conclusions

This works was a first attempt towards a taxonomy of ensemble se-
lection methods. We believe that such a taxonomy is necessary for
researchers working on new methods. It will help them identify the
main categories of methods and their key points, and avoid duplica-
tion of work. Due to the large amount of existing methods and the
different parameters of an ensemble selection framework (heteroge-
neous/homogeneous ensemble, algorithms used, size of ensemble,
etc), it is possible to devise a new method, which may only differ in
small, perhaps unimportant, details from existing methods. A gener-
alized view of the methods, as offered from a taxonomy, will help
avoid work towards such small differences, and perhaps may lead to
more novel methods.

Of course, we do not argue that the proposed taxonomy is perfect.
On the contrary, it is just a first and limited step in abstracting and
categorizing the different methods. Much more elaborate study has
to be made, to properly account for the different aspects of exist-
ing methods. No doubt, some high quality methods may have been
left outside this study. We hope that through a discussion and the
criticism of this work within the ensemble methods community, and
especially people working on ensemble selection, a much improved
version of it will arise.

REFERENCES
[1] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, ‘En-

semble diversity measures and their application to thinning.’, Informa-
tion Fusion, 6(1), 49–62, (2005).

[2] L. Breiman, ‘Bagging Predictors’, Machine Learning, 24(2), 123–40,
(1996).

[3] R. Caruana, A. Munson, and A. Niculescu-Mizil, ‘Getting the most out
of ensemble selection’, in Sixth International Conference in Data Min-
ing (ICDM ’06), (2006).

[4] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes, ‘Ensemble
selection from libraries of models’, in Proceedings of the 21st Interna-
tional Conference on Machine Learning, p. 18, (2004).

[5] T. G. Dietterich, ‘Machine-learning research: Four current directions’,
AI Magazine, 18(4), 97–136, (1997).

[6] T. G. Dietterich, ‘Ensemble Methods in Machine Learning’, in Pro-
ceedings of the 1st International Workshop in Multiple Classifier Sys-
tems, pp. 1–15, (2000).

[7] W. Fan, F. Chu, H. Wang, and P. S. Yu, ‘Pruning and dynamic schedul-
ing of cost-sensitive ensembles’, in Eighteenth national conference on
Artificial intelligence, pp. 146–151. American Association for Artificial
Intelligence, (2002).

[8] Qiang Fu, Shang-Xu Hu, and Sheng-Ying Zhao, ‘Clusterin-based se-
lective neural network ensemble’, Journal of Zhejiang University SCI-
ENCE, 6A(5), 387–392, (2005).

[9] Giorgio Giacinto, Fabio Roli, and Giorgio Fumera, ‘Design of effective
multiple classifier systems by clustering of classifiers’, in 15th Inter-
national Conference on Pattern Recognition, ICPR 2000, pp. 160–163,
(3–8 September 2000).

[10] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, ‘Adaptive
mixtures of local experts’, Neural Computation, 3, 79–87, (1991).

[11] L.I. Kuncheva and C.J. Whitaker, ‘Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy’, Machine
Learning, 51, 181–207, (2003).

[12] Aleksandar Lazarevic and Zoran Obradovic, ‘Effective pruning of neu-
ral network classifiers’, in 2001 IEEE/INNS International Conference
on Neural Networks, IJCNN 2001, pp. 796–801, (15–19 July 2001).

[13] D. Margineantu and T. Dietterich, ‘Pruning adaptive boosting’, in Pro-
ceedings of the 14th International Conference on Machine Learning,
pp. 211–218, (1997).

[14] G. Martinez-Munoz and A. Suarez, ‘Aggregation ordering in bagging’,
in International Conference on Artificial Intelligence and Applications
(IASTED), pp. 258–263. Acta Press, (2004).

[15] G. Martinez-Munoz and A. Suarez, ‘Pruning in ordered bagging ensem-
bles’, in 23rd International Conference in Machine Learning (ICML-
2006), pp. 609–616. ACM Press, (2006).

[16] I. Partalas, G. Tsoumakas, I. Katakis, and I. Vlahavas, ‘Ensemble prun-
ing via reinforcement learning’, in 4th Hellenic Conference on Artificial
Intelligence (SETN 2006), pp. 301–310, (May 18–20 2006).

[17] I. Partalas, G. Tsoumakas, and I. Vlahavas, ‘Focused ensemble selec-
tion: A diversity-based method for greedy ensemble selection’, in 18th
European Conference on Artificial Intelligence, (2008).

[18] Robert E. Schapire, ‘The strength of weak learnability’, Machine
Learning, 5, 197–227, (1990).

[19] E. K. Tang, P. N. Suganthan, and X. Yao, ‘An analysis of diversity mea-
sures’, Machine Learning, 65(1), 247–271, (2006).

[20] G. Tsoumakas, L. Angelis, and I. Vlahavas, ‘Selective fusion of hetero-
geneous classifiers’, Intelligent Data Analysis, 9(6), 511–525, (2005).

[21] G. Tsoumakas, I. Katakis, and I. Vlahavas, ‘Effective Voting of Hetero-
geneous Classifiers’, in Proceedings of the 15th European Conference
on Machine Learning, ECML2004, pp. 465–476, (2004).

[22] C.J. Watkins and P. Dayan, ‘Q-learning’, Machine Learning, 8, 279–
292, (1992).

[23] D. Wolpert, ‘Stacked generalization’, Neural Networks, 5, 241–259,
(1992).

[24] Yi Zhang, Samuel Burer, and W. Nick Street, ‘Ensemble pruning via
semi-definite programming’, Journal of Machine Learning Research,
7, 1315–1338, (2006).

[25] Zhi-Hua Zhou and Wei Tang, ‘Selective ensemble of decision trees’, in
9th International Conference on Rough Sets, Fuzzy Sets, Data Mining,
and Granular Computing, RSFDGrC 2003, pp. 476–483, Chongqing,
China, (May 2003).

46

Penta-Training: Clustering Ensembles with
Bootstrapping of Constraints

Carlotta Domeniconi1 and Muna Al-Razgan1

Abstract.
In this paper we combine clustering ensembles and semi-

supervised clustering to address the ill-posed nature of clustering.
We introduce a mechanism which leverages the ensemble framework
to bootstrap informative constraints directly from the data and from
the various clusterings, without intervention from the user. Our ap-
proach is well suited for problems where the information available
from an external source is very limited. We demonstrate the effective-
ness of our proposed technique with experiments using real datasets
and other state-of-the-art semi-supervised techniques.

1 Introduction

Clustering is the process of discovering homogeneous groups of data
according to a given similarity measure. Clustering is well suited for
data analysis. However, clustering is susceptible to several difficul-
ties. It is well known that off-the-shelf clustering methods may dis-
cover very different structures in a given set of data. This is because
each clustering algorithm has its own bias resulting from the opti-
mization of different criteria. Furthermore, there is no ground truth
against which the clustering result can be validated. Thus, no cross-
validation technique can be carried out to tune input parameters in-
volved in the clustering process.

Recently, cluster ensembles have emerged as a technique for over-
coming problems with clustering algorithms. A cluster ensemble
consists of different partitions. These partitions can be obtained from
multiple applications of any single algorithm with different initial-
izations, from various bootstrapped samples of the available data,
or from the application of different algorithms to the same dataset.
Cluster ensembles offer a solution to challenges inherent to cluster-
ing arising from its ill-posed nature: they can provide more robust
and stable solutions by making use of the consensus across multiple
clustering results, while averaging out emergent spurious structures
that arise due to the various biases to which each participating algo-
rithm is tuned.

To address the ill-posed nature of clustering, semi-supervised
clustering has also emerged. Semi-supervised clustering uses prior
knowledge to guide the clustering process, thus providing results
that adhere to the user’s preference. Prior knowledge is often ex-
pressed in terms of pairwise constraints (must-link or cannot-link)
on the data. Semi-supervised clustering has its own challenges. Of-
ten, the number of constraints available is very limited. Furthermore,
the given constraints may not be effective for the improvement of
clustering results. Active learning strategies to identify informative
constraints have been developed. These techniques select pairs of

1 Department of Computer Science, George Mason University, USA, email:
carlotta@cs.gmu.edu, malrazga@gmu.edu

points which maximize some measure of “relevance”. The user (or
oracle) is then queried on the nature of the relationship existing be-
tween these points.

In this work, we combine clustering ensembles with semi-
supervised clustering. We use the ensemble framework to bootstrap
informative constraints directly from the data, and from the differ-
ent clustering components. Our approach is well suited for problems
where the information available from an external source (e.g., do-
main expert) is very limited. We also demonstrate the feasibility of
our technique to situations where prior knowledge is absent. Our
work is motivated by co-training [5] and tri-training [13]. As co-
training and tri-training, we leverage the ensemble methodology to
perform semi-supervised learning. While co-training and tri-training
use classifiers as learning components, and propagate labels among
them, our technique uses a collection of clusterings (five, hence the
name Penta-Training) to derive constraints. To the best of our knowl-
edge, this is the first attempt of its kind.

We design a constrained version of subspace clustering, and use it
as the basic component of our penta-training framework. To discover
subspace clusters, we use a Locally Adaptive Clustering (or LAC) al-
gorithm which has been proven to be effective [8, 7]. LAC is an iter-
ative algorithm that assigns weights to features according to the local
variance of data along each dimension. Dimensions along which data
are loosely clustered receive a small weight, which has the effect of
elongating distances along that dimension. Features along which data
manifest a small variance receive a large weight, which has the ef-
fect of constricting distances along that dimension. Thus, the learned
weights perform a directional local reshaping of distances which al-
lows a better separation of clusters, and therefore the discovery of dif-
ferent patterns in different subspaces of the original input space. LAC
depends on an input parameter (called h) that controls the strength of
the incentive to cluster on more features. Diverse clusterings can be
generated using different h values.

We modify the dynamic of the LAC algorithm to embed the given
constraints in the cluster assignment and weight computation pro-
cesses. We call the resulting algorithm CLAC (Constrained-LAC).
The individual clusterings are iteratively refined using constraints
generated during the penta-training process. In particular, in each it-
eration of penta-training, constraints are generated for a clustering if
the other four clusterings agree on them. The process is repeated until
convergence, i.e., until no change in all five clusterings is observed.

2 Related Work

Our approach is related to co-training [5] and tri-training [13]. Co-
training [5] assumes that the given features can be split into two sets,
each of which is sufficient to train a classifier that will produce accu-

47

rate results. Each resulting classifier makes predictions on unlabeled
data, and then provides new training data (those labeled with high-
est confidence) to its counterpart, for iterating rounds of training.
Although this method broke ground in first designing collaborative
classifiers to perform semi-supervised learning, its requirement for
two sufficient feature sets severely limits its applicability.

Tri-training [13] does not assume redundant feature sets. Diverse
classifiers (three) are generated via bootstrap sampling of the original
labeled data. An unlabeled example is labeled for a classifier if the
other two classifiers agree on the labeling, under certain conditions.
Both co-training and tri-training require initial labeled data to train
the component classifiers.

Recently, several semi-supervised clustering algorithms have been
proposed. The authors in [12] propose the COP-Kmeans algorithm
as a variation of k-means, where constraints are embedded during
the clustering process: each point is assigned to the closest cluster,
which will enact the least violation of constraints. The algorithm
will not assign the point if no such cluster can be found. Two addi-
tional constraint-based variants of k-means are Seeded-KMeans and
Constrained-KMeans [4]. In both algorithms, the given labeled data
are used to initialize a seeded set; the constraints obtained from this
labeled set are then used to guide the k-means algorithm. Seeded-
KMeans allows its constraints to be violated in successive iterations,
while Constrained-KMeans enforces the constraints in each iteration.

Most semi-supervised learning approaches have focused on devel-
oping new algorithms. Only recently, more attention has been given
to the nature of the available knowledge, and strategies to active learn
relevant side-information have been developed. In [9], constraints
are imputed from the information provided by the co-association val-
ues between pairs of points in a clustering ensemble. In [6], the au-
thors define two measures to characterize the informativeness and
coherence of a set of constraints. All these methods require the ex-
istence of a domain expert. Our approach, instead, leverages the en-
semble methodology to derive constraints which are completely data-
driven.

3 Penta-Training

When building ensembles, we are faced with a difficult dilemma: ac-
curacy versus diversity. We are in need of diverse, and yet accurate,
components. In our work, to construct effective clustering ensem-
bles, we rely on the sensitivity of the underlying subspace clustering
algorithm (LAC) on its input parameter. Thus, we run the LAC al-
gorithm multiple times with different input parameter values. (In our
experiments, we observed that five components provide a sufficient
range of values for the input parameter.) Furthermore, our objective
is to improve the quality of the individual clusterings using a collab-
orative approach among the components. To achieve this goal, we
need to ensure that the information shared across the components is
accurate and useful. To this end, we adopt the following heuristic:
we look for the pairs of points on which four (out of the five) clus-
terings agree, i.e., all four clusterings group the two points together,
or separately. In the first case, a must-link constraint is generated for
the fifth component; in the second case, a cannot-link constraint is
generated. The process is iterated until no further constraints can be
generated. The requirement for an agreement across four components
ensures a high level of accuracy of the derived constraints. To ensure
constraint relevance, we introduce a ranking mechanism among the
generated constraints, and distribute only the top ranked ones to the
fifth component.

The following Sections describe the details of our approach. In

order to embed constraints into subspace clustering, we organize the
constraints into a graph called Chunklet Graph. In the following, we
describe the procedure to construct such graph.

3.1 Chunklet Graph

We assume that two sets of constraints are given: M is the set of
must-link constraints, and C is the set of cannot-link constraints.
Such constraints are either provided by a domain expert, or they are
bootstrapped from the data (as explained in Section 3.4).

A chunklet is a group of points that belong to the same cluster,
although the identity of the cluster is unknown [3]. The size of the
chunklet is equal to the number of points it contains, e.g., the chun-
klet � = (x1,x2) has size | � | =2.

Each chunklet is formed by must-link constraints. For example,
if a must-link between points x1 and x2 exist, then the chunklet
�1 = (x1,x2) is formed. Following the formation of chunklets
through must-link constraints, a transitive closure process, in which
chunklets are merged, is initiated. For example, if there is a must-link
constraint between (x1,x2) and (x1,x3), then by transitive closure
the chunklet �2 = (x1,x2, x3) is formed.

Once chunklets are formed and all transitive closures completed, a
graph is created using the cannot-link constraints. These constraints
prevent the assignment of some chunklets to the same cluster. If, for
example, there is a cannot-link constraint between the pair (x3,x5)
and we have the chunklet �3 = (x4,x5), then our previously cited
chunklet �2 = (x1,x2,x3) will be prevented from the assignment
to the same cluster as chunklet �3.

A cannot-link constraint is represented in the graph as an edge be-
tween two vertices, where each vertex corresponds to one chunklet.
In this way the entire chunklet graph Gch = (V, E) is constructed,
where V is a set of vertices (or chunklets) constructed from the must-
link constraints, and |V | is the total number of chunklets. E is the set
of edges, and an edge Eij exists between vertices (chunklets) vi and
vj iff there exist xi ∈ vi, xj ∈ vj such that (xi,xj) ∈ C.

3.2 Chunklet Initialization

Similar to k-means, the subspace clustering algorithm LAC depends
on the initial choice of centroids. Thus, we make use of the given
constraints to achieve a good initialization.

Once we have constructed the chunklet graph, we select the ver-
tices (or chunklets) with cannot-link constraints between them, i.e.,
the vertices vi and vj such that Eij = 1. We then compute the
mean vectors of the points contained in each corresponding chun-
klet. These mean vectors become the initial centroids. If the number
of selected chunklets is less than k (the number of desired clusters),
we choose as additional initial centroids the points that are the far-
thest from the already chosen ones. The selection is iterated until we
reach k initial centroids.

3.3 Constrained Locally Adaptive Clustering
(CLAC)

The chunklet initialization procedure provides k initial centroids. We
use the subspace clustering algorithm LAC to generate the clustering
components of our ensemble. A full derivation of the LAC algorithm
is given in [7]. Here it suffices to know that LAC is an iterative al-
gorithm that assigns local weights to features according to the local
variance of data along each dimension. Thus, at each iteration, LAC

48

provides a set of k centroids {c1, . . . , ck}, and a set of k weight vec-
tors {w1, . . . ,wk}, where each weight vector reflects the relevance
of features within the corresponding cluster.

We modify the dynamic of the LAC algorithm to embed the given
constraints into the cluster assignment process, which in turn affects
the computation of weights. We call the resulting algorithm CLAC
(Constrained LAC). We first present the cluster assignment strategy
for points in the chunklet graph.

Chunklet assignment is the process of assigning vertices (chun-
klets) in the graph to the appropriate centroid without violat-
ing any of the must-link or cannot-link constraints. We consider
each chunklet as a group of points, and assign all points in the
chunklet to the closest centroid which does not violate any con-
straint. Given a vertex (chunklet) vi, we calculate the weighted
Euclidean distances between all the points xj ∈ vi and each
centroid cl, where l = 1, . . . , k, and look for the centroid
ct that satisfies ct = arg minl(d(vi, cl)), where d(vi, cl) =
∑|vi|

j=1

√∑D

s=1
wls(xjs − cls)2, D is the dimensionality of the

data, and wl is the weight vector associated with centroid cl. To
assign a chunklet to a centroid, we need to consider possible cannot-
link constraints involving the chunklet. Three cases which require
different centroid assignment strategies are given below.

Case 1 vi is an isolated chunklet that does not have an edge in
the graph Gch. We assign this chunklet to the centroid ct =
arg minl(d(vi, cl)).

Case 2 vi is a chunklet that has at least one neighbor in the graph
Gch, and none of its neighbors has been assigned to a centroid. As
before, we assign vi to the centroid ct = arg minl(d(vi, cl)).

Case 3 vi ia a chunklet that has at least one neighbor in the
graph Gch that has been assigned to a centroid. We construct
the set of centroids Ri to which the neighboring nodes of vi

have been assigned. We then assign vi to the centroid ct =
arg minl(d(vi, cl)) such that ct /∈ Ri.

This procedure assigns chunklets to centroids according to the
local similarities being discovered by the subspace clustering algo-
rithm.

The overall CLAC algorithm is summarized in Algorithm 1.
CLAC computes a partition of the data that satisfies the given con-
straints (under the assumption that the satisfaction of all constraints
is feasible). The inputs of the algorithm are the number of desired
clusters k, the value of the h parameter (which controls the strength
of the incentive to cluster on more features [7]), and the sets of con-
traints M and C. Centroids are initialized according to the proce-
dure described in Section 3.2. Equal weights are assigned initially
to all features. The chunklet assignment procedure is used to com-
pute the first partition. Points which are not contained in any chun-
klet are assigned to the closest centroid (according to the weighted
Euclidean distance). The weights are updated, according to an expo-
nential scheme which assigns larger weights to features where points
have low variance (the parameter h is used here). Thus, a new parti-
tion and new centroids are computed. The procedure is iterated until
convergence, i.e., until clusters do not change.

3.4 The Penta-training Algorithm

Penta-Training assembles multiple (five) clusterings obtained by
CLAC, and bootstraps constraints to improve the quality of the com-
ponents, and ultimately of the ensemble.

Given an initial collection of constraints (M , C), we run CLAC
five times with different values of the h parameter. Each run of CLAC

Algorithm 1 CLAC Algorithm

Input: n points x ∈ �D , number of clusters k, h, set M of must-
link constraints, set C of cannot-link constraints.

1. S1 = ∅, . . . , Sk = ∅
2. Let (Gch) be the chunklet graph constructed from M and C;

Chunklet Initialization
∀vi ∈ Gch such that Eij = 1 for some j

Compute the mean of points in vi and assign it as initial
centroid;
Set z = number of selected centroids;
while (z < k)

Select the farthest point from the already selected cen-
troids, and assign it as initial centroid;
Let {c1, . . . , ck} be the resulting centroids;

3. Set wsj = 1/D, for each centroid cj , j = 1, ..., k and each
feature s = 1, ..., D;

4. For each vi ∈ Gch, let ti be the assigned cluster centroid (as
determined by the chunklet assignment procedure)

∀x ∈ vi, Sti = Sti

⋃{x};
5. For each centroids cj , and for each point x /∈ vi,∀i

St = St

⋃{x|t = argminlLw(cl,x)}
where Lw(cl,x) = (

∑D

s=1
wls(cls − xs)

2)1/2;
6. Compute new weights

For each centroid cj , and for each feature s:
Set Xjs =

∑
x∈Sj

(cjs − xs)
2/|Sj |;

Set wjs =
exp(−Xjs/h)∑D

s=1
exp(−Xjs/h)

;

7. For each vi ∈ Gch, let ti be the assigned cluster centroid (as
determined by the chunklet assignment procedure)

∀x ∈ vi, Sti = Sti

⋃{x}
8. For each centroids cj , and for each point (x /∈ vi, ∀i)

St = St

⋃{x|t = argminlLw(cl,x)}
where Lw(cl,x) = (

∑D

s=1
wls(cls − xs)

2)1/2;
9. Compute new centroids

Set cj =

∑
x

x1Sj
(x)∑

x
1Sj

(x)
, for each j = 1, ..., k, where 1S(.) is

the indicator function of set S;
10. Iterate 5-10 until convergence (no change in cluster assign-

ment).

Output: The final partition S = {S1, . . . , Sk}, {c1, . . . , ck},
{w1, . . . ,wk}

is provided with the entire data set and the entire constraint set. We
obtain five clusterings of the data. Penta-training leverages the con-
sensus achieved across such partitions to bootstrap and propagate
constraints: we look for pairs of points on which four (out of the
five) clusterings agree (and the fifth disagrees), i.e., all four cluster-
ings group the two points together, or separately. In the first case, a
must-link constraint is generated for the fifth component; in the sec-
ond case, a cannot-link constraint is generated. Once all constraints
for a given component have been generated, they are added to the cur-
rent set of constraints of that component, and CLAC is re-run. The
process is iterated for all combinations of four components, until no
change in all five clusterings is observed. To ensure that only relevant
constraints are propagated, we rank the candidate constraints, and use
only the top ranked ones. In particular, for each candidate must-link
constraint (xn,xm), we compute the four weighted Euclidean dis-
tances, using the corresponding weights of the clusters the two points

49

xn and xm are assigned to, and compute their average. The average
distances are then sorted in ascending order. We select the top ranked
pairs (with smallest distances) as must-link constraints for the fifth
component. We proceed similarly for the cannot-link contraints. For
each candidate cannot-link constraint we compute their Euclidean
distance (note that in this case, four clusterings place the points in
different clusters, and therefore there is no single weight vector as-
sociated with them). We then sort the distances in descending order.
We select the top ranked pairs (with largest distances) as cannot-link
constraints for the fifth component. In our experiments, at each itera-
tion of penta-training, we select the top five ranked must-link and the
top five ranked cannot-link constraints.

We observe that penta-training can also be applied when no con-
straints are initially available. In this case, we start building the en-
semble by simply running the original LAC algorithm (with no side-
information) using different values of h. As constraints are boot-
strapped during the rounds of penta-training, LAC is substituted by
CLAC. We test this scenario as well in our experiments.

At convergence, we have available five partitions (precisely, each
partition corresponds to k centroids, and corresponding weight vec-
tors). We map the problem of finding a consensus function to a graph
partitioning problem, by applying the WBPA (Weighted Bipartite
Partitioning) algorithm [1], which has been demonstrated to be ef-
fective. The WBPA algorithm takes into account not only how often
points are grouped together across the clusterings, but also the de-
gree of confidence of the groupings (by means of the weights). The
Penta-Training algorithm is summarized in Algorithm 2.

4 Empirical Evaluation

4.1 Experimental Design
Table 1. Characteristics of the datasets

Dataset k D n (points-per-class)
Iris 3 4 150 (50-50-50)

WDBC 2 31 424 (212-212)
Breast 2 9 478 (239-239)
Wine 3 13 144 (48-48-48)

Ionosphere 2 33 239 (126-113)

In our experiments, we used five real datasets. The characteristics
of all datasets are given in Table 1. Iris, Breast, Wine and Ionosphere
are from the UCI Machine Learning Repository [2]. WDBC is the
Wisconsin Diagnostic Breast Cancer dataset [11].

The clustering ensemble algorithm WBPA uses METIS [10]
to compute the k-way partitioning of a graph. Since METIS re-
quires balanced datasets, we performed random sampling on Breast,
WDBC, Wine, and Ionosphere. In each case, we sub-sampled the
most populated class: from 357 to 212 for WDBC, from 444 to 239
for Breast, from 59 to 48 and 71 to 48 for Wine, and from 225 to 113
for Ionosphere.

We tested our penta-training framework with two scenarios: in one
case, a limited number of constraints is initially available; in the
second case, no constraints are available. For the first scenario, to
generate the initial set of constraints, we follow the procedure intro-
duced in [9]. We run the LAC algorithm 10 times, for h = 1, . . . , 10.
We then build the co-association matrix resulting from the 10 parti-
tions. We select all pairs of points (xn,xm) with a co-association
value in the interval [0.45, 0.55]. This means that, roughly, half of
the components clusters the two points together, and the other half
places them in separate groups. Thus, it is unclear whether the two

Algorithm 2 Penta-Training Algorithm

Input: n points x ∈ �D , number of clusters k, h, set M of must-
link constraints, set C of cannot-link constraints.
Let (Gch) be the chunklet graph constructed from M and C;
S(hi)= CLAC({x}, k, hi, M , C), for i = 1, . . . , 5;
Let T

(hi)
n ∈ S(hi), be the set in partition S(hi) to which xn is

assigned;
[Initialization of constraints for each component]
for i = 1, . . . , 5

M (hi) = M, C(hi) = C;
repeat

for l = 1, . . . , 5
[Bootstrapping of must-link constraints]

for every pair (xn,xm) /∈ M

if ((T
(hl)
n �= T

(hl)
m) and (∀i �= l, T

(hi)
n = T

(hi)
m))

Calculate the average weighted distance:
d(xn,xm) = 1

4

∑
i�=l

(
∑D

s=1
wts(xns − xms)2)1/2;

[wt is the weight vector of the cluster the points xn and
xm are assigned to]

end if
end for
Sort above distances in ascending order;
Select a percentage of top ranked pairs (with smallest dis-

tances), and add them to Mhl
;

[Bootstrapping of cannot-link constraints]
for every pair (xn,xm) /∈ C

if ((T
(hl)
n = T

(hl)
m) and (∀i �= l, T

(hi)
n �= T

(hi)
m))

Calculate the Euclidean distance:
d(xn,xm) =

∑D

s=1
wts(xns − xms)2)1/2;

end if
end for
Sort above distances in descending order;
Select a percentage of top ranked pairs (with largest dis-

tances), and add them to Chl
;

Run CLAC({x}, k, hl, Mhl
, Chl

);
end for

until convergence [all five clusterings do not change]
Input the obtained five partitions (and corresponding weights) to
WBPA [1];
Output: Partition of the n data points into k clusters.

points should be clustered together or not. Therefore, the user feed-
back is most valuable for such points. In our experiments, we use
the ground truth (class labels) to generate constraints for the selected
points. For each dataset, the number of constraints generated is equal
to 20% the number of data available. (If a larger number of pairs
have a co-association value in the range [0.45, 0.55], we random
sample a subset.) The obtained constraints are given in input to all
five CLAC components. (The same set of constraints is also given in
input to the competitive techniques.) Each run of CLAC uses a dif-
ferent values of the h parameter. In our experiments we use the val-
ues {1, 3, 5, 7, 10}. According to our experience, this range of values
provides in general diverse and accurate components. In the second
case, when no initial constraints are available, we build the ensemble
by running the LAC algorithm with the five values of h. As con-
straints are bootstrapped during the iterations of penta-training, LAC
is substituted by CLAC.

At each iteration of penta-training, for each component, we boot-
strap the top five ranked must-link constraints, and the top five ranked
cannot-link constraints. We compare the following technniques:

50

Table 2. Error Rates and Standard Deviations

Methods Iris Breast WDBC Ionosphere Wine
LAC 14.13±2.18 15.9±11.78 19.76±15.75 34.06±4.20 15.16±11.15
CLAC (20%) 13.06±1.74 16.32±11.41 16.69±8.92 34.33±6.88 15.69±11.59
COP-Kmeans (20%) 11.73±0.78 4.68±0.17 48.34± 0.5 29.87±9.17 56.46±2.17
Seeded-COP-Kmeans (20%) 9.33 4.39 48.34 25.52 55.74
Penta-Training (20%) 10.67 3.56 9.19 32.21 11.11
Penta-Training (w/o const.) 14 3.14 8.73 31.38 9.03

• LAC [7]. We run the LAC algorithm five times for h ∈
{1, 3, 5, 7, 10}, and report average error rates and standard devia-
tions.

• CLAC. We run the CLAC algorithm five times for h ∈
{1, 3, 5, 7, 10}, and report average error rates and standard devia-
tions. We provide CLAC the set of constraints generated according
to the procedure described above.

• COP-Kmeans [12]. We run COP-Kmeans 10 times using random
initialization of centroids, and report average error rates and stan-
dard deviations. Again, we provide COP-Kmeans the same set of
constraints generated according to the procedure described above.

• Seeded-COP-Kmeans [4]. In this case centroids are initialized
using the given constraints, according to the technique described
in Section 3.2.

• Penta-Training with initial constraints. We start penta-training
with the same initial set of constraints we feed all competitive
semi-supervised techniques.

• Penta-Training without initial constraints. In this case, no exter-
nal constraints are used. The ensemble starts off in an unsuper-
vised mode (LAC components), and constraints are bootstrapped
in successive iterations from the data.

4.2 Analysis of the Results

Error rates and standard deviations are reported in Table 2. In four
problems, penta-training provided the lowest error rate, or an er-
ror rate very close to the minimum. For Ionosphere, Seeded-COP-
Kmeans gives the lowest error. In some cases, penta-training pro-
vides huge improvements with respect to LAC, CLAC, and COP-
Kmeans. This indicates that the collaborative approach adopted by
penta-training allows the bootstrapping of accurate and relevant con-
straints for the clustering process. In particular, as expected, the
largest improvements are achieved when LAC and CLAC have large
standard deviations (i.e., on Breast, WDBC, and Wine). In these
cases, the components are diverse, and the ensembles become most
effective. Quite interesting is the fact that penta-training without ini-
tial constraints in most cases performs better than penta-training with
initial constraints. This shows the efficacy of our that data-driven
and ensemble-driven constraints. COP-Kmeans and Seeded-COP-
Kmeans perform very poorly on WDBC and Wine. These data are
sparse and have larger dimensionalities; in such conditions, COP-
Kmeans (as k-means) has difficulties in finding the underlying clus-
ter structure.

5 Conclusions and Future Work

We have introduced a semi-supervised framework for clustering en-
sembles which addresses the ill-posed nature of clustering. We use
the ensemble framework to bootstrap informative constraints directly
from the data, and from the different clustering components. Our ap-
proach is well suited for problems where the information available

from an external source is very limited, or not available at all. Fur-
thermore, since our approach builds upon subspace clustering com-
ponents, it is well suited for high dimensional data.

Several avenues can be taken for future work. As the iterations
of penta-training progress, the clustering components may become
correlated due to the distribution of constraints across the ensemble.
As such, the best ensemble accuracy may be achieved before conver-
gence. A criterion for an early stop of penta-training will be consid-
ered. Furthermore, a larger number of components can be used, and
alternative majority schemes for the bootstrapping of constraints will
be investigated. The use of soft constraints that reflect the uncertainty
associated with prior knowledge will also be considered.

ACKNOWLEDGEMENTS

This work was in part supported by NSF CAREER Award IIS-
0447814.

REFERENCES
[1] M. Al-Razgan and C. Domeniconi, ‘Weighted clustering ensembles’, in

SIAM International Conference on Data Mining, pp. 258–269, (2006).
[2] A. Asuncion and D. J. Newman. UCI Machine Learning Repository,

University of California, Irvine, School of Information and Computer
Sciences, 2007.

[3] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall., ‘Learning dis-
tance functions using equivalence relations’, in International Confer-
ence on Machine Learning, (2003).

[4] S. Basu, A. Banerjee, and R. Mooney, ‘Semi-supervised clustering by
seeding’, in International Conference on Machine Learning, (2002).

[5] A. Blum and T. Mitchell, ‘Combining labeled and unlabeled data with
co-training’, in Conference on Computational Learning Theory, pp.
92–100, (1998).

[6] I. Davidson, K. Wagstaff, and S. Basu, ‘Measuring constraint-set utility
for partitional clustering algorithms’, in European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases, pp. 115–
126, (2006).

[7] C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, and
D. Papadopoulos, ‘Locally adaptive metrics for clustering high dimen-
sional data’, Data Mining and Knowledge Discovery Jouranal, 14(1),
63–97, (2007).

[8] C. Domeniconi, D. Papadopoulos, D. Gunopulos, and S. Ma, ‘Subspace
clustering of high dimensional data.’, in SIAM International Conference
on Data Mining, pp. 517–520, (2004).

[9] D. Greene and P. Cunningham, ‘An ensemble approach to identifying
informative constraints for semi-supervised clustering’, in European
Conference on Machine Learning, pp. 140–151, (2007).

[10] G. Karypis and V. Kumar, ‘A fast and high quality multilevel scheme for
partitioning irregular graphs’, SIAM Journal on Scientific Computing,
20(1), 359–392, (1998).

[11] O. Mangasarian and W. Wolberg, ‘Cancer diagnosis via linear program-
ming’, SIAM News, 23(5), 1–18, (1990).

[12] K. Wagstaff, C. Cardie, S. Rogers, and S. Schröedl, ‘Constrained k-
means clustering with background knowledge’, in International Con-
ference on Machine Learning, (2001).

[13] Z. Zhou and M. Li, ‘Tri-training: exploiting unlabeled data using three
classifiers’, IEEE Transactions on Knowledge and Data Engineering,
17(11), 1529–1541, (2005).

51

Independent Model Selection for Ensemble Dispersion
Forecasting

A. Ciaramella 1, G. Giunta 1, A. Riccio 1 and S. Galmarini 2

Abstract. This work aims at introducing an approach to analyze the
independence between different models in a multi-model ensemble
context. The models are operational long-range transport and dis-
persion models, also used for the real-time simulation of pollutant
dispersion or the accidental release of radioactive nuclides in the at-
mosphere. In order to compare models, an approach based on the
hierarchical agglomeration of distributions of predicted radionuclide
concentrations is proposed. We use two different similarity measures:
Negentropy information and Kullback-Leibler divergence. These ap-
proaches are used to analyze the data obtained during the ETEX-1
exercise.

1 Introduction

Standard meteorological/air quality practice, such as the prediction
of the future state of the atmosphere, typically proceeds conditionally
on one assumed model. The model is the result of the work of many
area-expert scientists, e.g. meteorologists, computational scientists,
statisticians, and others.

Nowadays, several models are available for the forecast of vari-
ables of meteorological and/or air quality interest, but, even when
using the same ancillary (e.g. initial and boundary) data, they could
give different answers to the scientific question at hand. This is a
source of uncertainty in drawing conclusions, and the typical ap-
proach, that is of conditioning on a single model deemed to be “the
best”, ignores this source of uncertainty and underestimates the pos-
sible effects of a false forecast.

Ensemble prediction aims at reducing this uncertainty by means
of techniques designed to strategically sample the forecast pdf, e.g.
the breeding of growing modes [17] or singular vectors [15] in the
weather forecasting field. Recently, the ensemble approach has been
extended to multi-model prediction, too [13].

The multimodel approach has been successfully applied to atmo-
spheric dispersion predictions [8, 9, 10] where the uncertainty of
weather forecast sums and mixes with that stemming from the de-
scription of the dispersion process. The methodology relies on the
analysis of the forecasts of several models used operationally by na-
tional meteorological services and environmental protection agencies
worldwide to forecast the evolution of accidental releases of harm-
ful materials. The objectives are clear: after the release of hazardous
material into the atmosphere, it is extremely important to support
the decision-making process with any relevant information and to

1 Dept. of Applied Sciences, University of Naples “Parthenope”,
Isola C4, Centro Direzionale I-80143, Napoli, Italy
{angelo.ciaramella,giulio.giunta,angelo.riccio}@uniparthenope.it. Corre-
sponding author: angelo.ciaramella@uniparthenope.it

2 European Commission - DG Joint Research Centre, Institute for Environ-
ment and Sustainability, Ispra, Italy, stefano.galmarini@jrc.it

provide a comprehensive analysis of the uncertainties and the confi-
dence that can be put into the the dispersion forecast. Galmarini et
al. [9] showed how the intrinsic differences among the models can
become a useful asset to be exploited for the sake of a more edu-
cated support to decision making by means of the definition of ad-
hoc parameters and treatments of model predictions. Among others,
they proposed the so called ‘Median Model’, defined as a new set
of model results constructed from the median of model predictions.
The Median Model was shown to outperform the results of any single
deterministic model in reproducing the concentration of atmospheric
pollutants measured during the ETEX experiment [11].

Moreover, in [16] an approach for the statistical analysis of multi-
model ensemble results is presented. The authors used a well-known
statistical approach to multimodel data analysis, i.e. Bayesian Model
Averaging (BMA), which is a standard method for combining predic-
tive distributions from different sources. Moreover, similarities and
differences between models were explored by means of correlation
analysis.

We have to note, however, that if different models are used to sim-
ulate the same phenomenon, e.g. weather, climate or the dispersion
of radioactive material, they probably will give similar responses.
Potentially, model ensemble results may lead to erroneous interpre-
tations, and this is more probable if models are strongly dependent.
Models are certainly more or less dependent in the case of ensemble
dispersion forecasting, since they often share similar initial/boundary
data, numerical methods, parameterizations, and so on.

In this work we use a statistical approach to analyze the indepen-
dence between model distributions and to select the models that have
similar behavior. Substantially we use an agglomerative clustering
approach to obtain a dendrogram that describes the relations between
models.

To compare models, we propose to use an entropy information
approach. From one hand we consider as “distance” the Kullback-
Leibler (KL) divergence [14, 4]. This divergence can be considered
as a kind of distance between two probability densities, because it is
always nonnegative, and zero if and only if the two distributions are
equal.

On the other hand Negentropy can be interpreted as a measure of
non-Gaussianity and, if we consider the residues between two dis-
tributions, we can estimate how these two distributions are different.
We use approximations of Negentropy providing a very good com-
promise between the properties of the two classic non-Gaussianity
measures given by kurtosis and skewness [12].

In Section 2 we introduce KL and Negentropy information and
successively the agglomerative approach. In Section 3 we show some
results obtained from the application of these two approaches to data
from the ETEX-1 experiment [11].

52

2 NegEntropy-Based Hierarchical Agglomeration

In this section we describe the hierarchical agglomerative approach.
Substantially the aim is to analyze the distributions of the models at
a given time and to agglomerate the distributions that have similar
behavior.

2.1 Kullback Leibler divergence

The KL divergence is defined between two discrete n-dimensional
probability density functions p = [pi . . . pn] and q = [q, . . . qn] as

KL(p||q) =
n∑

i=1

pi log

(
pi

qi

)
. (1)

This is known as the relative entropy. It satisfies the Gibbs’ inequality

KL(p||q) ≥ 0 (2)

where equality holds only if p ≡ q. In general KL(p||q) �=
KL(q||p). In our experiments we use the symmetric version [4] that
can be defined as

KL =
KL(p||q) + KL(q||p)

2
. (3)

The relative entropy is important in pattern recognition as well in in-
formation theory. It is also used in Independent Component Analysis
to estimate the independence between distributions [12].

2.2 Negentropy Information

The definition of Negentropy JN is given by

JN (x) = H(xGauss) − H(x), (4)

where xGauss is a Gaussian random vector of the same covari-
ance matrix as x and H(·) is the differential entropy. Negentropy
can also be interpreted as a measure of non-Gaussianity [12]. The
classic method to approximate Negentropy relies on using higher-
cumulants, through polynomial density expansion. However, such
cumulant-based methods sometimes provide a rather poor approx-
imation of the entropy. A special approximation is obtained if one
uses two functions G1 and G2, which are chosen so that G1 is odd
and G2 is even. Such a system of two functions can measure the two
most important features of non-Gaussian 1-D distributions. The odd
function measures the asymmetry, and the even function measures
the dimension of bimodality vs. peck at zero, closely related to sub-
vs. super-gaussianity. Then the Negentropy approximation of equa-
tion 4 is:

JN (x) ∝ k1E{G1(x)}2 + k2(E{G2(x)} − E{G2(υ)})2 (5)

where υ is a Gaussian variable of zero mean and unit variance (i.e.
standardized), the variable x is assumed to have also zero mean and
unit variance and k1 and k2 are positive constants. We note that
choosing the functions Gi that do not grow too fast, one obtains more
robust estimators.
In this way approximations of Negentropy that give a very good com-
promise between the properties of the two classic non-Gaussianity
measures given by kurtosis and skewness can be obtained [7, 2, 12].
They are conceptually simple, fast to compute, yet have appealing
statistical properties, especially robustness.

Figure 1. ETEX-1 observations

2.3 Agglomerative approach

We remark that our aim is to agglomerate by an unsupervised method
the distributions obtained from the different models of the ensem-
ble. Substantially the aim is to build a hierarchical tree (dendrogram)
that permits to cluster models that have similar behavior. To obtain
the dendrogram we calculate the dissimilarity matrix between the
distributions of the models by using a Negentropy information or a
Kullback-Leibler divergence. The densities of the distributions are
calculated with a simple non-parametric method. In particular, in our
experiments we used a histogram approach. We also observe that in
the case of the Negentropy we use the residuum between the distri-
bution to obtain a density.

Using this information we apply the agglomerative hierarchical
clustering approach to obtain the dendrogram. In this case we use
complete linkage or furthest neighbor

d(r, s) = max(J(Xr, Xs)) (6)

where Xr and Xs are two distributions and J(·, ·) is one of the two
entropy information.

3 Experimental Results

We apply the approach to the analysis of multi-model ensemble re-
sults. The ensemble analysed in this work is an extended version of
that originally presented in [10]. To summarize, we are looking at
26 simulations [16] of the ETEX-1 experiment [11]. The ETEX-1
experiment concerned the release of pseudo-radioactive material on
23 October 1994 at 16:00 UTC from Monterfil, southeast of Rennes
(France). Briefly, a steady westerly flow of unstable air masses was
present over central Europe. Such conditions persisted for the 90 h
that followed the release with frequent precipitation events over the
advection area and a slow movement toward the North Sea region.
In figure 1 we show the integrated concentration after 78 hours from
release.

Several independent groups worldwide tried to forecast these ob-
servations. Each simulation, and therefore each ensemble member, is
produced with different atmospheric dispersion models and is based
on weather fields generated by (most of the time) different Global
Circulation Models (GCM). All the simulations relate to the same
release conditions. For details on the groups involved in the exercise
and the model characteristics, refer to [10] and [16].

In order to analyze data, we consider the integrated concentrations
of the 26 models to calculate the dendrogram and determine the mod-
els that have similar distributions.

53

m14 m21 m22 m01 m15 m04 m26 m06 m24 m05 m20 m09 m11 m19 m13 m16 m03 m25 m18 m10 m12 m07 m17 m02 m23 m08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. Dendrogram obtained by using the Negentropy information.

m09 m11 m19 m13 m06 m03 m04 m26 m18 m10 m12 m17 m07 m02 m23 m08 m01 m21 m14 m15 m22 m20 m16 m25 m24 m05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Dendrogram obtained by using KL divergence.

The dendrogram obtained by using the Negentropy information
on the integrated concentrations after 78 hours is plotted in figure
2. We mark that the information on the abscissa are related to the
models and those on the ordinate are related to the model similarities
obtained by using the Negentropy. In figure 3 we plot the dendrogram
obtained by using the KL divergence.

We observe that different clusters of independent models are ob-
tained. In fact, in the Negentropy based dendrogram we can observe
4 mainly independent agglomerations identified in figure 4 with dif-
ferent colors. This clusters are partially confirmed by the KL dendro-
gram, though in this last dendrogram we obtain more than 4 agglom-
erations (in figure 5 red links identify clusters that are not partially
confirmed in the Negentropy agglomeration).

We can identify the models that have similar behavior by analyz-
ing the different clusters. For example in figure 6 we show the distri-
butions of the models in one of the clusters (blue cluster in the Ne-
gentropy dendrogram). The visualized models are m14, m21, m01,
m15, m06 and m24, respectively. In figure 7 we show the distri-
butions in the magenta cluster of the Negentropy dendrogram. In
this case the models are m09, m11, m13 and m16. We can stress
that this cluster contains models that have a comparable distribution.
Moreover, models m02, m23 and m08 (figure 8) are far from the
other clusters. They have a similar distributions but they are more dif-

m14 m21 m22 m01 m15 m04 m26 m06 m24 m05 m20 m09 m11 m19 m13 m16 m03 m25 m18 m10 m12 m07 m17 m02 m23 m08

0

0.02

0.04

0.06

0.08

0.1

Figure 4. Details of the dendrogram obtained by using the Negentropy
information.

m09m11m19m13m06m03m04m26m18m10m12m17m07m02m23m08m01m21m14m15m22m20m16m25m24m05

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Figure 5. Details of the dendrogram obtained by using the KL divergence.

fusive than the others (see figure 8). We however note that the same
three models are agglomerated together in the KL dendrogram but
they belong to another extended cluster. We also note from the KL
dendrogram that some models probably are erroneously associated
to some agglomerations. For example, model m16 is associated to-
gether with the model m25 but we can note that its distribution is
closer to that of model m13 than m25. In fact, in the Negentropy
based dendrogram models m13 and m16 are agglomerated. More-
over model m13 in the KL dendrogram is agglomerated with model
m06, but, as we can see in figures 9c and 9d, they have a rather dif-
ferent distribution. In figure 9 we plot the distributions of all these
models.

In order to identify the group of models that more appropriately
describe observations, we re-apply the clustering approaches also
including the distribution of observed values. This distribution is
named m00. In figure 10 we plot the two dendrograms. We note
that in the Negentropy dendrogram the model m00 is agglomerated
in the blue cluster, together with models m01 and m15. Instead, in
the KL dendrogram it is associated only with model m14.

4 Conclusions

In this work an approach to analyze the independence between dif-
ferent models describing atmospheric dispersion processes has been

54

a) b)

c) d)

e) f)

Figure 6. Distributions after 78 hours of the models m14 (a), m21 (b),
m01 (c), m15 (d), m06 (e), m24 (f).

a) b)

c) d)

Figure 7. Distributions after 78 hours of the models m09 (a), m11 (b),
m13 (c), m16 (d).

introduced. The proposed approach is based on a Negentropy infor-
mation or a Kullback-Leibler divergence. By using this information
a hierarchical agglomeration can be obtained. The dendrogram de-
scribes the relations between models’ distributions. The approach is
used to analyze the data obtained during the ETEX-1 exercise. The
results show that the approach can be used to analyze the indepen-
dence between the models. From the presented results the Negen-
tropy information permits to obtain more easily interpretable infor-
mation than the KL divergence.

In the next future, focus will be devoted mainly on how to extract
clusters from the hierarchical agglomeration approaches to obtain

a) b)

c)

Figure 8. Distributions after 78 hours of the models m02 (a), m23 (b) and
m08 (d).

a) b)

c) d)

Figure 9. Distributions after 78 hours of the models m16 (a), m25 (b),
m13 (c) and m06.

more accurate ensemble predictions. Moreover different measures
will be used to compare models and by considering their temporal
features.

REFERENCES

[1] F. Acernese, A. Ciaramella, S. De Martino, R. De Rosa, M.
Falanga, R. Tagliaferri, Neural networks for blind sources separa-
tion of Stromboli explosion quakes, IEEE Trans. on Neural Netw.,
14, 1 (2003).

[2] R. Amato, A. Ciaramella, N. Deniskina, C. Del Mondo, D. di
Bernardo, C. Donalek, G. Longo, G. Mangano, G. Miele, G.
Raiconi, A. Staiano, R. Tagliaferri, A Multi-Step Approach to Time
Series Analysis and Gene Expression Clusterings, accepted for
publication on Bioinformatics.

[3] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, 1995.

[4] A. Ciaramella, R. Tagliaferri, Amplitude and Permutation Indeter-
minacies in Frequency Domain Convolved ICA, Proceedings of
the IEEE International Joint Conference on Neural Networks 2003,
vol. 1, pp. 708-713, 2003, IEEE PRESS;

55

m14 m21 m22 m00 m01 m15 m20 m04 m26 m06 m24 m05 m09 m11 m19 m13 m16 m03 m25 m18 m10 m12 m07 m17 m02 m23 m08

0

0.05

0.1

0.15

a)

m09 m11 m19 m13 m06 m03 m04 m26 m18 m10 m12 m17 m07 m02 m23 m08 m00 m14 m15 m22 m01 m21 m20 m16 m25 m24 m05

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

b)

Figure 10. Details of the dendrograms: a) by using Negentropy; b) by
using KL.

[5] A. Ciaramella, E. de Lauro, S. De Martino, M. Falanga, R. Taglia-
ferri, Complexity of Time Series Associated to Dynamical Systems
Inferred from Independent Component Analysis, Physical Review
E. 72, 046712-1/14 (2005);

[6] A. Ciaramella, A. Staiano, R. Tagliaferri, G. Longo, NEC: a Hierar-
chical Agglomerative Clustering based on Fischer and Negentropy
Information, LNCS Vol. 3931/2006, pp. 49-56. WIRN-NAIS 2005.

[7] A. Ciaramella, F. Napolitano, G. Miele, G. Raiconi, A. Staiano, R.
Tagliaferri, Clustering and Visualization Approaches for Human
Cell Cycle Gene Expression Data Analysis, selected for the spe-
cial issue of the International Journal of Approximate Reasoning
on Approximate Reasoning and Machine Learning for Bioinfor-
matics.

[8] Galmarini, S., Bianconi, R., Bellasio, R., and Graziani, G.: Fore-
casting consequences of accidental releases from ensemble disper-
sion modelling, J. Environ. Radioactiv., 57, 203219, 2001.

[9] Galmarini, S., Bianconi, R., Klug,W., Mikkelsen, T., Addis, R., An-
dronopoulos, S., Astrup, P., Baklanov, A., Bartniki, J., Bartzis, J. C.,
Bellasio, R., Bompay, F., Buckley, R., Bouzom, M., Champion, H.,
DAmours, R., Davakis, E., Eleveld, H., Geertsema, G. T., Glaab,
H., Kollax, M., Ilvonen, M., Manning, A., Pechinger, U., Persson,
C., Polreich, E., Potemski, S., Prodanova, M., Saltbones, J., Slaper,
H.,Sofief, M. A., Syrakov, D., Sorensen, J. H., Van der Auwera,
L., Valkama, I., and Zelazny, R.: Ensemble dispersion forecast-
ingPart I: concept, approach and indicators, Atmos. Environ., 38,
46074617, 2004a.

[10] Galmarini, S., Bianconi, R., Addis, R., Andronopoulos, S., As-
trup, P., Bartzis, J. C., Bellasio, R., Buckley, R.,Champion, H.,
Chino, M., DAmours, R., Davakis, E., Eleveld, H., Glaab, H., Man-
ning, A., Mikkelsen, T., Pechinger, U., Polreich, E., Prodanova,
M., Slaper, H., Syrakov, D., Terada, H., and Van der Auwera, L.:
Ensemble dispersion forecastingPart II: application and evaluation,
Atmos. Environ., 38, 46194632, 2004b.

[11] Girardi, F., Graziani, G., van Veltzen, D., Galmarini, S., Mosca, S.,
Bianconi, R., Bellasio, R., and Klug, W.: The ETEX project. EUR
Report 181-43 EN. Office for official publications of the European
Communities, Luxembourg, 108pp., 1998.

[12] A. Hyvärinen, J. Karhunen and E. Oja, Independent Component
Analysis, (Wiley-Sons, Inc., 2001).

[13] Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., LaRow, T., Ba-
chiochi, D., Williford, E., Gadgil, S., and Surendran, S.: Multi-
model ensemble forecasts for weather and seasonal climate. Mon.

Weather Rev., 116, 907920, 2000
[14] D. J. C. MacKay, Information Theory, Inference and Learning Al-

gorithms, Cambridge University Press, 2003
[15] Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T.: The

ECMWF ensemble system: Methodology and validation, Q. J. Roy.
Meteor. Soc., 122, 73119, 1996.

[16] A. Riccio, G. Giunta, S: Galmarini, Seeking for the rational basis
of the median model: the optimal combination of multi-model en-
semble results, Atmos. Chem. Phys., 7, 6085-6098, 2007

[17] Toth, Z. and Kalnay, E.: Ensemble forecasting at the NMC: The
generation of perturbations, B. Am. Meteorol. Soc., 74, 2317 2330,
1993

56

Improving Supervised Learning with Multiple
Clusterings

Sébastien Derivaux, Germain Forestier and Ćedric Wemmert 1

Abstract. Classification task involves inducing a predictive model
using a set of labeled samples. The more the labeled samples are,
the better the model is. When one has only a few samples, the ob-
tained model tends to offer poor result. Even when labeled samples
are difficult to get, a lot of unlabeled samples are generally avail-
able on which unsupervised learning can be used. In this paper, a
way to combine supervised and unsupervised learning in order to
use both labeled and unlabeled samples is explored. The efficiency
of the method is evaluated on various UCI datasets when the number
of labeled samples is very low.

1 INTRODUCTION

The number of labeled samples is a crucial issue for supervised clas-
sification. If too few examples are given to a classical algorithm,
the induced predictive model will be of poor performance. Sadly, in
many real-world applications, labeled samples are difficult to obtain.
This is often due to the cost of a human manual labeling. For exam-
ple, we can cite all the problems where the user only gives few exam-
ples, and the system has to find similar objects in a database (content-
base image retrieval, online web-page recommendation, . . .). In this
cases, only few labeled samples are available although many unla-
beled data are present (all the other instances in the database). In
web-page recommendation, the user label interesting pages. It is not
possible to ask to the user to produce other sample as he may no
know another one. The same problem appears with online shop ser-
vices when a user buys a product and the system wants to propose
him other related products. The system only knows which products
the user has bought and his notation of the product.

However, if labeled samples are rare, unlabeled samples are gen-
erally available in great quantities. Some research works have reveal
that these samples can be used to improve supervised classification.
The main idea is to partially classify the unlabeled samples using the
labeled ones, and to use them to induce a new model [2, 10, 13].

Our method is slightly different of the existing one, as we use
many unsupervised clustering to propose new features to describe
the labeled samples. Then, a supervised classification is applied in
this new data space. As unsupervised clustering creates clusters that
tend to maximize intra-cluster similarity and inter-cluster dissimi-
larity, no labeled sample is needed, but no label is assigned to the
different clusters. The clustering may be seen as a way to resume
the distribution of the samples. It is sometimes used to reduce data
before classification step.

As unsupervised learning can only use data distribution, classes
must respect, to some extends, data distribution. If two classes form

1 LSIIT - CNRS - University Louis Pasteur - Pôle API, Bd Sébastien Brant -
67412 Illkirch, France, email:derivaux@lsiit.u-strasbg.fr

a cluster highly homogeneous in feature space, one can not expect
a clustering to separate them. Even if our approach can weaken this
condition, it must be kept in mind.

In Section 2, we first present some related works and situate our
method. Then, the algorithm is expressly described in Section 3. In
Section 4, we present many experiments made on UCI datasets. The
results that we obtain are compared with classical supervised meth-
ods to quantify the improvement given by the unsupervised cluster-
ing pre-processing.

2 RELATED WORKS

Many past works have shown that unlabeled data can help to improve
the quality of the classification, when very few labeled samples are
available [6, 3, 7, 11, 4].

A first way to exploit unlabeled objects is the co-training method
defined in [3]. The main idea is to use two complementary classifi-
cation to iteratively label the unlabeled data. This assumes that there
exist two independent and complementary feature sets on the data.

To extend this method and avoid the independence and redun-
dancy of the feature sets, which is not realistic in real problems,
Goldman and Zhou present in [6] a co-training strategy for using
unlabeled data to improve the performance of a supervised classifier.
Their method uses two different supervised learners which can se-
lect some unlabeled data to label the other learner in a iterative way.
Experiments have shown that the method increases the accuracy of
the ID3 algorithm. More recently, Raskutti et al. [12] expose a co-
training method, that does not necessary need two complementary
supervised learning algorithms. The idea is to produce an alternate
view on the data by performing an unsupervised classification al-
gorithm on all the dataset (labeled and unlabeled). Then, the original
view and the view constructed by the clustering are used to create two
independent predictors for co-training. In [14], the authors present a
co-training approach which assumes to have two views of the data.
The method uses the correlation between the two views to produce
extra positive and negative samples in an iterative process. Exper-
iments, where only one labeled sample is available, show that the
method overcomes other co-training approaches.

Unlike co-training, ASSEMBLE[1] can build semi-supervised en-
sembles of any size, and does not require the domain to have multiple
views. ASSEMBLE incorporates self-labeled examples in a Boosting
framework. In each iteration of ASSEMBLEexamples from the unla-
beled set are labeled by the current ensemble and added to the train-
ing set. In [4], an empirical study of various semi-supervised learn-
ing techniques on a variety of datasets is presented. Different exper-
iments are made to evaluate the influence of the size of the labeled
and unlabeled sets, or the effect of noise in the samples. The paper

57

concludes that the performance of the methods is heavily dependent
of the field of application and the nature of the dataset. However, us-
ing labeledand unlabeled sample improves the accuracy in most of
the cases.

The method presented in this paper is slightly different of the ones
presented above. All the co-training methods use the labeled and un-
labeled samples together in the training step. If more labeled sam-
ples are available, all the training step needs to be computed again,
which is often costly. In our approach, the unsupervised classifica-
tion can be seen as a pre-processing step, which is performed only
once. Then, depending on the availability of labeled samples, the su-
pervised classification can be calculated. This training part is very
quick as the number of samples is very low.

3 DESCRIPTION OF THE METHOD

Let X denote a set ofn data objectsxj ∈ X . We consider aq-class
classification problem withm labeled andl unlabeled objects where
m is very low andl >> m. LetL be the set of labeled objects ofX .

L = ((x1, y1), . . . , (xm, ym)) (1)

whereyi ∈ {1, . . . , q} are the target values of the samples. LetU be
the set of unlabeled objects

U = (xm+1, . . . , xm+l) (2)

The main idea of the method is to improve the classification by
first producing a clustering on the dataset. The clustering, computed
on all the labeled and unlabeled objects, regroups the similar objects
together, maximizing the intracluster similarity and the intercluster
dissimilarity. If the classes of the problem are well separated in the
feature space, we should be able to associate to each cluster one of
the classes, using the class of labeled samples which belong to the
cluster.

But in real problem, classes are not generally well separated. It is
then possible to have samples from different classes in one cluster,
or no sample in others. To avoid this, the proposed method uses a
combination of multiple clustering methods.

A clustering is a partition ofX into k clusters, and is represented
as ann-dimensional cluster labeling vector

C =
(
C

j
)n

j=1
∈ Cn (3)

whereC = {c1, . . . , ck}. We consider hereb clusterings of the
datasetX , represented as ann × b matrix of cluster labeling vec-
tors. LetC denote this set of clusterings,C = {C1, . . . , Cb}. The
idea is to assign to each labeled samplexi ∈ xym, a new features
vector

v(xi) =
(
C

i
1, . . . , C

i
b, yi

)
(4)

whereCi
j is the cluster assigned by thejth clustering methodCj to

xi. Then, a predictive modelP : X → {1, . . . , q} can be induced
from this new datasetV = {v(xi)}m

i=1
, using a classical supervised

learning method. Finally, the labelP(xi) is assigned to each unla-
beled objectxi of U .

The overall algorithm presenting the complete process of classifi-
cation is given on Algorithm 1.

4 RESULTS

The method described in the previous section have been evaluated
on various datasets of the UCI repository [9]. The Table 1 presents
information about these datasets.

Algorithm 1 Classification with few labeled data
1: applyb clustering algorithms to all the datasetX

; C = {C1, . . . , Cb}
2: for all xi ∈ L do
3: v(xi) =

(
Ci

1, . . . , C
i
b, yi

)
whereCi

k is the cluster assigned to

xi by thekth clustering methodCk andyi is the label ofxi

4: end for
5: apply a supervised learning method to produce a predictive

modelP from V = {v(xi)}m

i=1

6: for all xj ∈ U do
7: assignP(Cj

1 , . . . , C
j

b
) to xj whereC

j

k
is the cluster assigned

to xj by thekth clustering methodCk

8: end for

To apply the proposed method, we first have to choose how many
clusterings will be run on the dataset (i.e. how many attributes will
have each object in the new data space), and then, the different clus-
tering methods. We choose four different configurations to study the
importance of the number of clusterings. The four configurations are
referred as follows:

1. simple : one EM (Expectation-Maximization [5])
2. low : one EM and one KMeans [8]
3. medium : two EM and two KMeans
4. high : c EM andc KMeans (withc the number of classes of the

datasets).

Table 1. Information about the different datasets

Dataset Nb. Classes Nb. attributes Nb. objects
iris 3 4 150
wine 3 13 178
ionosphere 2 34 351
diabetes 2 8 768
breast-w 2 9 699
anneal 5 38 898

Each method was run with a number of clusters equals to the num-
ber of classes actually present in the dataset except for thehigh con-
figuration where the clustering methodk ∈ {1, . . . , c} hask clusters.
The four configurations have been compared with other algorithms,
taken in different families of learning algorithms: the standard tree
inducer C4.5, Naive Bayes and a 1-nearest-neighbor (1-NN) algo-
rithm. Results are presented in Table 2. The number of samples used
is indicated at the beginning of each line. We choose to evaluate the
methods when2, 4, 8 and16 samples per class were available. For
the four configuration of the proposed method,50% of the remain-
ing data have been used for the unsupervised learning, and the other
50% for the evaluation of the method. We choose to use the Naive
Bayes classifier as supervised method in output of the unsupervised
learning step. As performance may greatly differ depending on the
labeled set, the procedure is performed20 times and the results are
averaged. At each run, the different sets are filled with randomly cho-
sen samples.

The proposed method outperformed the supervised learning when
the number of samples was very low (2 or 4 samples per class). For
example, it can be noticed on thebreast-w dataset where, with two
samples, thehigh configuration reaches95.73 instead of83.52 for
the best supervised approach (1-NN). One can notice that the best
accuracy amongst the different configurations is reached with the

58

Table 2. Results according to the different datasets with2, 4, 8 and16 labeled samples available. Values correspond to the means and the standard deviations
on20 runs.

Dataset Simple Low Medium High C4.5 1-NN NB

iris

(2) 72.43(±16.70) 71.18(±21.53) 84.10(±9.95) 82.92(±12.08) 55.97(±13.10) 79.58(±13.91) 65.00(±15.57)

(4) 83.62(±10.90) 87.75(±7.96) 84.57(±11.40) 87.90(±5.84) 80.94(±11.95) 87.17(±12.09) 84.49(±11.72)

(8) 89.92(±5.22) 88.81(±5.28) 90.32(±5.52) 89.84(±3.90) 90.16(±4.80) 94.52(±3.74) 92.06(±4.32)

(16) 88.43(±5.22) 89.02(±4.90) 89.51(±5.23) 91.47(±5.76) 93.14(±4.23) 95.98(±2.10) 95.29(±2.93)

wine

(2) 79.83(±22.08) 85.29(±14.59) 93.78(±3.66) 90.29(±9.62) 50.35(±6.90) 88.14(±6.33) 55.47(±17.63)

(4) 90.90(±7.81) 92.47(±8.98) 96.02(±2.26) 94.52(±3.40) 70.24(±12.48) 90.36(±6.54) 70.78(±11.69)

(8) 95.19(±2.66) 94.09(±4.05) 96.36(±2.00) 96.10(±2.17) 84.61(±5.90) 93.12(±4.31) 92.53(±6.24)

(16) 94.69(±3.78) 95.46(±3.62) 96.23(±2.41) 94.77(±3.59) 86.85(±3.85) 95.77(±2.28) 95.62(±3.20)

breast-w

(2) 84.34(±18.81) 85.73(±18.12) 95.39(±1.19) 95.73(±2.19) 63.38(±16.94) 83.52(±17.38) 83.03(±15.28)

(4) 90.09(±14.32) 92.30(±9.77) 94.51(±1.52) 95.49(±1.71) 85.97(±9.15) 94.29(±3.06) 84.21(±16.81)

(8) 94.65(±1.74) 94.94(±1.75) 94.96(±1.02) 95.60(±1.61) 89.34(±3.24) 94.72(±2.09) 94.46(±1.70)

(16) 94.93(±1.21) 94.70(±1.46) 95.25(±1.48) 96.29(±1.41) 90.06(±2.65) 94.45(±2.70) 95.07(±1.79)

diabetes

(2) 52.63(±9.54) 54.96(±9.71) 55.75(±5.66) 59.78(±6.31) 52.45(±6.85) 55.56(±7.44) 51.83(±5.00)

(4) 52.38(±5.75) 53.53(±6.53) 58.05(±10.68) 57.89(±8.28) 63.03(±5.76) 58.49(±5.61) 55.05(±6.08)

(8) 57.89(±8.66) 57.17(±8.00) 56.62(±8.17) 62.97(±6.93) 63.99(±4.98) 63.34(±5.23) 64.02(±5.86)
(16) 58.53(±8.70) 58.89(±8.04) 61.86(±4.66) 62.65(±8.78) 66.20(±5.08) 65.16(±3.72) 68.82(±3.24)

ionosphere

(2) 57.53(±14.84) 59.08(±13.65) 67.87(±13.11) 62.39(±14.53) 52.56(±10.27) 56.32(±9.65) 58.51(±9.48)

(4) 59.42(±12.09) 64.83(±12.09) 67.65(±10.65) 69.30(±10.26) 63.58(±8.38) 67.18(±9.57) 63.02(±10.42)

(8) 67.47(±10.83) 68.07(±11.07) 70.36(±11.81) 70.39(±10.74) 69.52(±8.79) 73.10(±9.28) 82.05(±5.55)
(16) 69.69(±7.84) 69.78(±9.57) 72.50(±4.31) 76.03(±7.17) 81.56(±5.58) 78.88(±7.74) 82.94(±4.25)

anneal

(2) 61.68(±9.17) 56.48(±14.52) 67.05(±8.44) 68.96(±7.06) 54.55(±10.67) 72.02(±8.63) 45.09(±8.98)

(4) 67.60(±9.02) 62.51(±12.25) 73.57(±5.25) 75.65(±4.44) 72.94(±10.01) 81.89(±4.61) 69.51(±7.97)

(8) 68.94(±7.98) 72.08(±5.61) 76.22(±4.04) 78.14(±4.16) 83.80(±5.60) 87.18(±3.30) 85.16(±5.26)

(16) 71.76(±6.43) 68.78(±7.54) 76.35(±5.20) 79.95(±3.62) 92.27(±3.60) 90.09(±2.17) 88.80(±2.81)

medium andhigh ones. This result enforces the intuitive feeling
that adding more clusterings improves the result, as the objects are
described with more details (i.e. have more attributes). The Fig. 1
(a),(b),(c) and (d) illustrates this result and shows the increase of ac-
curacy according to the number of available samples. This figure also
illustrates that when the number of samples increases, the supervised
approaches give better results. For example, when16 are available,
the supervised methods outperformed the proposed approach on5 of
the6 datasets. It confirms that supervised methods need much exam-
ples to produce efficient predictive models.

As stated in the introduction, if the data space of the dataset is not
correlated with the class information, using clustering is useless. This
affirmation can be study on theanneal dataset, where using cluster-
ing is less interesting than a standard 1-nearest-neighbor, regardless
of the number of available samples.

We also evaluate the influence of the size of the dataset available
for the unsupervised learning. The Fig. 1 (e) and (f) show the evolu-
tion of the accuracy according to the size of the dataset used for the
unsupervised learning (10%, 25% and50% of the datasets). The Fig.
1 (f), corresponding to the evaluation on thewine dataset, indicates
that the increase of unlabeled samples available helps to produce bet-
ter results. This is due to the ability of the clustering to better grasp
the dataset when the density of objects increases.

5 CONCLUSION

In this paper it has been shown that many clustering results can be
combined through a supervised classification, in order to achieve bet-
ter results than traditional algorithms, when the number of labeled
samples is very low, and when unlabeled samples are available.

Nevertheless some questions remain open. How many clustering
algorithms must be used ? Is it better to enhance diversity amongst
them ? How to detect if a specific dataset can use this method ? These
few questions give us some directions to consider in order to improve
the presented work.

REFERENCES
[1] Kristin P. Bennett, Ayhan Demiriz, and Richard Maclin, ‘Exploiting

unlabeled data in ensemble methods.’, inKDD, pp. 289–296. ACM,
(2002).

[2] A. Blum and T. Mitchell, ‘Combining labeled and unlabeled data with
co-training’, inCOLT: Proceedings of the Workshop on Computational
Learning Theory, Morgan Kaufmann Publishers, (1998).

[3] Avrim Blum and Tom Mitchell, ‘Combining labeled and unlabeled data
with co-training’, in COLT’ 98: Proceedings of the eleventh annual
conference on Computational learning theory, pp. 92–100, (1998).

[4] Nitesh V. Chawla and Grigoris J. Karakoulas, ‘Learning from labeled
and unlabeled data: An empirical study across techniques and do-
mains.’,J. Artif. Intell. Res. (JAIR), 23, 331–366, (2005).

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin, ‘Maximum likelihood
from incomplete data via the EM algorithm’,Journal of the Royal Sta-
tistical Society, 39(1), 1–38, (1977).

[6] Sally Goldman and Yan Zhou, ‘Enhancing supervised learning with un-
labeled data’, inProc. 17th International Conf. on Machine Learning,
pp. 327–334. Morgan Kaufmann, San Francisco, CA, (2000).

[7] Thorsten Joachims, ‘Transductive inference for text classification using
support vector machines’, inProceedings of ICML-99, 16th Interna-
tional Conference on Machine Learning, eds., Ivan Bratko and Saso
Dzeroski, pp. 200–209, Bled, SL, (1999). Morgan Kaufmann Publish-
ers, San Francisco, US.

[8] J. MacQueen, ‘Some methods for classification and analysis of multi-
variate observations’, inProceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability - Vol. 1, eds., L. M. Le Cam
and J. Neyman, pp. 281–297, (1967).

[9] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of
machine learning databases, 1998.

[10] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, ‘Text classi-
fication from labeled and unlabeled documents using EM’,Machine
Learning, 39(2/3), 103–134, (2000).

[11] Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M.
Mitchell, ‘Text classification from labeled and unlabeled documents us-
ing EM’, Machine Learning, 39(2/3), 103–134, (2000).

[12] Bhavani Raskutti, Herman L. Ferr, and Adam Kowalczyk, ‘Combin-
ing clustering and co-training to enhance text classification using unla-
belled data.’, inKDD, pp. 620–625. ACM, (2002).

[13] M. Seeger, ‘Learning with labeled and unlabeled data’, Technical re-
port, University of Edinburgh, (2002).

[14] Zhi-Hua Zhou, De-Chuan Zhan, and Qiang Yang, ‘Semi-supervised
learning with very few labeled training examples.’, inAAAI, pp. 675–
680. AAAI Press, (2007).

59

 70

 75

 80

 85

 90

 95

 100

 2 4 6 8 10 12 14 16

va
lu

e

training size

simple
high

1-NN

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 2 4 6 8 10 12 14 16

va
lu

e

training size

simple
high

1-NN

(a)(iris) (b)(wine)

 82

 84

 86

 88

 90

 92

 94

 96

 98

 2 4 6 8 10 12 14 16

va
lu

e

training size

simple
high

Naive Bayes

 60

 65

 70

 75

 80

 85

 90

 95

 2 4 6 8 10 12 14 16

va
lu

e

training size

simple
high

1-NN

(c)(breastw) (d)(anneal)

 80

 82

 84

 86

 88

 90

 92

 94

 96

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

va
lu

e

training size

simple
low

medium
high

 60

 65

 70

 75

 80

 85

 90

 95

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

va
lu

e

training size

simple
low

medium
high

(e)(breastw) (f)(wine)

Figure 1. (a),(b),(c) and (c) show the accuracy according to the number of available samples. (e) and (f) show the accuracy according to the size of the dataset
used for the unsupervised learning.

60

Partitioner trees: combining boosting and arbitrating
Georg Krempl and Vera Hofer 1

Abstract. Many classifier ensembles focus on creating diverse clas-
sifiers by varying training data. This can be done randomly like in
bagging, or systematically by using information about the accuracy
of each classifier within an ensemble. One systematical approach is
boosting, where series of classifiers are created with each classifier
focusing on the misclassifications of its predecessor. Observed am-
biguity can be used to train arbiters or to derive new features used
for training combiners or for stacking. Classifiers’ self-confidence
in predictions can be used to delegate uncertain instances to spe-
cialised classifiers. External referee–classifiers can be used to pre-
dict classifier accuracy, like in arbitrating or grading. However, this
paper presents a new technique called partitioner trees that combines
boosting and arbitrating. Initially, a preliminary classifier is trained
and applied to the training data. Information on this classifiers’ accu-
racy is then used to train a referee called partitioner. This partitioner
then splits the data into two disjoint subsets on which two new lo-
cal classifiers are trained. This process is iterated until a stop criteria
is satisfied. Thus, a binary tree with partitioners on the inner nodes
and local classifiers on the leafs is constructed. New instances are as-
signed to branches in the tree by the partitioners and descending the
tree until they reach a leaf with a local classifier. This local classifier
is then used for prediction. Furthermore possible extentions are dis-
cussed and experimental comparisons of single classifiers with parti-
tioner trees, adaboost and bagging are given.

1 INTRODUCTION

Two key issues in the reseach of classifier ensembles are the creation
of error diverse classifiers and their combination. Partridge and Yates
[20] provide definitions of error diversity and discuss approaches to
create error diverse neural networks [14]. They conclude that the
most promising approaches are to vary the training data and the
network architecture of a neural network, while varying the initial
weights and the number of nodes is least useful.

The approach of varying training data randomly is used byBoot-
strap aggregation, or Bagging, a method proposed by Breiman [4].
Different subsets of the training data are created by randomly se-
lecting instances from the original data. Since this is done with re-
placement, an instance present in the original training data might be
present once or more often in a new training set, or might not be
present at all. Then each classifier is trained on a different subset. Fi-
nally, new instances are classified by combining the prediction of all
classifiers by majority voting.

Instead of leaving the variation of training data to chance,Boost-
ing techniques use systematic variation. An example of this tech-
nique initially proposed by Schapire [16] is theAdaBoost–Algorithm
presented by Freund and Schapire [11]. Here each classifier focuses

1 Department of Statistics and Operations Research, University of Graz, Aus-
tria, email: georg.krempl@uni-graz.at; vera.hofer@uni-graz.at

on the instances that his predecessors misclassified. This is done by
assigning misclassified instances more weight within the data set.
New instances are then classified by combining the predictions ofall
classifiers by majority voting. Due to weighting the data during the
training process all but the first classifier are trained on data that sys-
tematically differ in their composition from the new data on which
the classifiers are later used.

A more complex way of combining classifiers is to use meta-
classifiers. Chen and Stolfo [9] proposed such techniques and sug-
gestedarbiters and combiners. Initially, several error-diverse base
classifiers are trained. In their first approach instances on which pre-
dictions are ambiguous are used to train a so-calledarbiter. This ar-
biter then decides which base–classifier to use for the final decision.
In their second approach new features are derived from the base–
classifiers predictions. On this derived features acombineris trained
to finally predict the correct class. Thus, the final decision can dif-
fer from all of the base classifiers decisions. Another approach that
uses such information about previous misclassification as input for
a succeeding classifier isStacked Generalisation, or Stacking, pro-
posed by Wolpert [19]. In this approach the training data is first split
into two disjoint subsets, then several base learners are trained on one
subset and tested on the other. Their predictions are used as inputs for
a second level of classifiers which are trained to predict the correct
value of the response variable.

Combinations of the idea ofboostingand using meta–classifiers to
assess each classifiers expertise on a new instance are also discussed
in literature. On the one hand, uncertain instances can be delegate to
other classifiers based on the base-classifiers own confidence in its
predictions. Such a method ofdelegatingis suggested by Ferri et al.
[10], where succeeding classifiers are solely trained on instances on
which its predecessors where uncertain. On the other hand an exter-
nal classifier can be trained to assess the quality of a classifiers’ pre-
diction. Such an approach is the method ofarbitrating between clas-
sifiers proposed independently by Ortega and by Koppel and Arg-
amon [13]. They propose to train arefereefor each base–classifier
which estimates its reliability on a new instance. The estimates of all
referees are used to arbitrate between the base–classifiers and to se-
lect one classifier whose prediction is finally used. Another approach
that uses an external classifier isgrading, proposed by Seewald and
Fürnkranz [17]. Instead of selecting only the classifier with the high-
est reliability they combine the prediction of all trustworth classifiers.
This combination of the predictions of a subset of base–classifiers is
done either by voting or by weighting these predictions by their con-
fidence estimates.

Such a referee can also be used as apartitioner to split the data into
two disjoint subsets. Instead of keeping the initial base–classifier for
instances where it succeeded, thepreliminarybase–classifier is dis-
carded. Thus, onbothsubsets a new specialised local classifier must
be trained. New instance are then assigned by the partitioner to one of

61

the two newlocal classifiers. By iterating this approach apartitioner
treewith partitionerson the inner nodes andlocal classifierson the
leafs is created. This new combination of the approaches described
above will be discussed in this paper. This paper and the following
section focus on the discussion of this method and its possible exten-
tions, applications and advantages for some classification tasks. Nev-
ertheless, the third section provides results on a dataset from the Uni-
versity of California (UCI) Machine Learning Repository. However,
they are solely meant to show on which base–classifier–methods this
approach is most promising to pioneer further research and compar-
isons on other data sets. Thus, an overview and discussion on possi-
ble research topics for future research is given in the last section.

2 PARTITIONER TREES

A tree of classifiers is constructed by iterating the process of

1. creating a preliminary classifier,
2. testing and dismissing this preliminary classifier,
3. using information about the accuracies of the preliminary classi-

fier to train a meta-classifier (a so-called partitioner),
4. using this partitioner to split the data into two disjoint subsets,
5. repeating this process by training a preliminary classifier on each

subset,
6. deciding for each branch wheather to continue with partitioning

and branching or to stop by using the preliminary classifier as local
classifier.

New instances are then predicted by

1. using the (first) partitioner to decide which branch to follow,
2. using the next partitioner on this branch to descend further in the

tree and iterating this process until
3. a leaf is reached and its local classifier is used to predict the in-

stance.

The approach of dismissing the preliminary classifier and train-
ing new local classifiers on both subsets can improve the ensemble
performance due to the following reasons: In practice, a partitioner
(or referee) will not be able to predict exactly on which instances
a classifier might fail. Otherwise constructing an error-free ensem-
ble for binary classification tasks would be possible by simply using
the referee to decide whether the predicted class or its opposite are
to be used. Thus, it might be hard for a partitioner to exactly deter-
mine areas of expertise. This problem is avoided by replacing the
need for accurately predicting misclassifications by the easier task
to split datasystematicallyandconsistentlyinto two subsets. Thus,
our approach seeks to guarantee that the structure of new data in a
subset will be exactly the same as in the training data. This higher
representativeness might yield in more accurate classifiers and thus
in a lowervalidation error. For this technique which can be seen as
a combination ofAdaBoostandarbitrating, the meta-classifier also
needs to beapplied during the ensemble construction phase which
can yield to longer training time. However, its application phase dif-
fers only slightly from its paragons. In the following subsections fur-
ther details on how to construct and apply this partitioner tree are
explained.

2.1 Construction phase

Initially, the training data is split randomly into two disjoint, equally
sized subsetsA andB. On the first subset,A, apreliminary classifier

(PRE) is trained. This preliminary classifier is then used to predict
the class membership of the data in the training setB. This yields
a new dichotome response variable,ρ. This variable is zero, if the
prediction was correct, and otherwise one. This is shown in the left
column of figure 1.

Now a new classifier, referred to aspartitioner (PART), is trained
on the datasetB to predict the value ofρ. This partitioner is used
on the complete training set to predictρ. These predicted values of
ρ, denoted asρpred, are used to split the training data into two dis-
joint subsetsC andD. The first subset contains all instances where
ρpred = 0, the second all instances whereρpred = 1. This process
is shown in the right column of figure 1.

If sufficient instances are in each of the two subsets, the process
can be restarted. In this case, each subset (C andD) is divided into
two disjoint subsets (CA, CB , DA andDB). On each subset (CA

andDA) a new specialised preliminary learner is trained to be ap-
plied toCB (or DB , resepectively) to obtain new partitioners. How-
ever, if one subset becomes too small, there are two possible ways
to proceed: First, the partitioner can be modified to create subsets
more commensurated in size. Second, the process can be finalised by
learning alocal classifier(L) on the complete training set (thus both
subsetsC andD are merged into a single training set)2. This itera-
tion on the second level of the partitioner tree is depicted in figure 2.
In the case of a dichotome response variable, the resulting tree will
be a binary tree as shown in figure 3.

Figure 1. Creation of the first partitioner in the first level.

2.2 Application to new data

New instances are first assigned to a local classifier on a leaf of the
partitioner tree which is then used to predict their class membership.
The assignment starts at the first partitioner node which is connected
to two other nodes in the tree. Based on the value ofρpred given
to the new class by the first partitioner, one of the two succeeding
nodes is selected. This succeeding node is either an inner node with

2 The preliminary learner might be used as a local classifier to reduce the
training time. Nevertheless, this preliminary classifier was only trained on
half of the locally available training data which might result in reduced
performance.

62

a partitioner. In this case the process is repeated by using this local
partitioner to estimate a new value ofρpred and the algorithm de-
scends to the corresponding node. Or the node is a leaf with a local
classifier. Then the local classifier is used to predict the final class
membership of the new instance.

2.3 Parameters and complexity

The algorithm requires two kinds of parameters to be set: First, the
types of classifiers used as partitioners and local classifiers. Second,
the stop criteria for branching.

2.3.1 Choice of classifiers types

Base classifiers are used for two different tasks in the algorithm, for
partitioning (actually predicting misclassifications) on the one hand
and for classifying the data on the other hand. For the first task,con-
sistencyin predictions is crucial, while accuracy is not. For the sec-
ond task, which concerns preliminary classifiers and final local clas-
sifiers,accuracyis the primary issue. Although it would be possible
to use a different types of classifier for each task, this paper focuses
on partitioner trees using the same type of classifier for both tasks.

Figure 2. Creation of the partitioners in the second level

Figure 3. Partitioner Tree of depth three.

While all kinds of classification techniques including ensemble of
classifiers themselves can be considered to be used as base classifiers,
the choice has to be made with regard to three aspects: First, the time
needed to train and to apply the classifier. Second, the capability of a
classifier to estimate class probabilities and third the levels of the re-
sponse variable. Further necessary considerations are the classifiers’
complexity and its dependence on the full training data. In section
3.3 some suggestion will be made on the choice of this parameter.

2.3.2 Tree depth

The tree depthd, defined as the number of levels of partitioners in
the tree, can either be fixed in advance or determined indirectly. In
the first case the tree is branched until the defined depth is reached.
In the second case definition of additional stop criteria is required.
They can be based on a minimal subset size, on a maximum time
limit or on the accuracy of the predictors in a branch. While the first
and second are obvious, two approaches exist for using the accuracy:
Either a maximum accuracy is reached, for instance if only one class
is left in a subset. Or the cumulated performance of both branches
drops below the performance of its preceding branch. Since disjoint
subsets are used for training and testing, this accuracy is equal to the
validation error.

These four parameters have to be chosen with regard to the size
of the training set, the number of features in the data, the used base
classifiers and the available training time. Since the training data is
split into smaller subsets, in general2d - times more training data is
needed than for a single classifier3.

If not enough training instances are available, the algorithm might
be modified to not split the training data into the two subsetsA

andB. Instead, the complete training data available at each iteration
might be used for training and testing the preliminary local classi-
fier. In this case, the training error is calculated and used instead of
the validation error for partitioner creation and accuracy calculation.
The algorithm used in section 3 of this paper uses only a minimum
number of instances in each subset and a maximum tree depth as stop
criteria.

2.3.3 Computational complexity

Training
For a tree depthd the proposed approach requires the training
of 2d final local classifiers and of2d − 1 preliminary local classifiers
and partitioners, respectively. Thus3 · 2d − 2 classifiers need to be
trained. Nevertheless, the training and testing of all2i (preliminary)
local classifiers on each leveli can be done parallelly, followed
by a parallel training and testing of all partitioners on that level.
Thus, the training time complexity ofO(d2) on a single-processor
machine can be reduced toO(d) on a multiprocessor grid, unlimited
parallel processing capacities presumed. This is comparable to an
AdaBoostalgorithm, where all classifiers need to be trained and
tested subsequently, thus also resulting in a time complexity of
O(d) (whered denotes the number of different classifiers involved).
However, a bootstrap aggregation approach would allow a parallel
training of all classifiers at once. Thus, a time complexity ofO(1)
on a multiprocessor grid results, again unlimited parallel processing
capacities presumed.

3 This factor is a lower bound, provided that the data is splitted always into
two equally sized subsets at each node. In practice even more training data
might be required.

63

Prediction
Prediction of new data has to be done by using the classifiers
sequentially. Thus, the prediction of a new instance has a time
complexity ofO(d). Since inAdaBoostand bagged aggregation all
classifiers can be used parallelly, the prediction of a new instance
would result in O(1) on a multiprocessor grid, with the same
presumptions as above.

2.4 Possible extentions

2.4.1 Possible extentions and variations

By using all partitioners in the tree for each leaf the probability of a
new instance to belong to it can be calculated. This probabilities can
be used to weight and combine the predictions of all local classifiers
for this new instance. Such an extention could be seen as a combina-
tion of AdaBoostandgradingand might be of particular interest for
regression problems.

2.4.2 Nominal response variables

The application of partitioner trees for classification tasks depends on
the methods used for the base classifiers. Provided the use of a proper
base classifier this approach is therefore not limited to the classifica-
tion of dichotome response variables. In the case of nominal response
variables there are three possible approaches: First, it is possible to
use several partitioner trees, like other classification techniques for
binary response variables, in an “one-against-all” approach and then
combining their output.

Second, if a base classifier is chosen that supports classification
of a nominal response variable, the partitioner tree can be used as
described above. This means thatρ stays a dichotome response vari-
able, where a value of one indicates any error. As partitioner also
base classifiers only suitable for dichotome response variables can
be used.

Third, as an extention to the second approach,ρ can be changed
itself to a nominal variable by distinguishing the different types of
errors. In this case, it is possible to create a separate branch for each
kind of error. Nevertheless, it has to be taken into account that(m2−
m) different errors can occur, wherem is the number of levels of the
response variable. This means that the resulting tree will spread very
fast and the training data will be divided into smaller subsets.

3 EXPERIMENTS

In preparation to further research on this algorithm, information is
needed which basic–classifier–types are most promising. Thus, dif-
ferent types of base–classifiers and different tree depths will be com-
pared. Due to partitioning, this algorithm requires a large number
of training instances. Thus, a dataset with a very large number of
instances was chosen and compared using implementations of clas-
sifiers for the R environment for statistical computing [15].

3.1 Data

From the University of California Machine Learning Repository [2]
the CoverTypedata set was used, which was provided by Jock A.
Blackard, Dr. Denis J. Dean and Dr. Charles W. Anderson [3]4. This

4 This data is copyrighted by the Remote Sensing and GIS Program, De-
partment of Forest Sciences, College of Natural Resources, Colorado State
University, Fort Collins, CO 80523.

data set includes data about the forest cover in the Roosevelt National
Forest of northern Colorado, where seven major cover types are dis-
tinguished, belonging to two divisions (Pinophyta,Magnoliophyta)
of plants. The data set includes 54 quantitative features and one cat-
egorical response variable.

To obtain a data set with a dichotome response variable, the new
response variabledivisionwas introduced, which was one if the tree
was belonging to the division of Magnoliophyta, and zero otherwise.
Due to he fact that fields covered with trees belonging to the di-
vision of Magnoliophyta made up only approximately 2.1% of all
instances, the data was modified by selecting only the four groups
Cottonwood/Willow, Aspen, Douglas-fir and Krummholz out of the
seven tree cover groups. Finally, the original response variable was
replaced by the new dichotome response variable.

Thus, a data set with 50117 instances, thereof 12240 Magnolio-
phyta (class 1, 24.4%) and 37877 Pinophyta (class 0, 75.6%), was
created. 50 different partitionings of this data into 37587 training in-
stances (75%) and 12530 validation instances (25%) were created by
random permutation and used in the experiments.

3.2 Compared methods

We used the following methods as base classifiers:

• Linear Models (LM) [8], provided by the R-functionslm andpre-
dict.lm, see also [18].

• Generalised Linear Models (GLM) with logistic regression as link
function, provided by the R-functionsglm and predict.glm, see
also [8].

• Single-Hidden-Layer Neural Networks (NNET) with size=2 and
randomly created initial weights, provided by the R-functionsnnet
andpredict.nnetfrom the packagennet.

• Support Vector Machines (SVM) with default settings5, provided
by the R-functionssvmandpredict.svmfrom the packagee1071
by David Meyer.

• Recursive Partitioning Trees (RPART) with default settings6, pro-
vided by the R-functionsrpart andpredictfrom the packagerpart,
see also [7].

• AdaBoost(ADA) with classification trees (rpart) as single clas-
sifiers and a tree depth of 30, provided by the R-functionsad-
aboost.Mandpredict.boostingfrom the packageadabagby Es-
teban Alfaro, Matias Gamez and Noelia Garcia, see [1], [12] and
[6].

• Booststrap Aggregation (BAGG), again with classification trees
(rpart) as single classifiers and a tree depth of 30, provided by the
R-functionsbaggingand predict.baggingfrom the packagead-
abagby Esteban Alfaro, Matias Gamez and Noelia Garcia [1], [6]
and [5].

Each method was used as a single classifier and as base classifier
for a partitioner tree. The maximal tree depths were set to 0 (single
classifier), 2 and 4, exept forAdaBoost, Baggingand SVM, where
due to the needed long training time only maximum tree depths of 0
and 2 were used.

For each of the 50 partitions, these methods were trained on the
training set and finally tested on the different validation set. Finally,
the average performance over these 50 validation sets was calculated.

5 The default setting for this data with 54 features was a radial kernel with a
gamma value of54−1 and a cost parameter of1.

6 The default method on the used data is “class”.

64

3.3 Experimental results

On this particular dataset the partitioner tree could increase the per-
formance of most classification techniques compared to single clas-
sifiers. Only support vector machines andAdaBoostobtained worse
or equal results when used in a partitioner tree framework. However,
the best result regarding the arithmetic mean over all 50 partitionings
was obtained by a singleAdaboostalgorithm (98.59% accuracy),
compared to 97,61% accuracy of a partitioner tree with bagged re-
cursive partitioning trees as base classifiers7

On bagged classifier ensembles the performance was increased
from 94.53% to 97.61%. The performance of linear models could be
increased to 90.84% (compared to 86.68%), those of generalised lin-
ear models to 88.95% (compared to 82.70%). On neural networks,
the partitioner tree approach increased the performance to 76.79%
(compared to 75.93%). Regarding classification trees, a partitioner
tree approach increased the performance to 97.25% (compared to
94.16%) on a RPART classifier.

Below the average performances of each method (rows) on differ-
ent tree depths (columns) are given.

Table 1. Average performances on the validation sets

Tree depth
Method 0 2 4
LM 86.68 % 90.84 % 90.88 %
GLM 82.70 % 88.64 % 88.95 %
NNET 75.93 % 76.79 % 76.33 %
SVM 75.60 % 75.60 % N/A
RPART 94.16 % 97.25 % 97.25 %
ADA 98.59 % 98.47 % N/A
BAGG 94.53 % 97.61 % N/A

3.4 Discussion of results

This algorithm aims to reduce complexity within the data. Thus,
methods might not profit from this approach, if they depend or make
largely use of such structures. This preliminary tests have shown that
Support Vector Machinesdid in general not profit from this approach,
nor didAdaBoost. Since AdaBoost makes use of the same character-
istics like this algorithm, this result is not surprising. As far as Sup-
port Vector Machines are concerned, the fragmentation of the data
might have prevailed to chose the optimal parameters for projection.
Since the number of instances in the training data is reduced dramat-
ically methods that increase the instances bybootstrappingmight
increase the performance. The experimental results seem to confirm
this hypothesis, however, further research will be necessary on this
topic. However, the performance of this algorithm used with bag-
ging was comparable to the performance of a singleAdaBoost, with
97.25% compared to 98.59%, and better than singleBagging(only
94.53)%.

4 CONCLUSION

A new meta-algorithm for creating classifier ensembles was pre-
sented that creates a binary tree of so-called partitioners, which are

7 It has to be remarked that for all methods the default settings were used.
Thus, by tuning the parameters of each method some parameter dependent
methods could certainly be improved compared to other methods. However,
a comparison between base–classifier–types is not in the scope of this work.

trained to predict misclassifications made by preliminary local clas-
sifiers. This binary tree is completed by local classifiers, which are
trained on subsets assigned by the partitioners. This algorithm is ap-
plied to new data by first assigning the data to a local classifier using
the partitioners. Classification is then made by the selected local clas-
sifier.

Preliminary experiments show that this method can improve the
performance for some classifiers. Nevertheless, further research in-
cluding comparisons on other data sets is necessary. This is the focus
of our current research as well as the implementation of the sug-
gested variations for regression problems. One open topic for future
research is the discussed combination of different classifiers for par-
titioners and local classifiers.

ACKNOWLEDGEMENTS

We are grateful to the unknown referees for their helpful comments.
Furthermore we would also like to thank the maintainers of the Uni-
versity of California Machine Learning Repository [2], and Jock A.
Blackard, Dr. Denis J. Dean and Dr. Charles W. Anderson for pro-
viding theCoverTypedataset to the repository.

REFERENCES
[1] Esteban Alfaro Cortes, Matias Gamez Martinez, and Noelia Garcia,

‘Multiclass corporate failure prediction by adaboost.m1’,International
Advances in Economic Research, 13(3), 301–312, (2007).

[2] Arthur Asuncion and David J. Newman. UCI machine learning reposi-
tory, 2007.

[3] Jock A. Blackard and Denis J. Dean, ‘Comparative accuracies of ar-
tificial neural networks and discriminant analysis in predicting forest
cover types from cartographic variables’,Computers and Electronics
in Agriculture, 24(3), 131–151, (2000).

[4] Leo Breiman, ‘Bagging predictors’, Technical report, Statistics Depart-
ment, University of California, Berkeley, (1994).

[5] Leo Breiman, ‘Bagging predictors’,Machine Learning, 24(2), 123–
140, (1996).

[6] Leo Breiman, ‘Arcing classifiers’,The Annals of Statistics, 26(3), 801–
849, (1998).

[7] Leo Breiman, Jerome H. Friedman, Richard Olshen, and Charles J.
Stone,Classification and regression trees, Wadsworth, 1984.

[8] Statistical Models in S, eds., John M. Chambers and Trevor J. Hastie,
Chapman and Hall, Ltd. and Wadsworth, 1993.

[9] Philip Chan and Salvatore J. Stolfo, ‘Learning arbiter and combiner
trees from partitioned data for scaling machine learning’, inProceed-
ings of the International Conference on Knowledge Discovery and Data
Mining, pp. 39–44, (1995).

[10] César Ferri, Peter A. Flach, and Jose Hernandez-Orallo, ‘Delegating
classifiers’,Proceedings of the 21st International Conference on Ma-
chine Learning, (2004).

[11] Yoav Freund and Robert E. Schapire, ‘A decision-theoretic general-
ization of on-line learning and an application to boosting’,Proceed-
ing of the second European Conference on Computational Learning
Theory, 23–37, (1995). Extended version of the original, unpublished
manuscript.

[12] Yoav Freund and Robert E. Schapire, ‘Experiments with a new boosting
algorithm’, in Proceedings of the Thirteenth International Conference
on Machine Learning, pp. 148–156, (1996).

[13] Julio Ortega, Moshe Koppel, and Shlomo Argamon, ‘Arbitrating among
competing classifiers using learned referees’,Knowledge and Informa-
tion Systems, 3(4), 470–490, (2001).

[14] Derek Partridge and William B. Yates, ‘Engineering multiversion
neural-net systems’,Neural Computation, 8(4), 869–93, (1995 (1996)).

[15] R Development Core Team, ‘R: A language and environment for statis-
tical computing’, (2006).

[16] Robert Schapire, ‘The strength of weak learnability’,Machine Learn-
ing, 5(2), 197–227, (1990).

[17] Alexander K. Seewald and Johannes Fürnkranz, ‘An evaluation of grad-
ing classifiers’, inAdvances in Intelligent Data Analysis: Proceedings
of the 4th International Symposium (IDA-01). Lisbon, Portugal, (2001).

65

[18] G. N. Wilkinson and C. E. Rogers, ‘Symbolic descriptionsof facto-
rial models for analysis of variance’,Applied Statistics, 22, 392–399,
(1973).

[19] David H. Wolpert, ‘Stacked generalization’,Neural Networks, 5(2),
241–259, (1992).

[20] William B. Yates and Derek Partridge, ‘Use of methodological diver-
sity to improve neural network generalisation’,Neural Computing and
Applications, (1995).

66

Disturbing Neighbors Diversity for Decision Forests
Jeśus Maudes and Juan J. Rodŕıguez and César Garćıa-Osorio1

Abstract. Ensemble methods take their output from a set of base
predictors. The ensemble accuracy depends on two factors: the base
classifiers accuracy and their diversity (how different are these base
classifiers outputs from each other). An approach for increasing the
diversity of the base classifiers is presented in this paper. The method
builds some new features to be added to the base classifier training
dataset. Those new features are computed (i) using the nearest neigh-
bor instance from a very small previous randomly selected set and,
(ii) the class thisk-NN predicts for the instance. We tested this idea
using decision trees as base classifiers. An experimental validation on
62 UCI datasets is provided for traditional ensemble methods, show-
ing that ensemble accuracy and base classifiers diversity are usually
improved.

1 INTRODUCTION

Ensembles are classifiers that combine predictions from someother
classifiers. These combined classifiers in an ensemble are called base
classifiers. Some ensemble combination schemas have became pop-
ular and they have proved to be successful. Many of them use a set
of base classifiers computed each one using the same algorithm.

Ensembles overall accuracy requires base classifiers not to pre-
dict wrong the same instances. They need to be diverse in order to
complement each other. So, how can a set of base classifiers gener-
ated from the same algorithm provide those different outputs from
the same inputs? Diversity has been achieved on ensembles using
different strategies, most of them are based on modifying the base
classifiers training dataset.

In Bagging [4] diversity comes from picking randomly different
instances for training each base classifier. The Random Subspaces
method [11] chooses different subsets of attributes for training each
base classifier. Random Forests [5] are a variant of Bagging, using
Random Trees as base classifiers. In this type of random trees, the
selection of the attribute for a decision node is done using only a
random subset of the attributes.

Boosting [10] trains iteratively the set of base classifiers, modify-
ing the weights of instances to train the current classifier. These new
weights are computed from the training error on the previous base
classifier, so each new base classifier becomes more specialized in
instances that have been misclassified before.

Some of these methods are constrained to use an specific base clas-
sifier (e.g. Random Trees), and some others get diversity in a way
that cannot be exported to other ensemble methods (e.g., Boosting
re-weighting). One important advantage of our approach is that it can
be applied to any base method within any ensemble. For example, in
this work the experimental validation is focused mainly in ensembles
of Decision Trees.

1 University of Burgos, Spain, email: jmaudes@ubu.es, jjrodriguez@ubu.es,
cgosorio@ubu.es

On the other hand, resampling in Bagging, and random feature se-
lection in Random Subspaces, or Random Trees in Random Forests
could be considered ways of getting diversity that can be adopted di-
rectly in other combination schema, and they can be adopted for dif-
ferent base methods. Diversity in these three last methods is acquired
by adding some randomness to base classifiers training process (ran-
dom resampling, random features selection or random trees). In this
work we extend this family of methods with another approach to sup-
ply diversity. We think our method belongs to this family because:

1. Our method does not take into account the ensemble method in
which it is going to be used (like it happens with Bagging, Ran-
dom Subspaces and Random Forests). Moreover, we can apply our
method to all the ensemble algorithms mentioned before, which
have their own way of getting diversity, making their base classi-
fiers become even more diverse, and improving the overall ensem-
ble method performance.

2. It inserts a random element that makes the base classifiers to be
built in a different way each time.

In order to insert randomness we use a weak classifier predic-
tion. By weak classifier we mean a not very accurate classifier. This
classifier is built each time with a very small subset of instances of
the whole training set picked randomly. We have used aK-Nearest
Neighborclassifier for this purpose. Thek-NN output is used to build
new features thatdisturbor alter the predictions of the base classifier
respect when it is trained using the raw dataset. That is why we call
our methodDisturbing Neighbors.

The paper is organised as follows. Section 2 describes the Dis-
turbing Neighbor method. Section 3 analyses our method applied to
state of art representative ensembles of Decision Trees containing the
experimental validation. Section 4 concludes.

2 METHOD

The method presented generates different base classifiers byadding
new features to training data. This new features are different each
time making the base classifiers set to be diverse.

Given a training datasetD, the method takes a numberc as param-
eter. First,c instances fromD are selected randomly to build a small
1-NN classifier. Then, for each training instancei in D, we addc+1
new features in the following way:

1. The class predicted by the 1-NN classifier is added as a new fea-
ture for all the instances inD.

2. Aditional c boolean features are added, one for each of thec se-
lected instances. These features are all zero but the one corre-
sponding with the nearest neihbour to instancei.

So a new datasetD′ is obtained combining the original features
plus thec + 1 features computed by the weak 1-NN classifier. The

67

D′ dataset can now be used for training the next base classifier in any
ensemble method, whatever the base classifier method is.

Note that computationally parallelizable ensemble methods (i.e.
Bagging, Random Subspaces or Random Forests), keep this algo-
rithmic property when Disturbing Neighbors are used. For our ex-
periments we usec = 10, so computational cost does not grow sig-
nificantly by using our variant in decision tree base classifiers.

3 RESULTS

Validation was made implementing Disturbing Neighbors in Java
within WEKA [15]. We tested our method using the WEKA ensem-
ble implementations. Default WEKA parameters are used unless oth-
erwise indicated:

1. Bagging [4].
2. Random Forests [5].
3. Boosting: We use Adaboost [10] and Multiboost [14]. In both

boosting versions we consider resampling and reweighting vari-
ants, which are respectively denoted as (S) or (W) in tables.

4. Random Subspaces [11]. We have tested two configurations, pick-
ing 50% and 75% of the original problem dimensions.

Fifty base classifiers were always used in each ensemble:

1. For Boosting, Bagging and Random Subspaces the base method
was J.48 Decision Trees (WEKA implementation of Quinlan C4.5
Decision Tree [13]). We have tested the ensembles with plain J.48,
and with J.48 disturbed by our method (DN -Decision Trees).
Each 1-NN in theDN -Decision Tree takes alwaysc = 10 random
instances.

2. For Random Forests obviously Random Trees are used as base
classifiers. The ensemble was also tested with plain Random Trees
and with the disturbed variant (DN -Random Trees).

We wanted to know ifDN -Decision Trees are base classifiers that
perform well without any sophisticated combination schema. So we
also tested fifty disturbed decision trees getting their final prediction
as a straight average of the predictions generated by the individual
base classifiers. We denote it byDN -Ensemble from now on.

Finally, we wanted to know ifk-NN accuracy was strong enough
to be the main reason the disturbed classifiers could improve ensem-
bles accuracy. So, we add IBk (WEKA implementation ofk-NN [1])
to the test. We test using fixedk = 1 and variablek configura-
tions. Variablek configuration optimizesk value for each data set.
NN methods are very robust with respect to variations of data set,
so they do not improve very much when combined with standard
ensembles [9]. Thus, we have not considered ensembles ofk-NN
in our test. In particular, Bagging using 1-NN as base classifiers is
equivalent to 1-NN [6]. Moreover, Bagging can slightly degrade the
performance of stable algorithms (e.g.,k-NN), [3].

For our validation we have used the 62 UCI datasets [2] at Ta-
ble 1. 5x2 stratified cross validation was performed, which provides
an acceptable number of repetitions (see [8]).

Results are summarized in tables 2, 3 and 4.
Table 2 shows the methods using the average ranks from [7]. A

number is assigned to each method and data set corresponding to its
rank position in such a dataset. If there were ties, average ranks are
assigned. Then, for each method, the average position is calculated
over all datasets (see values at in first column of Table 2). The meth-
ods are then ordered using these values.

Table 1. Summary of the data sets used in the experiments.

Dataset #N #D #E #C
abalone 7 1 4177 28
anneal 6 32 898 6
audiology 0 69 226 24
autos 15 10 205 6
balance-scale 4 0 625 3
breast-w 9 0 699 2
breast-y 0 9 286 2
bupa 6 0 345 2
car 0 6 1728 4
credit-a 6 9 690 2
credit-g 7 13 1000 2
crx 6 9 690 2
dna 0 180 3186 3
ecoli 7 0 336 8
glass 9 0 214 6
heart-c 6 7 303 2
heart-h 6 7 294 2
heart-s 5 8 123 2
heart-statlog 13 0 270 2
heart-v 5 8 200 2
hepatitis 6 13 155 2
horse-colic 7 15 368 2
hypo 7 18 3163 2
ionosphere 34 0 351 2
iris 4 0 150 3
krk 6 0 28056 18
kr-vs-kp 0 36 3196 2
labor 8 8 57 2
led-24 0 24 5000 10
letter 16 0 20000 26
lrd 93 0 531 10
lymphography 3 15 148 4
mushroom 0 22 8124 2
nursery 0 8 12960 5
optdigits 64 0 5620 10
page 10 0 5473 5
pendigits 16 0 10992 10
phoneme 5 0 5404 2
pima 8 0 768 2
primary 0 17 339 22
promoters 0 57 106 2
ringnorm 20 0 300 2
sat 36 0 6435 6
segment 19 0 2310 7
shuttle 9 0 58000 7
sick 7 22 3772 2
sonar 60 0 208 2
soybean 0 35 683 19
soybean-small 0 35 47 4
splice 0 60 3190 3
threenorm 20 0 300 2
tic-tac-toe 0 9 958 2
twonorm 20 0 300 2
vehicle 18 0 846 4
vote1 0 15 435 2
voting 0 16 435 2
vowel-context 10 2 990 11
vowel-nocontext 10 0 990 11
waveform 40 0 5000 3
yeast 8 0 1484 10
zip 256 0 9298 10
zoo 1 15 101 7
#N: Numeric features, #D: Discrete features
#E: Examples, #C: Classes

68

Table 2. Ensemble methods sorted by their average rank.

Average
Rank Method
6.28 DN -MultiBoost (S)
6.73 DN -Random Forest
7.12 DN -MultiBoost (W)
8.01 DN -AdaBoost (S)
8.09 DN -AdaBoost (W)
8.27 MultiBoost (S)
8.65 Random Forest
8.84 DN -Subspaces (50%)
9.23 MultiBoost (W)
9.65 DN -Bagging

10.03 DN -Subspaces (75%)
10.11 AdaBoost (S)
10.23 AdaBoost (W)
11.54 k-Nearest Neighbor
11.90 Bagging
12.31 Subspaces (50%)
14.07 DN -Ensemble
14.31 Subspaces (75%)
14.61 1-Nearest Neighbor

We can see that all ensemble methods were improved by their
DN -version. Relative order between such methods using undis-
turbed decision trees is preserved whenDN -version methods are
compared on their own. SoDN -versions improvements seem to be
slightly independent of combination schemas. That is why we think
that the ensemble method itself is more important for accuracy than
using or not aDN -version of base classifier. This hypothesis is sup-
ported by pour ranking ofDN -Ensemble. The average ranking of
this ensemble is even worse thank-NN, and it shows that simply
usingDN -base classifiers does not ensure to get the best possible
ensemble.

Improvement by usingDN -versions is quantified in Table 3 that
shows wins, ties and loses ofDN -ensemble versions against undis-
turbed versions. According to the sign test [7], for 62 data sets one
method is significantly better than other if the number of wins (plus
half the ties) is greater or equal than 39. Hence, for all the methods
in Table 3 theDNversion is significantly better.

1-NN andk-NN seem to rank poorly in Table 2. Thus we can think
thatDN -versions are not improved byk-NN algorithm strength, but
the diversity induced by the random neighbors selection. Table 4 also
shows this issue comparing eachDNensemble againstk-NN. We
can see thatk-NN is significantly worst than all theDN -methods
exceptDN -Ensemble andDN -Subspaces (75%).

Table 3. Comparison of methods with and withoutDN -based diversity.

Method Win-Tie-Loss
Bagging 50-1-11
Subspaces (50%) 50-3-9
Subspaces (75%) 54-3-5
AdaBoost (W) 47-0-15
AdaBoost (S) 49-1-12
MultiBoost (W) 47-1-14
MultiBoost (S) 48-0-14
Random Forest 40-3-19

We also tested diversity improvement ofDN -Trees using Kappa
statistic [12]. Kappa measures how diverse two classifiers are. It
can takes values ranged from -1 to 1. Kappa equal to 1 means that
both classifiers agree in every example. Kappa equal to 0 means the

Table 4. Comparison of ensemble methods with thek-Nearest Neighbor
classifier.

Method Win-Tie-Loss
DN -Ensemble 26-2-34
DN -Bagging 41-0-21
DN -Subspaces (50%) 40-1-21
DN -Subspaces (75%) 36-2-24
DN -AdaBoost (W) 39-0-23
DN -AdaBoost (S) 39-1-22
DN -MultiBoost (W) 39-0-23
DN -MultiBoost (S) 40-1-21
DN -Random Forest 44-2-16

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

AdaBoost

Bagging

DN-AdaBoost

DN-Bagging

Figure 1. Error vs. Kappa for Boosting and Bagging inkrk dataset

agreement is the expected if both classifiers output random predic-
tions, and negative Kappa values show they are more diverse than the
agreement expected by chance, which rarely happens. Then Kappa
values are used to draw Kappa-Error Diagrams [12]. Figure 1 shows
an example forkrk dataset with Bagging and Boosting methods. For
each pair of base classifiers we plot a point(x, y), wherex is kappa
measure for these two classifiers, andy is the average error of them.
So we want ideally pairs of base classifiers next to left bottom corner,
because it means they are accurate and diverse.

In Figure 1 we seeDN -clouds a little bit left than undisturbed en-
sembles clouds. It means thatDN -methods are more diverse. Each
diagram in Figure 2 is based on the corresponding Kappa-Error di-
agram for each dataset. All diagrams are scaled using the maximum
and minimum values of Kappa and Error. Each method considered
(i.e., Bagging, both tested variants ofsampledBoosting, Random
Forests and Random Subspaces 50% attributes variant) is represented
by an arrow pointing from the centre of the notDN -version cloud
to the centre of theDN -version cloud of each method. We can see a
lot of arrows pointing left, which means a generalized improvement
of diversity. The longer the arrow, the bigger the relative difference.

Finally, Figure 3 shows a Kappa-Error diagram for each ensemble
method, translating the starting point of every arrow in Figure 2 to
coordinates origin. This kind of diagram is a very convenient way of
summing up the results shown in Figure 2. The majority of arrows
point to left, which is an indicator of diversity. Many arrows also
point up showing that generally, increase of diversity is at the expense
of individual base classifiers accuracy degradation.

69

abalone

anneal

audiology

autos

balance scale

breast w

breast y

bupa

car

credit a

credit g

crx

dna

ecoli

glass

heart c

heart h

heart s

heart statlog

heart v

hepatitis

horse colic

hypo

ionosphere

iris

krk

kr vs kp

labor

led 24

letter

lrs

lymph

mushroom

nursery

optdigits

page blocks

pendigits

phoneme

pima diabetes

primary tumor

promoters

ringnorm

sat

segment

shuttle

sick

sonar

soybean

soybean small

splice

threenorm

tic tac toe

twonorm

vehicle

vote1

voting

vowel context

vowel nocontext

waveform 5000

yeast

zip

zoo

Figure 2. Kappa Error diagram for the 62 datasets. Each arrow points from the centre of the notDN -version cloud of a method to the centre of the
DN -version cloud

70

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1

Bagging

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

Random Forest

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05

Random Subspaces

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

AdaBoost

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06

MultiBoost

Figure 3. Kappa-Error diagram for each ensemble method. There is an
arrow for each dataset pointing the increment of these variables by using

DNversions

4 CONCLUSION

In this paper a method for improving diversity of ensemble base clas-
sifiers is presented. Our method builds some new features to be added
to the training set. These attributes are different for each base clas-
sifier, making them diverse. The new features are computed from a
weak 1-NN classifier that disturbs the normal base classifier train-
ing (Disturbing Neighbor). The weakness of this new base classifier
is achieved using a very small subset of the whole training dataset
as 1-NN training dataset. That 1-NN classifier training instances are
selected randomly, so that randomness is in the end our source of
diversity.

An experimental validation has been provided showing that the
idea presented in this paper uses to improves accuracy in all consid-
ered ensembles of decision tress. Diagrams based on Kappa statistic
have shown that diversity is also improved.

Acknowledgements

This work has been partially supported by the Spanish MCyT project
DPI2005–08498.

REFERENCES
[1] D. Aha and D. Kibler, ‘Instance-based learning algorithms’, Machine

Learning, 6, 37–66, (1991).
[2] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

http://www.ics.uci.edu/∼mlearn/MLRepository.html.
[3] Eric Bauer and Ron Kohavi, ‘An empirical comparison of voting classi-

fication algorithms: Bagging, boosting, and variants’,Machine Learn-
ing, 36(1-2), 105–139, (1999).

[4] Leo Breiman, ‘Bagging predictors’,Machine Learning, 24(2), 123–
140, (1996).

[5] Leo Breiman, ‘Random forests’,Machine Learning, 45(1), 5–32,
(2001).

[6] Bruno Caprile, Stefano Merler, Cesare Furlanello, and Giuseppe Jur-
man, ‘Exact bagging with k-nearest neighbour classifiers’, inMultiple
Classifier Systems, pp. 72–81, (2004).

[7] J. Demšar, ‘Statistical comparisons of classifiers over multiple data
sets’,Journal of Machine Learning Research, 7, 1–30, (2006).

[8] Thomas G. Dietterich, ‘Approximate statistical test for comparing
supervised classification learning algorithms’,Neural Computation,
10(7), 1895–1923, (1998).

[9] Carlotta Domeniconi and Bojun Yan, ‘Nearest neighbor ensemble’, in
ICPR (1), pp. 228–231, (2004).

[10] Yoav Freund and Robert E. Schapire, ‘Experiments with a new boosting
algorithm’, inThirteenth International Conference on Machine Learn-
ing, pp. 148–156, San Francisco, (1996). Morgan Kaufmann.

[11] Tin Kam Ho, ‘The random subspace method for constructing decision
forests’, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 20(8), 832–844, (1998).

[12] D. D. Margineantu and T. G. Dietterich, ‘Pruning adaptive boosting’,
in Proc. 14th International Conference on Machine Learning, pp. 211–
218. Morgan Kaufmann, (1997).

[13] J. R. Quinlan,C4.5: programs for machine learning, Morgan Kauf-
mann, 1993.

[14] Geoffrey I. Webb, ‘Multiboosting: A technique for combining boosting
and wagging’,Machine Learning, Vol.40(No.2), (2000).

[15] I.H. Witten and E. Frank,Data Mining: Practical Machine Learning
Tools and Techniques, Morgan Kaufmann, 2nd edn., 2005.http://
www.cs.waikato.ac.nz/ml/weka.

71

Integrating Feature Selection and Committee Training
Erinija Pranckeviciene 1

Abstract. The purpose of this paper is to discuss a computa-
tional paradigm of integration of feature selection into a commit-
tee training. The computational paradigm is based on external cross-
validation with an inner loop. We show experimentally on the in-
dependent data the benefits and cavets of such paradigm. Feature
profiles, useful for interpretation, are generated during the training.
Our integrated approach addresses the question of how to construct
a committee in a high-dimensional classification problem.

1 INTRODUCTION

Ensemble methods are the viable choices in many real life classi-
fication problems, for review see [1]. They proved to be successful
for feature selection in high-dimensional difficult data [2]. Multiple
classifier systems using feature selection algorithms in handwritten
character recognition domain were investigated in [3]. Some prac-
tical classification problems require the interpretable features more
and emphasize the performance of the classifier system less [4]. In
the deficit of the data, the profiles of the features accumulated during
ensemble learning provide the evidence of the features, important for
class separation [5]. Though the committee of classifiers usually im-
proves the performance, in practice, one has to make the informed
choices of the system design, such as: what base classifier to use;
how many experts; how to combine and validate. The choices are de-
termined either by prior knowledge or customizing the ensemble’s
configuration rather intuitively by using the available ”off the shelf”
software.

In this study we analyze the computational paradigm of train-
ing the ensemble via feature selection. We experiment with the
two class datasets of NIPS2003 Feature Selection (NIPS2003 FS)
challenge (see [6], [2] and www.nipsfsc.ecs.soton.ac.uk for more
information). The data represents two class real life problems -
mass spectra classification (ARCENE dataset) and handwritten digit
recognition (GISETTE dataset), and the artificial problem (MADE-
LON dataset). NIPS2003 FS benchmark datasets are augmented with
probes- the fake features. Ground truth about the feature identity:
useful or probe is available, enabling to test the feature selection
methods. All datasets are high-dimensional, their properties are sum-
marized in Table 1. In Agnostic Learning versus Prior Knowledge
(ALvsPK)challenge [9], the ensemble of linear discriminants with in-
tegrated Liknon feature selection [7] appeared among the top-ranked
methods.

The scheme of training the committee by feature selection is de-
scribed in Section 2. Experimental results on real datasets are dis-
cussed in Sections 3 and 4. Section 5 summarizes the study.

1 Kaunas University of Technology, Lithuania, email:
erinija.pranckeviciene@ktu.lt

2 TRAINING THE COMMITTEE:
COMPUTATIONAL PARADIGM

The committee training and simultaneous feature selection is per-
formed in external k-fold crossvalidation with the inner loop. The
number of folds k, usually 5 or 10, is conditioned by the sample
size of the training data. The data subdivision in the outer loop is
into Training set and Test set. During the development, the
Training set is randomly partitioned several times into two: a bal-
anced Training set and the remaining Monitoring set in the in-
ner loop. The classifier is trained on the Training set. Similar ap-
proaches are discussed in [10]. An optimal feature subset is identified
in every data partition/split by a wrapper. The optimality criterion is
Balanced Error Rate (BER) of the classifier on the Monitoring
set. BER is computed from the confusion matrix confmat of the
classifier:

confmat =

(
TP FP
FN TN

)
,

BER = 1
2
(FP
(FP+TP)

+ FN
(FN+TN)

) , (1)

where TP is the true positive, FP is false positive, FN is false negative
and TN is true negative. The Monitoring set is used to monitor an
over-fitting of the feature selection procedure. Feature subset produc-
ing the minimum monitoring BER of the particular data split is se-
lected. Monitoring takes care of feature selection bias [11]. Figure 1
shows the general scheme of the procedure. The union of the optimal

1−fold

K−fold

. .
 .

Test set

Training
 set

Training
 set

Monitoring
 set

 M random
 splits into:

. .
 .

 M optimal
 feature
 subsets

 UNION

 Feature
 profile

Test Balanced
 Error Rate

C
om

m
itt

ee
 o

f
 M

 c
la

ss
ifi

er
s

In
di

vi
du

al
 C

la
ss

ifi
er

C
om

m
itt

ee
 o

f
K

 c
la

ss
ifi

er
s

Figure 1. Scheme of training the committee via feature selection.

subsets makes a feature profile, which is input to another classifier
(the choice of classifier in based on the knowledge about the prob-
lem). The trained classifier is assessed using the fold Test set. The

72

individual classifiers of the folds are combined into the committee-
the final model for classification of the future data. Motivations for
the outlined approach are: (i) processing many splits in the inner loop
generates different feature subsets and maintains the diversity of the
ensemble [12]; (ii) information, pertinent to classification in various
data ”projections” of feature and sample spaces [13], is aggregated.
We determine the base classifier, combination method and wrapper
feature selection method by using available knowledge about the
problem. If prior knowledge is not available, then selection of a base
classifier and combination method from the pool of candidates is
guided by the Test BER. In this study we assess the committee’s
performance independently on Validation and Test sets of NIPS2003
FS challenge.

3 EXPERIMENTAL SETUP
It is know that ARCENE, GISETTE and MADELON datasets have a
nonlinear character. Based on this knowledge, three nearest neighbor
classifier (NN3) was chosen as a base, and voting as a combination
method. The simple rules prevent from tuning of additional parame-
ters. We used Liknon [14] embedded feature selection method as the
wrapper, because of it’s success in ALvsPK challenge in the agnos-
tic track as a ”black box”. Liknon is trained using a balanced training
set. The details can be found in [7]. Liknon returns features, optimal
for linear separation. In order to reduce the data dimensionality we
also perform a univariate feature pre-filtering, using the difference
between classes as a criterion:

a = (

N1∑
i=1

xi −
N2∑
j=1

xj) . (2)

The indices i and j denote the samples of the class 1 and class 2 re-
spectively, N1 and N2 are sample sizes of the classes. The variables
xi and xj represent the values of the individual features. Using (2),
the features are ranked by decreasing value of a. A percentage of
low-a value features is discarded, taking into account the feature to
sample-size ratio. It was shown, that simple feature pre-filtering was
very effective in building good classifiers on NIPS2003 FS data [6].
The sizes of the data subdivisions in our experiment are summarized
in Table 1. The Test set size of two classes is denoted as Te1+Te2,
the balanced Training as Tr1+Tr2 and remaining Monitoring
as Mo1+Mo2. The number of splits M and folds K in the compu-
tational experiment equals to 5. The sample sizes of the independent
Test and Validation data sets of NIPS2003 FS benchmark are denoted
as Ti1+Ti2 and Vi1+Vi2 and the dimensionality of the dataset by D.

Table 1. Parameters of the experiment.

Parameters/Dataset ARCENE GISETTE MADELON
D 10000 5000 500

Tr1+Tr2 30+30 150+150 300+300
Mo1+Mo2 5+15 2250+2250 500+500
Te1+Te2 9+11 600+600 200+200
Vi1+Vi2 44+56 500+500 300+300
Ti1+Ti2 310+390 3250+3250 900+900

Discarded % 85 95 98
M #splits 5 5 5

K #experts 5 5 5

In every split we do feature pre-filtering followed by the selection
of the optimal feature subset by Liknon. The accumulated feature

profile, a union of M feature subsets, is input to NN3 individual clas-
sifier. The procedure is repeated in every fold. As a result we obtain
K individual classifiers in the committee, operating by voting. We
estimate BER’s of the committee and individual classifiers on the in-
dependent Test and Validation sets of the NIPS2003 FS benchmark.
NN3 trained on all training data and all useful features is our baseline
- what a single NN3 can achieve with all good features. Normally, in
real life problem, such baseline can not be computed, because we do
not have information about the feature identity. Note, that different
classifiers perform differently on the same data, based on the capa-
bility of the classifier to handle the complexity of the data. Large
NIPS2003 FS Test sets allow faithful estimate of the classification
performance. For computational experiments we used functions of
PRTools [8]. We investigate whether such scheme produces a com-
mittee, with improved performance as compared to the individual
classifiers.

4 RESULTS

The baseline and committee performances on the independent Test
and Validation datasets are presented in Table 2. For all datasets the
committee on the Validation set works similar as on the Test set. It
is close to the NN3 baseline performance. We also present the best
NIPS2003 FS benchmark entries [6]. ARCENE is the most challeng-
ing dataset, because it’s dimensionality exceeds the training sample
size by orders of magnitude. New-Bayes-nn-red+v method, submit-
ted by Radford Neal, is the best entry for the ARCENE dataset. The
description of their method follows. Bayesian neural network with
two hidden layers (20 and 8 units), applied to a set of features se-
lected by examining the ARD hyperparameters found in New-Bayes-
lr-sel and New-Bayes-nn-sel. An ARD prior was used here as well
to allow some of the features to have more influence than others.
The model was fitted to both the training and validation data. It is
a complex learning strategy using both Training and Validation sets.
The success of New-Bayes-nn-red+v indicates the high complexity
of ARCENE. NN3 might not be capable of handling such complex-
ity. The number of features in their method is 100, no probes. This
number is less than the total number of samples (88+112) in Training
and Validation sets together. New-Bayes-nn-red+v method for other
datasets achieved the following results: Test BER of GISETTE was
0.0186, (326 features / 1 probe) and Test BER of MADELON was
0.0994, (21 feature / 4 probes). The performance of New-Bayes-nn-
red+v on MADELON and GISETTE is still comparable with the re-
sults of NN3 committee. NIPS2003 FS winners on MADELON and
GISSETTE datasets used a combination of the CLOP models trained
on both Training and Validation sets. More information can be found
in [6].

Figure 2 shows the Validation and Test BER’s distribution for
ARCENE and MADELON. BER’s of the individual classifiers in
folds are indicated by stars. The number next to each star indicates
Test BER of the fold. Diamond represents NN3 baseline. Square
shows the committee’s performance. There is a big variance of Vali-
dation and Test BER estimates of the individual NN3. The variance
arises due to the different training datasets in folds and different ac-
cumulated feature profiles, indicating the diversity of the individual
classifiers.

There is a disagreement between the Balanced Error Rates in folds
and independent Validation and Test BER’s, see Table 3 and Ta-
ble 4. The disagreement may arise due to sample sizes and inade-
quate feature to sample size ratio (FSR) in training and validation.
In ARCENE, the classifier with the zero BER on the Test set has

73

Table 2. Comparison of Balanced Error Rates.

Dataset Validation BER / Test BER
(#Features / #Probes)

NN3 Committee NN3 Baseline Best entry

ARCENE 0.1810 / 0.1877
(345 / 63)

0.1964 / 0.1749
(7000 / 0)

0 / 0.0720
(100 / 0)
Radford Neal

GISETTE 0.0420 / 0.0292
(357 / 3)

0.0320 / 0.0258
(2500 / 0)

0.0080 / 0.0086
(NA)
Theodor Mader

MADELON 0.1183 / 0.1144
(21 / 7)

0.1067 / 0.0994
(20 / 0)

0.0200 / 0.0622
(12 / 0)
Shen Kaiquan

independent Validation BER 0.2484 and Test BER 0.2335. Distri-
bution of BERs in MADELON shows a lesser disagreement. FSR in
MADELON is much lower than in ARCENE.

For all datasets the feature profile contains a fraction of probes.
This might be a reason why the committee performs slightly worse
on the Test set than the baseline. Feature selection and classifier
learning are intrinsically combined. In wrapper, we select features,
optimal for the chosen particular classifier. Advanced general fea-
ture selection strategies such as Floating Forward Feture Selection
(FFFS) [15] with monitoring option are very time consuming and in-
efficient in high-dimensional problems, such as ARCENE, GISETTE
and MADELON. After pre-filtering, in this study, Liknon was able
to identify more useful features than probes. In Liknon training we

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.0556

0.1667

0.0

0.1111

0.1111

Validation BER

T
es

t
B

E
R

NN3 performance on ARCENE

Individual NN3
NN3 committee
NN3 baseline

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.1875

0.1400

0.1525

0.1400

0.1500

NN3 performance on MADELON

Validation BER

T
es

t
B

E
R

Individual NN3
NN3 committe
NN3 baseline

Figure 2. Performance of K individual NN3 classifiers and their committee
on the independent Test and Validation sets of NIPS2003 FS benchmark.

used small sample size setting, thus larger number of samples ap-
peared in Monitoring set for GISETTE and MADELON. Test
BER of the individual experts may indicate the better feature pro-
files. Number of features, number of probes and their percentage in
the features profiles, the BER of Test, Validation and Test sets for
individual experts in MADELON and ARCENE, are summarized in
Tables 3 and 4.

Table 3. MADELON. Individual NN3 experts.

Fold Valid BER Test BER Test BER #feature/#probe (%)
1 0.2133 0.1911 0.1875 15/4 (26.67%)
2 0.1550 0.1406 0.1400 10/0 (0%)
3 0.2267 0.2139 0.1525 6/0 (0%)
4 0.1200 0.1089 0.1400 12/1 (8.33%)
5 0.1217 0.1156 0.1500 15/2 (13.33%)

Table 4. ARCENE. Individual NN3 experts.

Fold Valid BER Test BER Test BER #feature/#probe (%)
1 0.2597 0.2166 0.0556 103/20 (19.42%)
2 0.1599 0.2015 0.1667 99/14 (14.14%)
3 0.2484 0.2335 0.0 91/15 (16.48%)
4 0.3052 0.2214 0.1111 103/20 (19.42%)
5 0.2378 0.2650 0.1111 95/36 (37.89%)

In Table 3 the expert of fold 1 is worst. It’s feature profile con-
tains 11 useful features and 4 probes. This is the largest number of
probes in all folds. The best expert is in fold 4, trained on 11 useful
features and 1 probe. In MADELON, the Validation and Test BER
estimates are consistent. The small values of either Test or Valida-
tion BER reveal better feature profiles. In ARCENE (see Table 4) the
Test BER shows that the expert in fold 5 is worst. It is characterized
by the largest number of probes. If we look at the Validation BER,
the conclusion is different- the expert in fold 5 is the second best.
The BER estimate on the Test set ranks the expert in fold 5 the
same as expert 4, as the third. ARCENE had very small Training
Monitoring and Test set, thus the estimates of BERs are not
consistent. The estimates, computed with small sample size, have
high variance. The Test BER can be used to rank the feature pro-
files provided that fold Test set contains enough samples. This
is important for exploratory data analysis and interpretation. There
are efforts directed towards determination of ”enough samples” for
training [17] and testing [16] in specific applications.

5 CONCLUSIONS
We report an early experiment of integrating wrapper feature selec-
tion into committee training. We have applied it to high-dimensional
datasets of the NIPS2003 FS benchmark. All results reported here are
available on the web site www.nipsfsc.ecs.soton.ac.uk. Our investi-
gation was possible, because of the independent platform for testing
the feature selection methods. In some real problems, neither infor-
mation about feature identity, nor large test sets are available. Es-
pecially in biomedical domains, the data resembles ARCENE. The
following insights were gained:

1. Our result suggests that the committee, trained using the proposed
paradigm, integrating a feature selection, will have an improved
performance as compared to the individual experts. At least for

74

the data types similar to the NIPS2003 FS benchmark datasets.
Feature profiles, identified simultaneously are important for inter-
pretation and understanding of the expert’s performance.

2. The investigated computational procedure generates diverse ex-
perts, evidenced by the large variance of BERs estimated on the
independent Validation and Test sets. The experts are competent
in a particular feature-sample subspaces.

3. The Test BER in folds can be used for the ranking of the feature
profiles, provided there is enough samples for training and testing.
The estimates, computed with very small number of samples, are
misleading. As a possible solution is a control of Feature to Sam-
ple size Ratio (FSR). It can be carried out by the univariate feature
filtering, as in this study. The smaller FSR, the more confident we
can be about the performance estimates of the experts.

4. The wrapper in the inner loop, the base expert/classifier and a
combination method can be selected by using the knowledge
about the problem. In the present study we used knowledge that
the datasets have a nonlinear character and the fact that Liknon
performed well as a ”black box” in ALvsPK challenge. Liknon
wrapper generates a feature profile, which is optimal for linear
separation. We use this feature profile as an input to another ex-
pert, realizing a nonlinear rule. We selected NN3 as our base clas-
sifier in order to address the nonlinearity of the data, keeping the
overall architecture simple. We showed, that the performance of
such combination is comparable with the performance of the other
methods on the benchmark datasets.

Our study addressed practical issues, arising in integrating feature
selection and committee training in high-dimensional classification
problems. As a computational paradigm we suggest K-fold external
cross-validation with the inner loop. In our study we have chosen
simple architecture of the committee. Indeed, the neural net, or SVM
with nonlinear kernel function are among the possible choices for
the base expert. However, complex classifiers would involve an ad-
ditional tuning of the parameters, requiring additional validation. In
some real life problems we can’t afford more validation because of
sparse data. Thus we suggest using simple models initially in the first
stage of the data analysis. It would be appropriate to estimate the data
complexity and find a matching classifier. Such unified methodology
doesn’t exist yet. There are efforts directed towards development of
such methodology [18], also in problems characterized by a deficit
of training data [19].

REFERENCES

[1] R. Polikar, Ensemble based systems in decision making, IEEE Circuits
and systems magazine, 3, 21–45, (2006).

[2] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Feature extraction,
foundations and applications, Physica-Verlag, Springer, 2006.

[3] S. Gunter, H. Bunke, Creation of classifier ensembles for handwritten
word recognition using feature selection algorithms, 183–188, Proc.
Eight International Workshop: Frontiers in Handwritten Recognition,
IEEE, (2002).

[4] E. Pranckeviciene, R. Baumgartner, R. Somorjai, Using domain knowl-
edge in the random subspace method. Application: Application to the
classification of magnetic resonance spectra, 336–345, Multiple Classi-
fier Systems MCS2005, LNCS, 3541, Springer Berlin/Heidelberg, 2005.

[5] A. Bamgbade, R. Somorjai, B. Dolenko and et al., Evidence accumu-
lation to identify discriminatory signatures in biomedical spectra, 463–
467, Artificial Intelligence in Medicine AIM2005, LNCS 3581, Springer
Berlin/Heidelberg, 2005.

[6] I.Guyon, J.Li, T.Mader, P.A.Pletsher, G.Schneider, and M.Uhr, Com-
petitive baseline methods set new standards for the NIPS 2003 fea-
ture selection benchmark, Pattern recognition letters, 28, 1438–1444,
(2007).

[7] E.Pranckeviciene, R.Somorjai, M.N.Tran, Feature/model selection by
the Linear Programming SVM combined with state-of-art classifiers:
what can we learn about the data, Proccedings of International Joint
Conference on Neural Networks IJCNN2007, INNS/IEEE, Orlando,
Florida, 1627–1632, (2007).

[8] R.P.W.Duin, P.Juszczak, P.Paclik, E.Pekalska, D.de Ridder, and
D.M.J.Tax. PRTools4 A Matlab toolbox for pattern recognition
www.prtools.org, February, 2004.

[9] I.Guyon, A.Safari, G.Dror, and G.Cawley, Agnostic learning vs. prior
knowledge challenge, Proccedings of International Joint Conference on
Neural Networks IJCNN2007, INNS/IEEE, Orlando Florida, 829–834,
(2007).

[10] N.V. Chawla, T.E. Moore, L.O. Hall et al., Distributed learning with
bagging-like performance, Pattern recognition letters, 24(1-3) , 455–
471, (2003);

[11] C. Ambroise, G.J. McLachlan, Selection bias in gene extraction on
the basis of microarray gene-expression data, PNAS, 99(10), 62–6566,
(2002).

[12] P. Cunningham, J. Carney, Diversity versus quality in classification en-
sembles based on feature selection, 1611-3349, , Machine Learning:
ECML2000, LNCS, 1810, Springer Berlin/Heidelberg, 2000.

[13] T.K. Ho, The random subspace method for constructing decision
forests, IEEE Transaction on Pattern Analysis and Machine Intelli-
gence, 20(8), 832–844, (1998).

[14] C.Bhattacharyya, L.R.Grate, A.Rizki, D. Radisky, F.J. Molina, M.I. Jor-
dan, M.J. Bissell and I.S. Mian. Simultaneous relevant feature iden-
tification and classification in high-dimensional spaces: application to
molecular profiling data. Signal Processing, 83(4), 729–743, (2003).

[15] P. Pudil, J. Novovicova, J. Kittler, Floating search methods in feature
selection, Pattern Recognition Letters, 12(3), 1119–1125, (1994).

[16] I. Guyon, J. Makhoul, R. Schwartz, V. Vapnik, What size test set gives
good error rate estimates?. IEEE Trans. PAMI, 20(1), 52–64, (1998).

[17] S. Mukherjee, P. Tamayo, S. Rogers, R. Rifkin, A. Engle, C. Camp-
bell, T.R. Golub, J.P. Mesirov, Estimating dataset size requirements for
classifying DNA microarray data, Journal of Computational Biology,
10(2), 119–142, (2003).

[18] E.B. Mansilla, T.K. Ho, On classifier domains of competence, Proc-
cedings of the 17th International Conference on Pattern Recognition
ICPR2004, Vol. 1, 136–139, (2004).

[19] E. Pranckeviciene, T.K. Ho, R. Somorjai, Class separability in spaces
reduced by feature selection, Proccedings of the 18th International
Conference on Pattern Recognition ICPR2006, Vol. 3, 254–257,
(2006).

75

	Opening_Page
	Binder1
	TableOfContents
	Preface
	Acknowledgements
	Paper1
	Paper2
	Paper3
	Paper4
	Paper5
	Paper6
	Paper7
	Paper8
	Paper9
	Paper10
	Paper11
	Paper12
	Paper13
	Paper14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

