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Abstract. The prediction of the interactions of micro RNA (miRNA)
for the regulation of the cellular biological processes represents a chal-
lenging bioinformatics problem, with important implications for the de-
sign of new RNA-based drugs. We present miRInter-Trans, a model that
integrates the RNA-FM foundation model pre-trained on a large corpus
of non coding RNA (ncRNA) data with a feed-forward neural network
trained on the RNA-FM hidden representations of ncRNA sequences.
The model is able to successfully predict miRNA interactions using only
the sequence of the ncRNA pairs. To our knowledge, this is the first
work addressing ncRNA–ncRNA interaction prediction using sequence
alone and embeddings from an RNA foundational model. The proposed
approach demonstrates superior performance compared to a state-of-art
Minimum Free Energy method.

1 Introduction

Deciphering RNA-RNA interactions is crucial for understanding the regulatory
networks underlying gene expression and cellular biological processes [7]. How-
ever, experimental mapping of ncRNA interactions remains challenging due to
limitations in current experimental methods and computational models [21].

Predictions of RNA-RNA interactions have relied on approaches such as Min-
imum Free Energy (MFE) calculations and accessibility-based models. Tools
like IntaRNA evaluate the interaction energy between ncRNA and messenger
RNA (mRNA) to predict their interactions [9]. Accessibility-based methods can
effectively distinguish true interactions from background noise [18], but these
techniques are limited by their reliance on predefined parameters and simplified
energy assumptions. On the wet-experimental side, methods such as RNA An-
tisense Purification (RAP-RNA) are limited by high costs and working-intense
demands [5].

Recently deep learning and transformer-based methods have been proposed
for modeling biological sequences directly from raw data [12, 19, 11]. In particu-
lar deep learning methods have been successfully applied to RNA-protein inter-
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actions [2, 16], and network-based contrastive learning approaches have shown
promise in related association tasks [14].

Deep learning architectures and graph-based methods have indeed demon-
strated potential in predicting biomolecular interactions [1, 17]. Convolutional
neural networks (CNNs) and deep forests excel in detecting local sequence pat-
terns, while graph-based learning methods leverage topological relationships to
infer associations. Nonetheless, these approaches often depend on manual feature
curation, predefined graph structures, or supervised training on specific datasets,
limiting their applicability to novel ncRNA sequences.

In contrast, Large Language Model (LLM)-based methods can learn directly
from RNA public databases without predefined energy parameters or explicit
structural graphs, using self-supervised learning, and can also learn dependencies
and relationships between motifs and functional patterns through the attention
mechanism [22, 13, 20]. Unlike thermodynamic models that rely on simplified
interaction assumptions, LLMs capture complex interaction motifs—including
non-canonical base pairings and contextual structural cues—often missed by
energy-based or graph-based approaches. By leveraging deep contextual embed-
dings, these models can infer interaction probabilities based on sequence patterns
and latent structural signals, offering a flexible, data-driven strategy for ncRNA
interaction prediction that is advantageous when structural annotations are in-
complete or lacking.

We propose a method for predicting interactions between miRNAs and var-
ious ncRNAs—namely long non coding RNAs (lncRNAs), micro RNAs (miR-
NAs), and small nucleolar RNAs (snoRNAs)— that leverages deep sequence
embeddings generated by the transformer based model RNA-FM [4]. RNA-FM
is a foundational encoder-only model pre-trained using self-supervised learning
on a vast collection of over 23 million non-coding RNA sequences, capturing
sequential and evolutionary features without relying on annotated data. In our
approach, RNA-FM embeddings are pooled using two strategies—maximum and
average pooling (evaluated both independently and in combination)—to extract
robust representations from RNA sequences. These pooled features are then used
to train a feed-forward neural network (FFNN) for classifying potential interac-
tions, offering a framework for uncovering novel regulatory relationships in the
ncRNA realm. By bypassing the need for explicit thermodynamic parameteriza-
tion and manually crafted features, this design presents a scalable and efficient
approach for identifying novel regulatory interactions [6].

2 Methods

2.1 Dataset

Our dataset comprises a curated selection of multispecies ncRNA interaction
pairs extracted from RNA-KG [3]6. In this work, we focus on miRNA interac-
tions (miRNA–lncRNA, miRNA–miRNA, and miRNA–snoRNA), as detailed in
Tables 1 and 2.
6 RNA sequences and interacting pairs were retrieved using scripts provided at

https://github.com/AnacletoLAB/RNA-KG; we kept pairs where we successfully
obtained the RNA sequences for both interacting molecules.
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To comply with the constraints of the ncRNA Language Model (RNA-FM [4]),
in our pipeline we retained only those molecules with a sequence length of at
most 1022 nucleotides. After filtering, the datasets comprise a total of 13104
unique interaction pairs and 4374 unique sequences.

For notational convenience, we define the set of length-filtered molecules as
R = {ri}, i = 1, . . . , |R|, and a mapping ϕ : R → T , where
T = {miRNA, lncRNA, snoRNA} represents the types of ncRNA sequences
considered in our experiments. The identity of an interaction pair is determined
solely by its constituent molecules, independent of their order:(ri, rj) = (rj , ri),
and analogously, the interaction type is defined as (ϕ(ri), ϕ(rj)) = (ϕ(rj), ϕ(ri)).

Table 1: Distribution of miRNA interactions in the training set across three pro-
cessing stages. The table reports counts for miRNA–lncRNA, miRNA–miRNA,
and miRNA–snoRNA interaction couples. The “Initial couples (dataset)” pro-
vides the raw counts from the initial dataset. The “Filter for seq. length
(dataset)” displays the counts of the dataset after applying a nucleotide length
threshold, (< 1022 nucleotides). The “After data aug. (train/test set)” rows
show the increased counts resulting from data augmentation.
Couples/interaction types miRNA-lncRNA miRNA-miRNA miRNA-snoRNA
Initial couples (dataset) 81891 2132 1927
Filter for seq. length (dataset) 9058 2071 1975
Filter for seq. length (train set) 8152 1863 1777
Filter for seq. length (test set) 906 208 198
After data aug. (test set) 3624 832 792
After data aug. (train set) 32608 7452 7108

Table 2: Dataset unique sequences: counts of unique sequences across differ-
ent interacting couple types. For miRNA–lncRNA and miRNA–snoRNA pairs,
unique counts are reported separately for each partner (type1/type2). For
miRNA–miRNA interactions, sequence uniqueness is computed on the entire
set of interacting sequences, as the same set serves for both partners. The “Ini-
tial unique seq.” lists the counts prior to any filtering, while the “Filter for seq.
length” shows the counts after applying a nucleotide length threshold (< 1022).

Unique Sequences/types miRNA-lncRNA miRNA-miRNA miRNA-snoRNA
Initial unique seq. 4004/4251 1322 428/553
Filter for seq. length 1343/730 1322 427/552

2.2 Data Augmentation and generation of negative interactions

We adopt a data augmentation strategy that increases the effective size of the
training set by a factor of four. For each original training instance represented
as (ri, rj) we generate three additional instances:

1. Molecule Order Reversal: Swap the order of molecules, yielding: (rj , ri)
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2. Sequence Flipping: Reverse the nucleotide order in each molecule, denoted
by the superscript F : (rF

i , rF
j )

3. Combined Augmentation: Apply both order reversal and sequence flip-
ping: (rF

j , rF
i )

Thus, if the original dataset comprises N instances, the augmented dataset con-
tains Naug = 4N. This approach introduces invariance to both molecule order
and sequence orientation, enhancing the model’s ability to capture underlying
biological patterns and improving robustness against input variability. Sequence
flipping is a common data augmentation strategy in protein language models [11].
Initial experiments with validation sets indicated that this augmentation scheme
substantially improves performance.

Negative Interactions. Since our dataset includes only validated “positive” miRNA
interactions, we generate negative examples by assuming that any pair of distinct
ncRNA sequences not observed as a positive interaction can be a valid negative
candidate.

Let R = {r1, r2, . . . , rN } denote the set of unique ncRNA sequences. Define
the set of known positive interactions as

P = {(ri, rj) | an interaction between ri and rj is observed}.

Then, the complete set of possible ncRNA pairs (excluding self-interactions) is
given by R × R, and the set of potential negatives is

Npotential = {(ri, rj) ∈ R × R | ri ̸= rj} \ P.

Negative Sampling. For each positive interaction pair (ri, rj) with type (ϕ(ri), ϕ(rj)),
we retain ri and replace rj by sampling a candidate r′ ∈ R that satisfies:

r′ ̸= ri, ϕ(r′) = ϕ(rj), (ri, r′) /∈ P.

For each positive instance, a parameter n controls the number of negative sam-
ples generated, to control the imbalance of negative vs positive examples. In
our experiments we set n = 20, in order to partially reproduce the imbalance
between negative and positive interactions in real data.

2.3 Model Architecture

Our model is implemented as a two-stage pipeline (see Figure 1). In the first
stage, ncRNA sequences are converted into dense representations (embedded
sequences) using a pre-trained ncRNA language model (RNA-FM). These rep-
resentations are then aggregated and fed into a feed-forward neural network
(FFNN) to predict interaction probabilities.

RNA-FM Overview. RNA-FM is based on a transformer architecture and was
pre-trained on millions of ncRNA sequences using a self-supervised learning
paradigm [4]. The model comprises 12 bidirectional encoder layers with multi-
head self-attention, where each token is embedded into a vector of dimension
H. For an RNA sequence of length L, an initial embedding layer converts each
nucleotide into a vector in RH , resulting in an L × H representation.
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Fig. 1: miRInter-Trans architecture schema. In the first stage, a pre-trained
ncRNA language model (RNA-FM) transforms ncRNA sequences into dense,
embedded representations. These RNA-FM embeddingsembeddingsMN are sub-
sequently aggregated and processed by a feed-forward neural network to compute
interaction probabilities.

Tokenization and Feature Extraction. The tokenization strategy is designed to
capture the intrinsic properties of RNA sequences. Each nucleotide is mapped
directly to a token. The transformer processes these tokens and outputs a matrix
X ∈ RL×H , where the i-th row xi is the latent representation of the i-th token.
To derive a fixed-length sequence embedding, we consider two pooling methods:

eavg = 1
L

L∑
i=1

xi, emax = Lmax
i=1

xi.

These can be used individually or concatenated:

e = [eavg; emax] ∈ R2H .

To train and evaluate ncRNA pairs, the pooled embeddings from each molecule
are concatenated, resulting in a vector of dimension 2H (or 4H if both pooling
methods are combined).

Downstream Prediction. The concatenated embeddings serve as input to the
FFNN, which outputs a classification label and an interaction probability. The
choice of H depends on the specific ncRNA language model employed; RNA-
FM [4] uses H = 640.

The FFNN consists of 4 layers, each with a hidden dimension of 1024. The
FFNN processes the embedded features through successive linear transforma-
tions interleaved with non-linear activations, with the learning goal of discrimi-
nating between interacting and non-interacting ncRNA pairs.
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Mini-batch balancing. To mitigate class imbalance, our training strategy con-
structs mini-batches that incorporate a controlled mix of positive and negative
examples. Let D be the complete dataset with n examples, where P and N de-
note the sets of positives and negatives, with |P | = np and |N | = nn, respectively.
Each mini-batch B of size m is formed by randomly drawing mp positives (with
replacement) and mn negatives (without replacement), such that mp +mn = m.
The negative proportion is defined as

k = mn

m
,

so that k = 0.5 implies 50% of the mini-batch comprises negatives. Positive
samples are drawn with replacement due to their lower frequency, while nega-
tives are sampled without replacement to ensure wider coverage of the available
examples.

2.4 Experimental Setup

Data Splitting. We partition the dataset by assigning 90% for training and 10%
for testing. Within the training set, 80% is used for model training and 20%
for validation. The validation subset is employed for early stopping and for op-
timizing the classification threshold by maximizing the Matthews correlation
coefficient [10].

Training Parameters. Training is conducted with the following settings: a learn-
ing rate η = 5 × 10−4 with a warm-up phase lasting 4 epochs, followed by cosine
decay; 50 epochs with early stopping (patience of 10 epochs); batch size of 512;
dropout rate of 0.2; and the Adam optimizer minimizing a binary cross-entropy
loss. The network features a hidden dimension of 1024 across 4 layers. Balanced
batch sampling is implemented with each batch containing 70% negatives, and
an epoch is defined as one complete pass through the negative examples. These
hyperparameter choices were informed by initial validation performance, with a
preference for a simple architecture to ensure computational efficiency. Training
and validation loss trajectories are monitored to assess convergence and check
for overfitting.

3 Results and discussion

We evaluated miRInter-Trans on 3 different interaction prediction tasks, i.e.
miRNA-lncRNA, miRNA-miRNA and miRNA-snoRNA, using Area under the
receiver operating curve (AUROC) and Area under the precision-recall curve
(AUPRC) metrics. IntaRNA [9], originally developed to predict ncRNA and
mRNA interactions, was run on the same prediction tasks for a reference baseline.

Data augmentation was applied to both training and test sets. miRInter-
Trans was trained using 3 different pooling strategies:

– miRInter-Trans-concat: Embedded representations of the sequences are
obtained by concatenation of the average and max pooling of the amino acid
embeddings.
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Table 3: Comparison of AUROC and AUPRC results on the test set between
miRInter-Trans with a random baseline and IntaRNA for the prediction of
miRNA-lncRNA, miRNA-miRNA and miRNA-snoRNA interactions.

Method AUROC
miRNA-lncRNA miRNA-miRNA miRNA-snoRNA

Random baseline 0.500 0.500 0.500
miRInter-Trans-concat 0.859 0.547 0.870
miRInter-Trans-AVG 0.903 0.809 0.906
miRInter-Trans-MAX 0.859 0.559 0.826
IntaRNA 0.571 0.632 0.66
Method AUPRC

miRNA-lncRNA miRNA-miRNA miRNA-snoRNA
Random baseline 0.047 0.047 0.047
miRInter-Trans-concat 0.170 0.054 0.231
miRInter-Trans-AVG 0.255 0.227 0.350
miRInter-Trans-MAX 0.166 0.055 0.166
IntaRNA 0.051 0.123 0.100
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Fig. 2: Results for miRNA-lncRNA average pooling. (a) Overall precision recall
curve (PRC) on the validation set; (b) Training and validation loss across epochs;
(c) Distribution of the miRInter-Trans predicted probabilities on negative and
positive examples on the test set; (d) Precision recall curve (PRC) on the test
set; (e) Confusion matrix on the test set; (f) Receiver operating curve (ROC) on
the test set.

– miRInter-Trans-AVG: Average pooling is applied to represent ncRNA
sequences.

– miRInter-Trans-MAX: Max pooling is applied to represent ncRNA se-
quences.
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A random baseline, which represents the expected performance of a random
classifier, is also included in Table 3. The AUPRC of the random baseline method
is given by: N+

N++N−
where N+ is the number of positive samples, and N− is

the number of negative samples. Given a positive-to-negative ratio of 1:20, the
random baseline AUPRC is: 1

1+20 = 1
21 ≈ 0.0476.

These results show that miRInter-Trans-AVG achieves the best performance
for all the interaction prediction tasks for the two metrics under consideration
(Wilcoxon rank-sum test, α = 10−5). miRInter-Trans-concat and miRInter-
Trans-MAX outperform IntaRNA on miRNA-lncRNA and miRNA-snoRNA pre-
diction tasks, but IntaRNA performs better on miRNA-miRNA predictions.

The poor results of IntaRNA on miRNA-lncRNA and miRNA-snoRNA in-
teractions are probably due to the fact that this method has been designed to
predict ncRNA-mRNA interaction in bacteria, while our dataset includes a larger
set of ncRNA interactions, involving also eukaryotic ncRNA. Fig. 5, 6, 7 pro-
vide results about IntaRNA predictions for each considered miRNA interaction
prediction task.

Detailed results obtained by miRInter-Trans-AVG on each of the consid-
ered miRNA interaction prediction tasks are available in Fig. 2, 3, 4, including
precision-recall curves (PRC), receiver operating curves (ROC), confusion ma-
trices, training and validation loss curves, and distribution of predicted probabil-
ities for positive and negative examples. These results allow to identify potential
issues for further experimentation and improvement, such as the high ratio of
negative predictions for the miRNA-miRNA prediction task and the significant
volume of false negatives for the miRNA-snoRNA task.

However, the obtained results show that miRInter-Trans can successfully
predict miRNA interactions, achieving AUROC above 0.8 for the prediction of
different types of miRNA interactions with miRInter-Trans AVG.

In practical applications, false positives (FP) may lead to the waste of ex-
perimental resources on ncRNA pairs that do not interact, while false nega-
tives (FN) risk overlooking genuine regulatory relationships. For example, an
FP miRNA–lncRNA call could prompt costly pull-down assays without yield-
ing a true binding event, and an FN could exclude a critical regulatory axis
from downstream functional studies. To mitigate this, we recommend calibrat-
ing the decision threshold to prioritize either sensitivity or precision depending
on the context: for target discovery pipelines, a higher sensitivity may be pre-
ferred (lower threshold), whereas for validation-driven workflows, higher preci-
sion (higher threshold) will reduce experimental burden [5].

We plan to train the model also with other types of ncRNA interactions, using
data available from large databases such as RNAInter [8] and RNAcentral [15]. A
limitation of our approach is the maximum length of the allowed input sequence,
which is due to the constraints of the underlying RNA-FM model. We also plan
to explore new pooling strategies, since max and average pooling may overly
compress the RNA-FM embedding matrices. Further, we will experiment with
alternative classifiers beyond the current feed-forward neural network applied to
pooled embeddings.

In perspective, experiments with other RNA foundation models (e.g. Gen-
erRNA [22] or RNAErnie [20]), could circumvent this limitation, allowing us
to obtain embedded representations of longer ncRNA, and thus extending the
applicability of our proposed approach to a broader ncRNA context.
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Fig. 3: Results for miRNA-miRNA average pooling. (a) Overall precision recall
curve (PRC) on the validation set; (b) Training and validation loss across epochs;
(c) Distribution of the miRInter-Trans predicted probabilities on negative and
positive examples on the test set; (d) Precision recall curve (PRC) on the test
set; (e) Confusion matrix on the test set; (f) Receiver operating curve (ROC) on
the test set.
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Fig. 4: Results for miRNA-snoRNA average pooling. (a) Overall precision recall
curve (PRC) on the validation set; (b) Training and validation loss across epochs;
(c) Distribution of the miRInter-Trans predicted probabilities on negative and
positive examples on the test set; (d) Precision recall curve (PRC) on the test
set; (e) Confusion matrix on the test set; (f) Receiver operating curve (ROC) on
the test set.
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Fig. 5: Results for miRNA-lncRNA IntaRNA classification. (a) Precision recall
curve (PRC) on the test set; (b) Receiver operating curve (ROC) on the test set.
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Fig. 6: Results for miRNA-miRNA IntaRNA classification. (a) Precision recall
curve (PRC) on the test set; (b) Receiver operating curve (ROC) on the test set.
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Fig. 7: Results for miRNA-snoRNA IntaRNA classification. (a) Precision recall
curve (PRC) on the test set; (b) Receiver operating curve (ROC) on the test set.
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