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ABSTRACT
Background

Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow
precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide
range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning
classification of COVID-19 clinical outcomes has rarely been tested.

Methods

We present a method for computationally modelling PASC phenotype data based on electronic healthcare records (EHRs)
and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a



nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient
similarity that can be clustered using unsupervised machine learning.

Findings

We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including clusters with
distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with broad, severe
manifestations and increased mortality. There was significant association of cluster membership with a range of
pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from other healthcare
centres to clusters by maximum semantic similarity to the original patients, and showed that the clusters were
generalisable across different hospital systems. The increased mortality rate originally identified in one cluster was
consistently observed in patients assigned to that cluster in other hospital systems.

Interpretation

Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for natural history or
therapy studies on PASC.

Funding

NIH (TR002306/0T2HL161847-01/0D011883/HG010860), U.S.D.O.E. (DE-AC02-05CH11231), Donald A. Roux
Family Fund at Jackson Laboratory, Marsico Family at CU Anschutz.

KEYWORDS

Long COVID, PASC, COVID-19, semantic similarity, machine learning, precision medicine, Human Phenotype
Ontology

RESEARCH IN CONTEXT

Evidence before this study: Previous studies demonstrated that a substantial fraction of those infected with SARS-CoV-2
go on to develop long COVID. Current evidence is insufficient to determine whether distinct subtypes of long COVID
exist.

Added value of this study: We describe an unsupervised machine learning method that uses semantic similarity of
phenotype data to stratify long COVID patients into clusters. These clusters correlate with pre-existing comorbidities,
markers of clinical severity of COVID-19, and mortality in the post-acute long COVID-19 period.

Implications of all the available evidence: This study demonstrates the existence of subtypes of long COVID that differ
with respect to clinical outcome and pre-existing clinical features. This demonstrates the feasibility of stratifying long
COVID patients and provides a foundation for characterising the natural history of long COVID and developing precision
clinical management strategies.

INTRODUCTION
Hundreds of millions of cases of acute Coronavirus disease 2019 (COVID-19) have been recorded since the beginning of

the pandemic, and more than six million deaths had been reported by the World Health Organisation (WHO) by the end of
March, 2022 (1). The clinical presentation of COVID-19 ranges from asymptomatic infection to fatal disease, with many
patients continuing to have heterogeneous, long-term, multi-system symptoms including fatigue, post-exertional malaise,
dyspnea, cough, chest pain, palpitations, headache, arthralgia, weakness (asthenia), paresthesias, diarrhoea, alopecia, rash,
impaired balance, and memory or cognitive dysfunction (2,3). Although there is still no detailed and widely accepted case
definition, post-acute sequelae of SARS-CoV-2 infection (PASC, long-haul COVID or long COVID) generally refers to a
range of persistent or new symptoms beyond three or four weeks of the initial infection (4-7). The NIH REsearching
COVID to Enhance Recovery (RECOVER) Initiative program defines PASC as ongoing, relapsing, or new symptoms, or
other health effects occurring after the acute phase of SARS-CoV-2 infection (i.e., present four or more weeks after the
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acute infection). The WHO has developed a case definition of “post COVID-19 condition” suggesting that the syndrome
is usually diagnosed several months after the onset of acute symptoms of COVID-19 based on new-onset or lingering
symptoms (e.g., fatigue, dyspnea, cognitive dysfunction) which cannot be explained by an alternative aetiology and which
continue for at least two months (8). In this work, we will use the term long COVID to refer to patients given a diagnosis
using the newly introduced ICD-10 U09.9 code (“Post COVID-19 condition”). Although presumably only a small subset
of all individuals with PASC are identified by this code, we chose to focus on it since it marks patients diagnosed with
PASC by a physician.

Our understanding of the natural history of long COVID is still incomplete. Limited emerging evidence suggests the
existence of clinical subtypes or clusters characterised by the predominance of symptoms such as pain or cardiovascular
manifestations, or by a paucity of symptoms (9). However, computational methods to characterise long COVID subtypes
based on comprehensive phenotypic analysis are lacking, as are approaches to assess the generalisability of the resulting
clusters across different patient cohorts. In this study, we constructed a cohort of 6,469 patients diagnosed with long
COVID using the U09.9 code from multicentre electronic health record (EHR) data available through the National
COVID Cohort Collaborative (N3C), a harmonised EHR repository with 5,434,528 COVID-19 positive patients as of
August 10, 2022. Previous work mapped 287 unique clinical findings previously reported in studies of long COVID (10)
to the Human Phenotype Ontology (HPO), which is widely used to support differential diagnosis and translational
research in human genetics (11,12). Here, we introduce an approach that calculates the semantic similarity between
patients by transforming EHR data to phenotypic profiles using the HPO. The method identifies distinct clusters of long
COVID patients that show highly significant correlations with pre-existing conditions and generalise across different
hospital systems.

METHODS

Ethics

The N3C data transfer to NCATS is performed under a Johns Hopkins University Reliance Protocol #IRB00249128 or
individual site agreements with NIH. The N3C Data Enclave is managed under the authority of the NIH; information can
be found at https://ncats.nih.gov/n3c/resources.

Setting

We obtained patient data from the National COVID Cohort Collaborative (N3C; covid.cd2h.org). N3C aggregates and
integrates EHR data across multiple clinical organisations in the United States, including the Clinical and Translational
Science Awards (CTSA) Program hubs. N3C harmonises EHR data across four clinical data models and provides a unified
analytical platform in which data are encoded using version 5.3.1 of the Observational Medical Outcomes Partnership
(OMOP) common data model (13).

Cohort

The Centers for Disease Control (CDC) announced an International Classification of Diseases, version 10 (ICD-10) code
(U09.9) for emergency/provisional use in the United States of America on June 30, 2021. The code represents Post
COVID-19 condition, unspecified. Use of the code was approved for implementation effective October 1, 2021. The code
should be used for patients with a history of probable or confirmed SARS CoV-2 infection who are identified with a
post-COVID condition. The data freeze date was August 10, 2022 (v87 release). Only patients with an initial COVID-19
diagnosis within the Enclave were included in the cohort. At the time of the data freeze for this analysis, 38 participating
data partners were using the code, and a total of 20,532 patients were coded in this way.

Human Phenotype Ontology (HPO)
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The HPO is a rich representation of the diversity of phenotypic features associated with human disease and is the de facto
standard for the computational analysis and exchange of phenotype data in human genetics (11,14—-18). The HPO
comprises over 16,000 terms that denote specific phenotypic abnormalities at increasingly specific granularity, for
example, Atrial septal defect (HP:0001631) and Interrupted inferior vena cava with azygous continuation (HP:0011671).
We recently identified 287 unique clinical findings reported in cohorts of patients with long COVID and mapped them to
existing HPO terms and in some cases created new HPO terms to cover COVID-specific features such as
Pseudo-chilblains on toes (HP:0034036) (10). The 2022-08-11 release of the HPO was used in our study.

Mapping OMOP codes to HPO terms

To obtain mappings between standard OMOP condition concept identifiers and HPO concepts, we used OMOP20OBO
(https://github.com/callahantiff/f  OMOP20BQO) and LOINC2HPO (19,20). The OMOP20BO algorithm was developed to
generate mappings between clinical vocabularies in the OMOP common data model and eight Open Biomedical Foundry
ontologies (21) spanning diseases, phenotypes, anatomical entities, organisms, chemicals, vaccines, and proteins. Using
this algorithm, a large-scale set of mappings have been developed, which includes 92,367 conditions, 8,615 drug
ingredients, and 10,673 measurement results (20). For this project, we filtered the v1.0.0 release of mappings to only
include exact 1:1 mappings at the concept level. This mapping set aligned 4,767 OMOP concept IDs to 3,804 unique HPO
concepts (1.25 OMOP concept IDs/HPO concept). To apply LOINC2HPO mappings from OMOP to HPO concepts, we
reimplemented the LOINC to HPO mappings in the N3C Enclave. For any HPO term that was among the 287 HPO terms
associated with long COVID, we determined for each patient in our study group the LOINC codes present in the
measurement OMOP table determined to be 'low', 'high', or 'positive' compared to the reference range for the test in
question, and assigned the HPO term to the patient if the test occurred during the long COVID period for that patient
(starting 28 days after diagnosis of acute COVID-19 for outpatients, and 28 days after hospitalisation for inpatients).

Specificity-weighted fuzzy phenotype matching

We previously developed a method called Phenomizer for clinical diagnostics that uses the semantic structure of the HPO
to weight clinical features on the basis of specificity and to identify those clinical features that best distinguish among the
top candidate differential diagnoses (22). The algorithm represents the clinical specificity of a finding as the information
content (IC) of a term. Given a set of diseases of interest in the differential diagnosis process, the frequency of each HPO
term is defined as the proportion of diseases in a database that are annotated by the term or any of its descendent terms
(for instance, the HPO resource currently comprises 8,260 Mendelian diseases) (12). The IC is then defined as the
negative natural logarithm of the term frequency (23). The annotation propagation rule applies to all terms in the HPO.
That is, if a disease is annotated to the term ¢, it is implicitly annotated to all ancestors of ¢ recursively (for instance,
Marfan syndrome is annotated to Aortic root aneurysm (HP:0002616), and it is therefore implicitly annotated to the parent
term Thoracic aortic aneurysm (HP:0012727) and its parent term Aortic aneurysm (HP:0004942), and so on. Thus, the IC
of terms increases as we move from the root term of the HPO ontology to the more specific descendent terms.

To define the similarity between any two HPO terms t, and t ,» We find the most specific common ancestor of t) and t,
in the HPO hierarchy, which we call the Most Informative Common Ancestor of t, and t, M1 CA(tl, tz) . We calculate
its IC as IC (MICA(tl, tz)). In essence, this procedure leverages the ontological structure of the HPO to perform
specificity-weighted fuzzy matching.

In the Phenomizer algorithm, the similarity between a set of query terms (symptoms, signs, etc.) entered by a physician
for an individual case is used to calculate a similarity score for each of the diseases in the HPO database as an aid in
differential diagnosis. In the current work, we adapt this algorithm to implement semantic phenotypic-based clustering by
using the Phenomizer framework to calculate a matrix of pairwise phenotypic similarities between all patients in the long
COVID cohort. In the following, we represent the set of n long COVID patients as PyDy-p, € P. The set of m HPO

terms associated with patient i is represented as tmt €D Then the similarity from patient p,to P, is calculated as
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This equation is not symmetric, so the final similarity score is calculated as

sim(pi, pj) = 0.5 x sim(pi - pj) + 0.5 x sim(pj - pi).

k-means clustering

For n patients, we calculated a similarity matrix X" using the Phenomizer algorithm. We then applied k-means
clustering to partition the patients into ¢ clusters, denoted C v c - C E where C ; 1s the set of n, objects in cluster i and c is

the number of clusters (a user-chosen hyperparameter). Using a previously described method, we chose ¢ cluster centroids
such that centroids were distant from one another (24). Clusters were then formed iteratively such that the Euclidean
distance between the vector that represents any object and the centroid vector of its cluster was at least as small as that
between the object and any of the other clusters. In each iteration, objects were moved to the cluster with the closest
centroid, following which the centroids were recalculated until no further improvement was obtained or the maximum
number of 100 iterations was reached (25).

We used the elbow method to choose a suitable number of clusters, as k&-means clustering does not provide this value. The
elbow method computes the total within-cluster sum of squares error (SSE) for each candidate number of clusters. The
SSE is plotted against the number of clusters and an ‘elbow’ in the curve is used to determine the number of clusters.

Statistics

Assessing cluster reproducibility between data partners

We first performed clustering on patients from the data partner with the greatest number of U09.9 long COVID patients.
To maintain data privacy, we refer to this as data partner 1. We then assessed reproducibility of clustering results in data
partners 2-6 (hereafter referred to as test data partners) as explained below. This approach was chosen given the inherent
challenge owing to the lack of a generally applicable method for assessing any given clustering approach (26-28). The
HPO terms for patients from data partner 1 and their assignment to k-means clusters were recorded. We reasoned that if
the clustering results in data partner 1 are generalizable, then patients of the test data partners will tend to display more
similarity to one or other cluster of data partner 1 than one would expect by chance. To this end we introduce a similarity
measure s between a patient p and cluster C of patients that assesses the average similarity of patient p to all patients in
cluster C:

s(p,C) = mean,_ . (sim(p, q))

Assuming we have k clusters from data partner 1, then a weighted similarity vector can be calculated for each patient p

from a test data partner as [s L

) S e sk]/z S where the index refers to the cluster. In other words, s, = s(p, C i) is the
i

similarity between between the test patient p and the cluster C - If the patient is equally similar to each of the k clusters,

then §, =5, =5, = 1/k. If, on the other hand, the patient is much more similar to one of the clusters, say cluster i

, then we expect s, >> S for j # i will be larger. We therefore define the test statistic S .= maxs, for patient p. To

assess generalizability, we calculate S for each patient p in the test data partner and take the mean value of S

between a random 10% sample of patients in the test data partner and a random 10% sample of patients from data partner
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1 as our test statistic S To generate a null distribution of this statistic, we create 1,000 permuted cluster assignments

by assigning a random 10% sample of patients from data partner 1 uniformly at random to one of the k clusters. We
compute the test statistic for each of these random cluster assignments as described above and record the mean, p, and

standard deviation, o, of these values. We present the results as a z score calculated as z = (x — p)/o, where x = s -

Note that this procedure does not cluster patients from the test data partners. Instead, it calculates similarities of patients
from the test data partners to the clusters defined in data partner 1.

Assessing covariate distribution

The HPO terms assessed in the above procedures were derived from clinical data at least 28 days after the initial bout of
COVID-19. We analysed additional clinical covariates covering items such as comorbidities and medications prior to and
during acute COVID-19 (Supplemental Tables S12-S13). Categorical variables were assessed with a chi-squared test if at
least five counts were present for each cell of the contingency table and numerical variables were assessed with one-way
ANOVA. Analysis was done using R version 3.5.1.

Post hoc testing

To improve the informativeness of the cluster descriptions, post hoc tests were conducted to detect differences in the
distribution of covariates deemed as significantly different between clusters by the chi-squared test or one-way ANOVA.
Pairwise chi-squared tests with Bonferroni correction were performed for categorical covariates (to assess which specific
category distributions are significantly different from the others), while non-parametric Dunn’s test with Bonferroni
correction was used for numeric covariates to assess which means are significantly different from the others (29). To
summarise the results, the Compact Letter Display (CLD) method (30) was used.

Role of the Funding Source

The funders had no role in study design, data collection, analysis, interpretation, writing of the report, or in the decision to
submit for publication.

RESULTS

A cohort of patients diagnosed with PASC

As of August 10, 2022, the N3C platform (“Enclave”) contained data for 5,434,528 patients diagnosed with acute
COVID-19, and 38 data partners had begun to use the newly introduced ICD-10 diagnosis code U09.9 for use in US
hospitals to denote Post COVID-19 condition. These 38 data partners provided data for 20,532 patients with this diagnosis
(Figure 1). Phenotypic features observed in the post-acute COVID-19 period were mapped from OMOP codes to HPO
terms. The post-acute COVID-19 period was defined as starting 28 days after the earliest COVID-19 index date for
outpatients, and 28 days after the end of hospitalisation for inpatients. The COVID-19 index date for each patient was
defined as the earliest date of any positive PCR or antigen SARS-CoV-2 test or diagnosis with ICD-10 U07.1 (acute
COVID-19).
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n = 13,998,246
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Figure 1 Cohort construction. Patients with long COVID (U09.9 diagnosis) were extracted from the much larger dataset
of the N3C. Long COVID patients were selected from the six data partners that provided data for at least 300 U09.9
patients and had an average of at least 7 long COVID HPO terms per patient. The data partner with the most U09.9
patients (data partner 1) was chosen for clustering, and additional U09.9 patients from five other data partners (data
partners 2-6) were chosen to assess generalizability.

Phenotypic Clustering of Patients with long COVID

We hypothesised that consistent subgroups of patients with long COVID can be defined based on the spectrum of
phenotypic features in the patients’ electronic health records (EHR). Our previous analysis identified 287 clinical findings
previously reported in studies on long COVID and coded these findings using terms of the Human Phenotype Ontology
(HPO) (10,12). Numerous algorithms have been developed that define a fuzzy, specificity-weighted similarity metric
between a patient and a computational disease model or between pairs of patients (31-34). Here, we adapted an algorithm
called Phenomizer that calculates semantic similarity between a pair of patients based on their phenotypic features
(Methods) (22). Common clustering methods define feature vectors with one field for each measured quantity. In
principle, one could define a feature vector with 287 dimensions, one for each of the clinical findings related to long
COVID, and for each clinical finding identified in a patient, a “1” would be placed in the corresponding field of the
vector, otherwise a “0”. Patient similarity could then be measured by calculating the cosine between any two such vectors,
which essentially counts the number of exact matches normalised by the total number of features in each vector. This
procedure would not capture the fact that some features are similar. For instance, although dyspnea and hypoxemia are
both abnormalities of respiratory physiology, they are represented by different fields in the feature vector and thus if one
patient was recorded to have dyspnea and another hypoxemia, this would not contribute to the similarity score. Another
drawback to a simple 0/1 feature vector for the 287 clinical findings would be that matches between more or less specific
findings would be weighted equally. The Phenomizer algorithm uses the structure of the ontological hierarchy to identify
partial matches between related clinical findings, and it leverages the information content of each term, which is a
measure of specificity, to weight the matches. The Phenomizer is thus a nonlinear mapping from the original feature space
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of clinical findings to a pairwise similarity matrix that implements a fuzzy, specificity-weighted matching strategy. The
resulting similarity matrix can be used as input to a number of clustering algorithms (Figure 2).
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Figure 2 Calculating patient semantic similarity based on HPO phenotypes. A) HPO terms are arranged in a directed
acyclic graph with specific terms such as Bradycardia (HP:0001662) being related to more general terms (here:
Arrhythmia; HP:0011675) by subtype relations. An excerpt of the entire ontology (15,247 terms) is shown. B) Example
showing a pair of patients with relatively high phenotypic similarity; for each of the HPO terms in patient 1, the best
match is sought in patient 2. If an exact match is not found, the algorithm searches for the most informative common
ancestor (MICA) in the ontology; the information content (a measure of specificity) of the exact matching term or most
specific ancestor term is calculated to determine the specificity. For instance, Visual hallucinations (HP:0002367) and
Auditory hallucinations (HP:0008765) are not an exact match, so the information content of their MICA Hallucinations
(HP:0000738) is chosen. Hallucinations (HP:0002367) is still relatively specific (and shown in grey), while the MICA of
Angina pectoris (HP:0001681) and Hypotension (HP:0002615) is more general (shown in red) and contributes less to the
matching score. C) Example of a pair of patients with a relatively lower similarity due to (specific) fewer exact matches

and one unmatched term. The pairwise similarity is calculated in this way for all pairs of patients to construct the



similarity matrix that is used for clustering (Figure 3).

To leverage this procedure for analysis of N3C data, we mapped the 287 long COVID-associated HPO terms (10) to
corresponding Observational Medical Outcomes Partnership (OMOP) codes (13) (see Methods). Of these, 116 terms were
identified in the data (Supplemental Tables S1-S11). The terms not found in the data largely were clinical or
patient-reported features that are not commonly represented in EHR data, such as Centrilobular ground-glass
opacification on pulmonary HRCT (HP:0025180) or Ocular pruritus (HP:0033841), and were not included in further
analyses.

We selected data partners that provided at least 750 U09.9 patients and an average of at least five HPO terms per patient
(Figure 1). This threshold was chosen to include data partners with a sufficient number of patients with a sufficient depth
of phenotypic information available in EHR data to assess patient similarity. For clustering, we selected U09.9 patients
from the data partner (referred to here as data partner 1, as data regulations disallow use of real data partner names or IDs)
that supplied data for the greatest number of U09.9 patients (2256 patients with at least one long COVID HPO phenotypic
feature). For assessment of the generalizability of the clusters to other data partners, we selected the remaining U09.9
patients who had at least one long HPO phenotypic feature from the remaining data partners (referred to here as data
partners 2-6, again due to data regulations) (4213 patients). We calculated the frequency with which each term was used in
the total group of 2256 patients from data partner 1 and used this value to determine the information content (a measure of
specificity; see Methods) for each term.
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Figure 3. Patient similarity matrix illustrating long COVID subtypes in data partner 1. A heatmap representing the 6
clusters created by k-means clustering is shown. Cluster hierarchy was calculated using the nearest point algorithm and

Euclidean distance.

In order to calculate pairwise phenotypic similarity of patients at data partner 1 for clustering, we leveraged the
Phenomizer algorithm to calculate a 2256 x 2256 similarity matrix for the 2256 patients with at least one HPO term at
data partner 1. K-means clustering was applied to the data and the number of clusters was determined to be 6 based on
visual inspection of the ‘elbow’ curve (Figure 3; Supplemental Figure 1). We note that although the determination of
cluster number by this method is subjective, the major findings were similar with 4 or 5 clusters (Supplemental Figure

S2-S3).
Feature Overall Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
n 2256 262 491 334 250 500 419
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89 (34.0%) 103 (21.0%) 55(16.5%) 38 (15.2%) 89 (17.8%) 66 (15.8%)

Inpatient™* 440 (19.5%) a b b b b b
57.7+15.0 551+171 519+169 51.7+16.1 521+17.8 50.2+15.2
age - mean + SD** 53.0+16.7 a a b b b b
141 (53.8%) 268 (54.6%) 211 (63.2%) 165 (66.0%) 306 (61.2%) 312 (74.5%)
Female** 1403 (62.2%) a a a ab a b
1787 (79.2%) 207 (79.0%) 398 (81.1%) 281 (84.1%) 204 (81.6%) 377 (75.4%) 320 (76.4%)
White Non-Hispanic* ab ab a ab b ab
Black or African
American
Non-Hispanic 109 (4.8%) <20 20 (4.1%) <20 <20 22 (4.4%) 25 (6.0%)
Other/Unknown 360 (16%) 43 (16.4%) 73 (14.9%) 40 (12%) 29 (11.6%) 35(12.8%) 74 (17.7%)

Table 1. Characteristics of the study population in data partner 1. For the overall study population and for each
cluster, age, gender, and race/ethnicity are shown. Data for characteristics for which there were fewer than 20 patients, and
data about race/ethnicities for which there were fewer than 20 patients overall (Other Non-Hispanic, Native Hawaiian or
Other Pacific Islander Non-Hispanic, Asian Non-Hispanic) are not shown to reduce the risk of patient re-identification.
**p < 0.001 by one-way ANOVA (age) or chi squared test (all others). *p < 0.05 by chi squared test. We applied post-hoc
tests on categorical and numeric variables that were significant by omnibus tests. For categorical variables, we computed
pairwise chi-square tests while we used Dunn’s test (35) for numerical variables. Bonferroni correction was performed in
both cases. The results of adjusted pairwise comparisons are summarised using Compact Letter Display (CLD). The CLD
method uses letters to mark groups for which the differences were not statistically significant (details in Supplemental
Figure S14). For instance, a cluster marked “a” is significantly different from a cluster marked “b” but not from another

[3PSL)

cluster marked “a” or “ab”.

Characterization of PASC Clusters

We characterised the features of each of the six clusters with respect to age, gender, and race/ethnicity (Table 1). The six
clusters contained between 250 and 500 patients, and differed significantly with respect to rate of hospitalisation, age,
gender, and ethnicity. Results of post-hoc analysis (see Table 1 and additional details in Supplementary Tables S14-S17)
found statistically significant differences suggesting that Cluster 1 contains a larger proportion of patients with acute
infection, Cluster 6 contains a larger proportion of females, Cluster 1 and Cluster 2 contain older patients, Cluster 3
contains a higher proportion of White non-Hispanic people, while Cluster 5 contains a lower proportion of White
non-Hispanic people (significant differences are shown in Table 1 using CLD notation).

To further characterise each of the six clusters, we identified HPO terms that tended to occur among patients in certain
clusters (Figure 4). Of the 287 HPO terms we identified as being used in published cohort studies on long COVID (10),
only 118 were identified in our data. The presence or absence of each of the 118 HPO terms used for clustering was
treated as a categorical variable whose distribution among the six clusters was assessed using a chi-squared test. Of the
118 HPO terms, 63 were significantly correlated with cluster membership following Bonferroni correction. Of these, 29

-5 . . .
terms had a corrected p-value of less than 10 ~ and were present in at least 20% of patients in one or more clusters. These
terms were therefore considered to be the features that best defined the clustering.

HPO terms were classified into these categories: cardiovascular, constitutional, endocrine, ear nose and throat (ENT), eye,
gastrointestinal, immunology, laboratory, neuropsychiatric, pulmonary, and skin. The constitutional category encompasses
symptoms and findings such as Fatigue (HP:0012378), Night sweats (HP:0030166), and Xerostomia (HP:0000217) that
cannot be unambiguously assigned to a single organ system. UpSet plots (36) were used to visualise the salient
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characteristics of each cluster according to these categories. UpSet visualisations show not only the most common
categories, but also the most common combinations of categories. For instance, in cluster 1, patients most commonly had
HPO terms from the categories pulmonary, neuropsychiatric, laboratory, constitutional, gastrointestinal, cardiovascular,
and ear nose throat (ENT), and pulmonary. Although there was some overlap in the distribution of features, the profiles of
terms and categories were distinct for the six clusters (Figure 4).

B. Cluster1 Cluster 2 Cluster 3
A. Overall *| |II |

= =

Cluster 4 Cluster 5 Cluster 6

Figure 4. Phenotypically characterising long COVID subtype clusters. Shown are the most frequently co-occurring
combinations of categories of HPO terms representing long COVID phenotypic features for patients in the overall cohort
(A) and for each of the 6 clusters (B). Only those categories are shown that were found to be significantly correlated with
cluster membership (chi-squared test). For the overall population of patients in data partner 1 and for each cluster, the
frequency of each category of long COVID HPO terms (left) and the frequency of the three most common combinations
of HPO categories (top) are shown. (Six combinations are shown for cluster 5 because of a tie.) Notably, most clusters
contain some widely shared features, but also distinguishing features such as symptoms in the pulmonary,
neuropsychiatric, and cardiovascular systems. Data are shown as UpSet plots, which visualise set intersections in a matrix
layout and show the counts of patients with the combination indicated by the black dots as bars above the matrix (36).
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Figure 5. Summary of phenotypic feature distribution in the six clusters. A. The HPO terms corresponding to
different phenotypic features are grouped in HPO categories shown on the left. Categories are colour-coded and are in the
same order as shown in panel B. Laboratory abnormalities are grouped together because of their association with severe
COVID-19 (see text). HPO terms are shown if at least 20% of patients in at least one cluster had the corresponding
phenotypic feature and if Pearson’s chi-squared test found a significant difference (p < 0.00001) in the phenotypic feature
distribution. B. Post hoc analysis of categories of long COVID HPO phenotypic features by cluster. For each category of
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Long COVID HPO phenotypic feature, we performed a post hoc analysis (pairwise chi-squared test with Bonferroni
correction) to assess differences between clusters. For each category, the percent of patients from each cluster that have at
least one HPO term in the given category are shown, and red and blue cells mark the CLD group having the highest and
lowest proportion, respectively. . Letters a-e indicate CLD groups between which differences for the given category are
statistically significant according to post hoc analysis (Methods).

The six PASC clusters differ with respect to frequencies of clinical manifestations

For ease of exposition, we refer to the six clusters according to the category or categories of the HPO terms showing the
highest degree of enrichment. We refer to cluster 1 as multisystem+lab, because patients in this cluster had a high
frequency of terms in the multiple categories: neuropsychiatric, pulmonary, constitutional, cardiovascular, gastrointestinal
and ENT (vertigo) as well as multiple laboratory abnormalities. Patients in cluster 2, which we refer to as the pulmonary
cluster, had high frequencies of Hypoxemia and Cough. We refer to cluster 3 as neuropsychiatric because of the relatively
high frequencies of the terms Headache, Insomnia, Depression, Sleep apnea, Abnormality of movement, and Paresthesia.
We refer to cluster 4 as cardiovascular because of the high frequency of Tachycardia, Palpitations, Hypoxemia, (and also
Pulmonary embolism, which because of the ontological structure of the HPO is a subclass of both the pulmonary and the
cardiovascular subhierarchies). Cluster 5 is referred to as the pain/fatigue cluster because of the relatively high frequencies
of Pain, Chest pain, and Fatigue. Finally, cluster 6 had a similar distribution of terms as cluster 1, but substantially lower
frequencies of the laboratory abnormalities. Cluster 6 had the highest frequency of Pain of any cluster. Therefore, we refer
to cluster 6 as the multisystem-pain cluster. Details are shown in Figure 5A, and the results of post hoc testing are shown
in 5B. For the latter, the proportion of patients in each cluster who had one or more of the manifestations in each category
was compared by pairwise chi-squared testing.

The multisystem-lab Cluster 1 is characterised by manifestations suggesting increased clinical severity

The clustering described above relied solely on HPO terms that represent phenotypic abnormalities identified 4 weeks or
more following COVID-19 diagnosis. We analysed the clusters for differences in the distribution of other variates. As
shown by post-hoc tests the multisystem-lab cluster contained a higher proportion of inpatients (34.0%) compared to any
other cluster and the mean age of 57.7 years was higher (see Table 1 and Supplementary tables S14-S17).

The multisystem-lab cluster showed a high frequency of post-acute COVID-19 laboratory abnormalities that have been
associated with severe course of acute COVID-19, namely, Lymphopenia (HP:0001888), Elevated circulating alanine
aminotransferase concentration (HP:0031964), Increased circulating ferritin concentration (HP:0003281), Elevated
circulating alkaline phosphatase concentration (HP:0003155), Hypocalcemia (HP:0002901), and Thrombocytopenia
(HP:0001873) (37-42). Further, post-hoc tests suggested that this cluster contains higher proportions of patients with
(either pre-existing and/or contextual to COVID-19) acute kidney injury (AKI, see tables 2 and 3) and steroid usage
(Table 3). This suggests that this cluster may represent patients with residual manifestations of more severe COVID-19
and/or long COVID manifestations, although severity cannot unambiguously be inferred from EHR data. Patients in
cluster 1 showed a higher mortality, a finding that was generalizable to other data centres (see below).

In the entire cohort, 61.2% of patients were female. In the multisystem-lab cluster characterised by a severe clinical
course, only 53.8% of patients were female. This was significantly different from the multisystem-pain cluster in which
74.5% of patients were female (See Table 1). Evidence available prior to our study suggests that sex differences exist that
influence the clinical course of COVID-19. For instance, although males are more likely to be hospitalised or die with
acute COVID-19, females are more likely to develop long COVID.(43)

The six PASC clusters differ with respect to pre-existing comorbidities
To investigate how clinical features before or during COVID-19 infection correlated with cluster membership, we
assessed the distribution across the six clusters of 44 clinical features determined prior to acute COVID-19 or during acute
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COVID-19. Of these, 13 displayed a statistically significant difference between clusters and are shown in Tables 2 and 3.
Among parameters that were present before acute COVID-19 (Table 2), 10 differed significantly between clusters, mainly
showing a higher frequency in the multisystem-lab cluster (as per post-hoc analysis). The risk of long COVID has been
shown to be associated with the number of comorbidities (44). These observations are consistent with the notion that the
multisystem-lab cluster is composed of patients with more severe clinical manifestations, and that there may be different
risk factors for clusters 2-6.

Post-hoc analysis also confirmed that covariates during acute COVID-19 whose frequencies were higher in the
multisystem-lab cluster included acute kidney injury (AKI) and corticosteroid medications that also may be proxies for a
severe clinical course (table 3). Severity of acute COVID has been associated with risk of persistent symptoms in some
studies (45). Although the frequency of depression as a pre-existing comorbidity was highest in the neuropsychiatric
cluster (Table 2), post hoc tests failed to find statistically significant differences when comparing it to the proportions of
pre-existing depression in the multisystem-lab and the multisystem pain clusters.

Pre-existing clinical cluster 1. cluster 2. cluster 3. cluster 4. cluster 5. cluster 6.
Feature multisystem-+lab pulmonary neuropsychiatric  cardiovascular pain/fatigue multisystem-pain
24.8% 8.1% 11.1% 9.2% 10.4% 7.9%
acute kidney injury a b b b b b
44.7% 28.7% 29.6% 30.8% 23.8% 33.9%
chronic lung disease a bc bc bc b ac
32.1% 21.2% 37.7% 16.4% 20.8% 37.0%
depression a b a b b a
28.6% 12.0% 8.7% 7.2% 10.2% 11.0%
diabetes (complicated) a b b b b b
diabetes 38.9% 20.4% 16.2% 17.2% 19.2% 21.0%
(uncomplicated) a b b b b b
60.7% 44.2% 40.4% 36.0% 36.2% 42.7%
hypertension a b b b b b
immunocompromised 14.9% 7.9% 7.5% 4.0% 2.4% 7.4%
(other) a ab ab bc c b
29.0% 12.0% 14.1% 9.6% 9.8% 12.6%
kidney disease a b b b b b
17.9% 5.5% 8.1% 6.4% 6.8% 9.5%
mild liver disease a b b b b b
peripheral vascular 14.1% 5.5% 5.1% 2.0% 5.0% 4.1%
disease a b b b b b

Table 2. Clinical features of patients before acute COVID-19 infection by cluster. The 10 of 45 clinical features
present before COVID-19 infection (Supplemental Table S12) that were significantly overrepresented in clusters (chi
squared p < 0.001 after Bonferonni correction) and the percent of patients in each cluster with each clinical feature are
shown. Letters a-c indicate CLD groups between which differences for the given pre-clinical feature are statistically
significant according to post hoc analysis (Methods).
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Clinical Feature during Cluster 1. Cluster 2. Cluster 3. Cluster 4. Cluster 5. Cluster 6.

COVID-19 multisystem+lab  pulmonary neuropsychiatric cardiopulmonary pain/fatigue multisystem-pain
14.5% 6.3% 4.2% 4.4% 4.8% 4.1%
acute kidney injury a b b b b b
30.2% 19.8% 14.1% 14.4% 15.4% 13.8%
corticosteroid regimen a b b b b b
COVID diagnosis during 34.0% 21.0% 16.2% 15.2% 17.6% 15.8%
hospitalisation a b b b b b

Table 3. Clinical features of patients during acute COVID-19 infection by cluster. The 3 of 43 clinical features present
during COVID-19 infection (Supplemental Table S13) that were significantly overrepresented in clusters (chi squared p <
0.001 after Bonferonni correction) and the percent of patients in each cluster with each clinical feature are shown. Letters
a and b indicate CLD groups between which differences for the given clinical feature are statistically significant according
to post hoc analysis (Methods).

Generalisability of clusters to new data partners

The results presented in the previous sections were generated with data from data partner 1. We assessed the
generalizability of the clustering results for four additional data partners (data partners 2-6, Figure 1) by comparing each
patient from these data partners to the patients in each cluster from data partner 1 and also to randomly permuted clusters
(Methods). If the clusters in data partner 1 did not generalise at all to other data partners, we would expect that patients
from other data partners would be equally similar to the patients of any of the clusters in data partner 1.

We observed that patients from data partners 2-6 were much more similar to clusters from data partner 1 compared to
randomly permuted clusters. The mean similarity ranged from 0.202 to 0.211 for test data partners 2-6 for the randomly
permuted clusters, but the observed mean similarities to the original clusters at data partner 1 ranged from 0.283 to 0.319,
corresponding to z-scores of 28.6 to 65. The mean similarity score for the randomly permuted clusters was never as high
as the observed score over 1000 permutations, corresponding to an empirical p-value of less than 0.001 for each of the
data partners 2-6. This strongly suggests that clusters identified in data partner 1 generalise to patients from other data
partners (Table 4).

Test Data Partner Similarity to permuted clusters Observed mean similarity Z-score Empirical p-value

2 0.211 + 0.0032 0.302 28.6 < 0.001
3 0.208 £ 0.0017 0.318 65.0 < 0.001
4 0.21 + 0.0026 0.319 42.6 < 0.001
5 0.202 + 0.0022 0.283 36.3 < 0.001
6 0.204 = 0.0022 0.294 40.5 < 0.001

Table 4. Generalisability of clusters in patients from new data partners. The similarity of patients from test data
partners 2-6 to patients in clusters made from data partner 1 clusters and to patients from randomly permuted clusters was
measured as in Fig 2. For each test data partner, a random 10% sample of patients from test data partner and data partner 1
was selected. The average similarity of its patients to the best matching randomly permuted cluster and to the best
matching cluster from data partner 1 are shown along with the Z-score and p-value. Results are representative of five
duplicate experiments with different random samples. The empirical p-value reflects the number of times that the
similarity of a permuted dataset was higher than that of the observed clusters (this never occurred).
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The multisystem-lab clusters is characterised by higher mortality reproducibly across data partners 1-6

Because of the indications that the multisystem-lab cluster may be characterised by greater clinical severity, we assessed
recorded mortality in the time period subsequent to acute COVID-19. We assigned patients from data partners 2-6 to the
original six clusters according to the maximum mean similarity of patients in those clusters (Methods). In these patients,
the majority of cases of recorded mortality occurred in patients assigned to clusters 1 (counts less than 20 are masked for
data privacy reasons). We performed a chi-squared test of the null hypothesis that the proportion of mortalities in the
clusters was uniform. The observed correlation between mortality and cluster membership was statistically significant for

the analysis of clustered patients in data partner 1 (p = 5 X 10_5) and in data partners 2-6 (p = 5 X 10_5) using a
Fisher’s exact test calculated by the Monte Carlo method with 100,000 permutations.

Cluster Data Partner 1 Data Partners 2-6
deaths total % deaths total %
1 - multisystem+lab 33 262 | 92 1490|8
2 - pulmonary <20 491|| <20 435
3 - neuropsychiatric <20 334(| <20 322||
4 - cardiovascular <20 2501 <20 539/}
5 - pain/fatigue <20 500 | 0 <20
6 - multisystem-pain <20 419/} <20 1312

Table 5. Recorded deaths according to cluster. Data partner 1 was the source of data for generating the six clusters.
Patients from data partners 2-6 were assigned to these clusters (Methods). Number of recorded deaths, total number of
patients, and percentage of patients with recorded death in each cluster are shown.

DISCUSSION

According to the WHO, approximately 10-20% of patients with COVID-19 may experience new-onset, lingering or
recurrent clinical symptoms after acute infection. This has been termed ‘post-acute sequelaec of SARS-CoV-2 infection’
(PASC) or long COVID. Definitions of long COVID in the literature vary, and the frequencies and time course of
phenotypic manifestations following acute COVID-19 are highly heterogeneous (10). This observation raises the question
of whether long COVID can be stratified into well delineated and reproducible subtypes, or whether the degree of
heterogeneity is so high that stratification is impossible. This is critically relevant for defining sub-cohorts in clinical
research studies such as the NIH program “Researching COVID to Enhance Recovery (RECOVER),” and for identifying
candidate therapeutics. ML clustering methods offer a data-driven approach to stratification of patients that can reveal
such subtypes in the face of this new and heterogeneous disease.

Evidence available prior to our study suggests that important clinical differences do exist that influence the susceptibility
to subsequent complications of COVID-19. For instance, although males are more likely to be hospitalised or die with
acute COVID-19, females are more likely to develop long COVID (43). It is possible that the pathophysiology of long
COVID may be multifactorial in origin. Conceivably, the biological underpinnings of long COVID may vary among
individuals as a function of baseline risk factors, resulting in different general phenotypes of long COVID, the treatment
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or prevention of which may need to be specifically tailored using precision medicine in order to achieve optimal
outcomes. As a first step, we sought to use unsupervised learning to delineate potential subtypes of patients with long
COVID with differing clinical characteristics. We identified six published studies that present clusters from either
patient-reported data (in four studies) or manually recorded clinical data (two studies) with cohorts of between 145 and
3762 patients. The studies report two or three clusters based on different types of input data, making study comparison
challenging. None of the studies were based on EHR data and no assessment of generalisability to other data partners was
presented (9,46-50).

Here we have presented a method for semantic clustering of long COVID patients based on HPO-encoded EHR data. We
further present a method for assessing generalisability of the identified subtypes or clusters across different data
contributing sites. Ontology-based algorithms differ from machine learning and other algorithms in many ways. Coding
numerical data with HPO implies that parameters are simplified into categories. Although this loss of numerical data
reduces precision in data granularity, simplification allows powerful simultaneous analysis of all phenotypic observations
using semantic similarity that can take the relatedness of concepts into account.

Our method for assessing patient-patient similarity using the Phenomizer algorithm generates an essentially continuous
similarity value from arbitrary sets of HPO terms that characterise any two patients. An alternative method would be to
encode the 287 HPO terms as a 287-dimensional feature vector and to measure similarity for example using dot product
(cosine) of these vectors. The Phenomizer algorithm has several advantages over the feature vector method: it does not
suffer from sparse count issues that may make clustering less robust (51), and it takes advantage of the similarity between
individual items using the structure of the HPO in a way that a feature vector cannot (22). This approach has proven
powerful both in the support of differential diagnosis of rare disease and in efforts to enable longitudinal analysis of EHR
data as a means of identifying gene-phenotype associations with Mendelian forms of epilepsy (52,53), but has never
before been applied in the context of infectious disease EHR data and methods for assessing generalisability have not
previously been presented.

We have shown that unsupervised learning based on semantic clustering identifies phenotypic profiles that are
reproducible across data partners with a high degree of statistical significance. The six clusters that emerged demonstrated
non-uniform frequencies of symptoms and clinical findings across an array of features, spanning constitutional/systemic
symptoms and pain, cardiac, respiratory, gastrointestinal, and neurologic symptom domains, with some degree of overlap
but clear distinctions between various groups. We interpret our multisystem-lab cluster as comprising patients with a
severe course of acute COVID-19 because of the higher hospitalisation rates (Table 1) and mortality (Table 3). It is
possible that this cluster represents a subtype of long COVID that results from severe acute COVID-19. Our findings
confirm and extend previous findings of a steeper risk gradient for long COVID manifestations that increases according to
the severity of the acute COVID-19 infection (54).

We suggest that analogous algorithms could be used to evaluate data gathered from prospective studies of long COVID
patients to extend and deepen our characterization of phenotypic clusters by including data that are currently difficult to
ascertain reliably from EHR data, including symptoms such as Asthenia (HP:0025406) or Exertional dyspnea
(HP:0002875) and radiology findings (which are typically not represented using structured fields in EHR data and are
underrepresented in OMOP datasets). The recently released Phenopacket Schema of the Global Alliance for Genomics
and Health (GA4GH) provides a standardised way to record clinical findings including phenotypic features,
measurements, biospecimens, and medical actions over the time course of a disease as a computational case report (55).
Recording clinical data with the Phenopacket Schema would promote data sharing and comparability of results from
different studies.

Study limitations
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While our study provides insight into the variability and natural history of long COVID, there are limitations that should
be considered. While the U09.9 code provides a simple inclusion criterion, its application in health systems across the
country is not uniform and may differ across data partners. Also, since the use of the code began only recently, patients
with long COVID that were diagnosed prior to the introduction of the code are not included, limiting our ability to
compare the current clinical manifestations with those observed earlier in the pandemic before widespread vaccination and
with different distributions of SARS-CoV?2 strains and variants. However, in a pilot study in Denmark, coding with U09.9
was found to have a positive predictive value of 94% for long COVID (56).

Our ability to capture clinical manifestations of long COVID is limited by the accessibility of clinical data in EHR
systems. Of the 287 HPO terms we identified as being mentioned in published cohort studies on long COVID (10), only
118 are present in our data. The reasons for this presumably include unstructured data such as symptoms and radiological
findings that are not well represented in the OMOP data that is the source of our data. Examples include Gaze-evoked
nystagmus (HP:0000640), Pericardial effusion (HP:0001698), and Exercise intolerance (HP:0003546) that are typically
diagnosed using specialist examinations or medical history that may not be easily coded in structured EHR fields.
Additionally, several common manifestations of long COVID, including dysautonomia (57), are less documented in EHR
data in part due to the difficulties in recognizing these illnesses clinically and the fact that relevant findings may not be
well represented in structured fields including the OMOP data available in N3C.

Our study uses the newly minted ICD code U09.9 to identify patients with PASC/long COVID. At the time of this writing,
a relatively small number of labelled patients was available for analysis. Furthermore, the population defined by these
patients is not fully representative of the American population; for instance, the proportion of African Americans in our
study (~5%) is lower than the proportion of African Americans among the entire population. As more data accrues, future
work will be required to characterise the role of social determinants of health that are confounded with race in our society
in determining long COVID subtypes. It is likely that many additional long COVID patients are present in the N3C
dataset who have not received the U09.9 diagnosis code, and it is possible that this fact could introduce a bias into the data
analysed in this study. Additionally, the group of patients who present for medical care for long COVID symptoms and
receive a U09.9 diagnostic code may not be representative of the entire population of patients with long COVID
manifestations.

Our exploration of k-means clustering results with different values of k& from 2 to 8 showed that increasing the number of
clusters tended to subdivide existing clusters hierarchically. Although numerous methods for determining the ‘best’
number of clusters are available, there is no objective definition of optimum that applies to all applications, and the choice
of k is perforce subjective in nature. Our main findings of generalisable phenotypic clusters pertain also for values of & of
4 and 5 (Supplemental Figure S2-S3).

Conclusions

We have presented a novel algorithm for semantic clustering that identifies patient similarity by transforming EHR data to
phenotypic profiles using the HPO, and identified long COVID subtypes that show a statistically significant degree of
generalizability of clusters across different medical centres. There was a significant association of cluster membership
with a range of pre-existing conditions and with measures of severity during acute COVID-19. One of the clusters
(multisystem-lab) was associated with severe manifestations and displayed increased mortality, and other clusters showed
enrichment for pulmonary, neuropsychiatric, cardiovascular, pain/fatigue, and a multisystem/pain profile not associated
with significantly increased mortality. Additionally, we show that the identified clusters were generalizable across
different hospital systems and that the increased mortality rate was consistently observed in the multisystem-lab cluster.
Semantic phenotypic clustering could provide a basis for assigning patients to stratified subgroups for natural history or
therapy studies.
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