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Abstract

Gene expression profiles were shown to be useful in genomic signal processing
when discriminating between cancer and normal (healthy) examples and/or between
different types of cancer. K-nearest neighbors (k-NN) is one of the classification al-
gorithms that demonstrated good performance for gene expression based cancer clas-
sification. Given that distance metric is fixed, the conventional k-NN has a single
parameter (k - the number of nearest neighbors for each example) to set, which makes
k-NN a very attractive choice in addition to the fact that it does not need training.

Classification performance of any classifier, including a k-NN, is typically char-
acterized by classification error achieved on independent examples, which are often
unavailable for the considered task. Thus, unbiased and low-variance error estimation
is of ultimate importance in this case. We found that bolstered error satisfies these re-
quirements and it was therefore chosen for our study. Bolstered error estimation is built
on random sampling in the neighborhood of each example (withexample-dependent
neighborhood radius) and computing the number of errors made on such artificially
created data. Because of random sampling, all examples can be employed in assessing
the error, unlike cross-validation or bootstrap procedures.

In this work, we investigate the link between k-NN bolsterederror and dataset
complexity characterizing how difficult to classify a certain dataset. Our measure for
the dataset complexity is the normalized Wilcoxon rank sum statistic. Through exten-
sive simulation coupled with the copula method for analysisof association in bivariate
data, we show that dataset complexity and bolstered error are related in terms of sev-
eral dependence types such as positive quadrant dependence, tail monotonicity, and
stochastic monotonicity.
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As a result, we propose a new scheme for generating ensemblesof k-NN classi-
fiers, which is based on the selection of low complexity feature subsets for k-NNs in
the ensemble, which constitutes to choosing accurate k-NNsaccording to the found
dependence relation. The candidate subsets are randomly sampled from the whole set
of the original features in order to make predictions of individual k-NNs diverse.

Experiments carried out on eight gene expression datasets containing different
types of cancer demonstrate that our ensemble generating scheme is superior (in terms
of bolstered resubstitution error) to a single best classifier in the ensemble and to the
traditional ensemble construction scheme that is ignorantof dataset complexity. It
also outperforms the redundancy-based filter, especially designed to remove irrelevant
genes.

1 Introduction

According to [1], genomic signal processing (GSP) is the engineering discipline that studies
the processing of genomic signals, i.e. the measurable events carried out by the genome.
Gene expression is a two-stage process including the transcription of deoxyribonucleic acid
(DNA) into messenger ribonucleic acid (mRNA) which is then translated into protein by
the ribosome. When a protein is produced, a gene is said to be expressed. Proteins are
large compounds of amino acids joined together in a chain andthey are essential parts of
organisms and participate in every process within cells. GSP deals with extracting infor-
mation from gene expression measurements, which is then processed, analyzed and used
for gaining biological and medical knowledge. Recent advances in microarray technology
facilitate measurement of gene expression levels for thousands of genes at once.

Cancer classification based on gene expression levels, which is the subject of our study,
is one of the topics of intensive research in GSP, since it wasshown in numerous works
[2, 3, 4] that expression levels provide valuable information for discrimination between
normal and cancer examples.

However, the classification task is not easy since there are typically thousands of ex-
pression levels versus few dozens of examples. In addition,expression levels are noisy due
to the complex procedures and technologies involved in the measurements of gene expres-
sion levels, thus causing ambiguity in classification. Hence, the original set of genes must
be reduced to those genes that are relevant to discrimination between different classes. This
operation is called feature or gene selection1. Genes preserved or selected as a result of
feature selection are then used to classify data.

Basically, general feature selection methods widely applied to the datasets with many
more examples than features can be (and they are) utilized for gene selection, too. These
methods can be approximately divided into filters and wrappers. Wrappers base their de-
cisions on which feature(s) to select by employing a classifier. For small sample size gene
expression datasets, they can easily introduce the induction bias when some genes are pre-
ferred over the others. Since those preferred genes might not be always relevant to cancer
classification, we turn our attention to the filters that do gene selection independently of
any classifier and solely based on data characteristics. Hence, they are less prone to the

1Further, the words ‘feature’ and ‘gene’ will be used interchangeably, since they have the same meaning in
this work.
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induction bias. It should be however noted that even filters might not be able to completely
avoid this bias since class labels of examples often guide gene selection in the filter model.

This brief analysis prompted us to concentrate on random gene selection where genes
to be used with a classifier, are randomly sampled from the original set of genes, irrespec-
tively of class information and a classifier. The additionalfact that caused us to make such a
decision was the work [5], where it was concluded thatdifferences in classification perfor-
mance among feature selection algorithms are less significant than performance differences
among the error estimators used to implement these algorithms. In other words, the way
of how error is computed has a larger influence on classification accuracy than the choice
of a feature selection algorithm. Among several error estimators we opted for the bolstered
resubstitution error because it provides a low-bias, low-variance estimate of classification
error, which is what is needed for high dimensional gene expression data [6].

However, a single random sample cannot guarantee that sampled genes will lead to
good classification results. Hence, we need to sample genes several times to be more certain
about the outcome, which, in turn, implies several classifications have to be done. Thus,
it is natural to combine predictions of several classifiers into a single prediction. Such a
scheme is termed an ensemble of classifiers in the literature[7]. It is well known that under
certain conditions an ensemble can outperform its most accurate member. In the context
of dimensionality reduction, an ensemble composed of a small number of classifiers, each
working with a small subset of genes, results in the desired effect. For instance, if the
original set comprises 1000 genes, five classifiers, each employing 20 genes2, lead to a 10-
fold dimensionality reduction. Thus, using an ensemble instead of a single classifier can be
beneficial for both dimensionality reduction and classification performance.

As a base classifier in the ensemble, a k-nearest neighbor (k-NN) is used because it
performed well for cancer classification, compared to more sophisticated classifiers [8].
Besides, it is a simple method that has a single parameter (the number of nearest neighbors)
to be pre-defined, given that the distance metric is Euclidean.

Eight gene expression datasets containing different typesof cancer are utilized in our
work. We begin with the recently proposed redundancy-basedfilter [9], especially designed
to filter out irrelevant genes. As this filter turned to be quite aggressive in removing genes,
we proceed to experiment with k-NN ensembles. In particular, we compare two ensem-
ble schemes: one relying on the concept called dataset complexity when choosing which
subsets of features to include into an ensemble and another ignoring dataset complexity.
Based on the copula method [10, 11, 12], which is useful in exploring association (depen-
dence or concordance) relations in multivariate data, we hypothesize that there is positive
dependence between dataset complexity measured by the Wilcoxon rank sum statistic [13]
and the bolstered resubstitution error [6], with low (high)complexity associated with small
(large) error. As a result, selecting a low-complexity subset of genes implies an accurate
k-NN, which, in turn, implies an accurate k-NN ensemble. Experimental results clearly
favor the complexity-based scheme of k-NN ensemble generation over 1) the complexity-
ignorant scheme, 2) a single best k-NN in the ensemble, and 3)the redundancy-based filter,
thus confirming our hypothesis.

The chapter has the following structure. Section 2 describes gene expression datasets

2Let us assume that there is no overlap between different subsets of genes.
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employed in experiments. The redundancy-based filter is briefly introduced in Section 3.
Section 4 defines the dataset complexity characteristic while Section 5 defines bolstered re-
substitution error. The link between the two is explored andanalyzed in Section 6. Uncer-
tainty of single classification is discussed in Section 7. Two ensemble generating schemes
based on random feature selection are presented in Section 8and experimental results ob-
tained with them on eight datasets are given in Section 9. Finally, Section 10 concludes
the paper. Programming code for random number generation and mathematical derivations
related to copulas are placed in two appendices.

2 Gene Expression Datasets

The following eight datasets were chosen for experiments.

2.1 SAGE Dataset 1

SAGE stands for Serial Analysis of Gene Expression [14, 15].This is technology alterna-
tive to microarrays (complementary DNA and oligonucleotides). Though SAGE was orig-
inally conceived for use in cancer studies, there is not muchresearch using SAGE datasets
regarding ensembles of classifiers. SAGE provides a statistical description of the mRNA
population present in a cell without prior selection of the genes to be studied [16]. This is
the main distinction of SAGE over microarray approaches (cDNA and oligonucleotide) that
are limited to the genes represented in the chip. SAGE “counts” the number of transcripts
or tags for each gene, where the tags substitute the expression levels. As a result, counting
sequence tags yields positive integer numbers in contrast to microarray measurements.

In the chosen dataset [17], there are expressions of 822 genes in 74 cases (24 cases are
normal while 50 cases are cancerous) [18]. The dataset contains 9 different types of cancer.
We decided to ignore the difference between cancer types andto treat all cancerous cases
as belonging to a single class. No preprocessing was done.

2.2 Colon Dataset

This microarray (oligonucleotide) dataset [19], introduced in [2], contains expressions of
2000 genes for 62 cases (22 normal and 40 colon tumor cases). Preprocessing includes the
logarithmic transformation to base 10, followed by normalization to zero mean and unit
variance as usually done with this dataset.

2.3 Brain Dataset 1

This microarray (oligonucleotide) dataset [20] introduced in [3] contains two classes of
brain tumor. The dataset (also known as Dataset B) contains 34 medulloblastoma cases,
9 of which are desmoplastic and 25 are classic. Preprocessing consists of thresholding of
gene expressions with a floor of 20 and ceiling of 16000; filtering with exclusion of genes
with max/min ≤ 3 or max−min< 100, where max and min refer to the maximum and
minimum expressions of a certain gene across the 34 cases, respectively; base 10 logarith-
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mic transformation; normalization across genes to zero mean and unit variance. As a result,
5893 out of 7129 original genes are only retained.

2.4 SAGE Dataset 2

This is a larger SAGE dataset [17], containing 31 normal and 59 cancer (10 types of cancer)
cases with 27679 expressed genes. As with the smaller dataset, no preprocessing was done
and all cancer types were assigned to a single class.

2.5 Prostate Dataset 1

This microarray (oligonucleotide) dataset [21] introduced in [4] includes the expressions of
12600 genes in 52 prostate and 50 normal cases. No preprocessing of the data was done.

2.6 Prostate Dataset 2

This dataset [21] was obtained independently of the one described in the previous section.
It has 25 prostate and 9 normal cases with 12600 expressed genes. No preprocessing was
done.

2.7 Brain Dataset 2

This (oligonucleotide) dataset [20] known as Dataset C in [3] contains 60 medulloblastoma
cases, corresponding to 39 survivors and 21 nonsurvivors according to the patient status.
Preprocessing includes thresholding of gene expressions with a floor of 100 and ceiling of
16000; filtering with exclusion of genes with max/min ≤ 5 or max−min < 500, where
max and min refer to the maximum and minimum expressions of a certain gene across the
60 cases, respectively; base 10 logarithmic transformation; normalization across genes to
zero mean and unit variance. As a result, 4459 out of 7129 original genes are only retained.

2.8 Diffuse Large B-Cell Lymphoma (DLBCL) Dataset

This (oligonucleotide) dataset [22] described in [23] contains 6149 gene expression levels
characterizing 58 patients with diffuse large B-cell lymphoma according to their health
status: 32 cured patients or those who died from other than lymphoma causes (‘cured’
class) and 26 patients who died of lymphoma or whose disease is either progressive or
recurrent refractory (‘fatal/refractory’ class). Preprocessing includes thresholding of gene
expressions with a floor of 20 and ceiling of 16000; filtering with exclusion of genes with
max/min< 3 ormax−min< 100, where max and min refer to the maximum and minimum
expressions of a certain gene across the 60 cases, respectively. As a result, 6149 out of 7129
original genes are only retained.

2.9 Dataset Summary

Table 1 provides a summary for all datasets.
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Table 1: Summary of eight gene expression datasets.

Dataset no. Cancer type(s) Ref. # expression levels # cases
1 Multiple [18] 822 74
2 Colon [2] 2000 62
3 Brain [3] 5893 34
4 Multiple [18] 27679 90
5 Prostate [4] 12600 102
6 Prostate [4] 12600 34
7 Brain [3] 4459 60
8 Lymphoma [23] 6149 58

3 Redundancy-Based Filter

The redundancy-based filter (RBF) [9] is based on the conceptof an approximate Markov
blanket (AMB). Finding the complete Markov blanket is computationally prohibitive for
high dimensional gene expression data, thus the approximation is used instead. The goal is
to find for each geneFi an AMB Mi that subsumes the information content ofFi. In other
words, if Mi is a true Markov blanket forFi, the classC is conditionally independent ofFi

givenMi, i.e. p(C|Fi ,Mi) = p(C|Mi).
To efficiently find an AMB two types of correlations are employed: 1) individualC-

correlation between a geneFi and the classC and 2) combinedC-correlation between a pair
of genesFi andFj (i 6= j) and the classC. Both correlations are defined through symmetrical
uncertaintySU(X,C), whereX is eitherFi (individual C-correlation) orFi, j (combinedC-
correlation), withSU(X,C) defined as

SU(X,C) = 2

[

IG(X|C)

H(X)+H(C)

]

,

whereH(·) is entropy,IG(X|C) = H(X)−H(X|C) is information gain from knowing the
class information.SU is a normalized characteristic whose values lie between 0 and 1,
where 0 indicates thatX andC are independent.

To reduce the variance and noise of the original data, continuous expression levels were
converted to nominal values -1, 0, and +1, representing the under-expression, baseline,
and over-expression of genes, which correspond to(−∞,µ−σ/2), [µ−σ/2,µ+ σ/2], and
(µ+ σ/2,+∞), respectively, withµ and σ being the mean and the standard deviation of
all expression levels for a given gene. For nominal variables, the entropies needed in the
formulas above are computed as follows:

H(X) = −∑
i

P(xi) log2(P(xi)),

H(X|C) = −∑
k

P(ck)∑
i

P(xi |ck) log2(P(xi |ck)),

whereP(xi) is the probability thatX = xi andP(xi |ck) is the probability thatX = xi given
C = ck. For combinedC-correlation,xi in these formulas should be replaced with the pair
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(xi ,x j ) so that

H(X) = −∑
i, j

P(xi ,x j) log2(P(xi ,x j)),

H(X|C) = −∑
k

P(ck)∑
i, j

P(xi ,x j |ck) log2(P(xi ,x j |ck)).

Sincexi (x j ) can take only three values: -1, 0, +1, there are nine pairs ((-1,-1), (-1,0), (-1,+1),
(0,-1), (0,0), (0,+1), (+1,-1), (+1,0), (+1,+1)) for whichprobabilities (and hence, entropies)
need to be evaluated.

RBF starts from computing individualC-correlation for each gene and sorting all cor-
relations in descending order. The gene with the largest correlation is considered as pre-
dominant (no AMB exists for it) and hence it is put to the listSof the selected genes and
used to filter out other genes. After that, the iteration begins with picking the first gene
Fi from S and proceeds as follows. For all remaining genes, ifFi forms an AMB forFj ,
the latter is removed from further analysis. The following conditions must be satisfied for
this to happen: 1) individualC-correlation forFi must be larger than or equal to individual
C-correlation forFj , which means that a gene with a larger individual correlation provides
more information about the class than a gene with a smaller individual correlation, and 2)
individual C-correlation forFi must be larger than or equal to combinedC-correlation for
Fi andFj , which means that if combiningFi andFj does not provide more discriminative
power thanFi alone,Fj is decided to be redundant. After one round of filtering, RBF takes
the next (according to the magnitude of individualC-correlation) still unfiltered gene and
the filtering process is repeated again. Since a lot of genes are typically removed at each
round (gene expression data contain a lot of redundancy) andremoved genes do not par-
ticipate in the next rounds, the RBF is much faster than the typical hill climbing (greedy
forward or backward search).

4 Dataset Complexity

It is known that the performance of classifiers is strongly data-dependent. To gain insight
into a supervised classification problem3, one can adopt dataset complexity characteristics.
The goal of such characteristics is to provide a score reflecting how well classes of the data
are separated. Given a set of features, the data of each classare projected onto the diago-
nal linear discriminant axis by using only these features (for details, see [24]). Projection
coordinates then serve as input for the Wilcoxon rank sum test for equal medians [13] (the
null hypothesis of this test is two medians are equal at the 5%significance level). Given
a sample divided into two groups according to class membership, all the observations are
ranked as if they were from a single sample and the rank sum statistic W is computed as the
sum of the ranks in the smaller group. The value of the rank sumstatistic is employed as a
score characterizing separability power of a given set of features. The higher this score, the
larger the overlap in projections of two classes, i.e. the worse separation between classes.
To compareW coming from different datasets, eachW can be normalized by the sum of all

3Two-class problems are assumed.
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ranks, i.e. ifN is the sample size, then the sum of all ranks will be∑N
i=1 i. The normalized

W lies between 0 and 1.
Our complexity characteristic is classifier-independent,i.e. it does not depend on a

certain classifier. Employing a classifier-dependent characteristic would not provide an ab-
solute scale for comparison. For example, it is well known that a nearest neighbor classifier
can sometimes easily classify nonlinearly separable data.

Our choice for such a dataset complexity characteristic wasnot accidental. Since gene
expression data are very high dimensional, it is not surprising that two classes could be
linearly separable in high dimensional space (however, this does not make the classification
task easy as interclass distances could be still smaller than intraclass distances, thus giving
rise to classification errors). That is, the k-NN decision boundary can be assumed to be a
hyperplane. On the other hand, the complexity characteristic we employ belongs to the class
of linear discriminants estimating how well a line separates two classes. As a result, we
have a good match between the behavior of a classifier and the model of class separability
encoded in the complexity characteristic. To confirm our hypothesis, we computed the
index of linear separabilityL1 [25], which is the objective function value for the linear
programme, by using all features for each dataset. The closer L1 to zero, the more a given
dataset linearly separable. It can be seen in Table 2 that alldatasets can be considered
to be linear separable. However, SAGE 1 seems to be much less linearly separable than
Prostate 2.

Table 2: Dataset ranking based on the linear separability indexL1 multiplied by 10−15. The
lower the rank is (1 - lowest rank, 8 - highest rank), the less linearly separable two classes
are.

Dataset no. 1 2 3 4 5 6 7 8
L1 2.2 0.77 0.027 0.15 0.19 1.2e-019 0.054 4.8e-010

rank 1 2 6 4 3 8 5 7

5 Bolstered Resubstitution Error

This is a low-variance and low-bias classification error estimation method proposed in [6].
Unlike the cross-validation techniques reserving a part ofthe original data for testing, it
permits to use the whole dataset. Since sample size of gene expression datasets is very small
compared to the data dimensionality, using all available data is an important positive factor.
However, one should be aware of the effect of overfitting in this case when a classifier
demonstrates excellent performance on the training data but fails on independent unseen
data. Braga-Neto and Dougherty [6] avoided this pitfall by randomly generating a number
of artificial points (examples) in the neighborhood of each training point. These artificial
examples then act as a test set and classification error on this set is called bolstered. In
this paper, we utilize the bolstered variant of the conventional resubstitution error known as
bolstered resubstitution error.

Briefly, bolstered resubstitution error is estimated as follows [6]. LetA0 andA1 be two
decision regions corresponding to the classification generated by a given algorithm,N be
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the number of training points, andMMC be the number of random samples drawn from
the D-variate normal distribution per training point (MMC = 10 as advocated in [6]). The
bolstered resubstitution error is then defined as

εbresub≈
1

NMMC

N

∑
i=1

(

MMC

∑
j=1

Ixi j∈A1Iyi=0+
MMC

∑
j=1

Ixi j∈A0Iyi=1

)

, (1)

where{xi j } j=1,...,MMC are samples drawn from 1/((2π)D/2σD
i )e−‖x‖2/(2σ2

i ). The bolstered re-
substitution error is thus equal to the sum of all error contributions divided by the number of
points. Samples are drawn based on the Marsaglia polar normal random number generator
(see Appendix B).

In a 2-D space, samples come from a circle centered at a particular training point. In
a D-dimensional case, they are drawn from a hypersphere. Hence, the radius of this hy-
persphere, determined byσi, is of importance since its selection amounts to choosing the
degree of bolstering. Typically,σi should vary from point to point in order to be robust to
the data. In [6]σi = d̂(yi)/cp for i = 1, . . . ,N, whered̂(yi) is the mean minimum distance
between points belonging to class ofyi (yi can be either 0 or 1)4, andcp is the constant
called the correction factor defined as the inverse of the chi-square cdf (cumulative distribu-
tion function) with parameters 0.5 andD, because interpoint distances in the Gaussian case
are distributed as a chi random variable withD degrees of freedom. Thus,cp is the function
of the data dimensionality. The parameter 0.5 is chosen so that points inside a hypersphere
will be evenly sampled.

6 Link Between Dataset Complexity and Classification Error

Our main idea to build ensembles of k-NNs is based on the hypothesis thatthe dataset
complexity and bolstered resubstitution error are related. To verify our hypothesis, 10000
feature subsets were randomly sampled for each dataset (subset size ranged from 1 to 50)
and both complexity and bolstered resubstitution error for3-NN were computed. Anoma-
lous complexity values lying three standard deviations from the average complexity were
treated as outliers and therefore removed from further analysis. The result of such simula-
tion is shown in Figs. 1-8 together with marginal histogramsfor each variable. It can be
observed that univariate distributions vary from dataset to dataset and often they are non-
Gaussian. Besides, the complexity and error distributionsfor a certain dataset belong to
different types, e.g. one is normal while another is exponential. However, the dependence
between complexity and error is clearly detectable when looking at Figs. 1-8. Besides,
one characteristic important for successful ensemble generation is present: diversity among
predictions since one complexity value corresponds to several different error values.

To quantify this dependence, the rank correlation coefficients Spearman’sρ and
Kendall’s τ were computed (see Table 3) and the test on positive correlation at the signifi-
cance level 0.05 was done which confirmed the existence of such correlation (all p-values
were equal to zero). The rank correlations measure the degree to which large (small) values

4d̂(yi) is determined by first computing the minimum distance from each pointxi to all other pointsx j ( j 6= i)
of the same class as that ofxi and then by averaging thus obtained minimum distances.
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Figure 1: (SAGE 1) Bivariate distribution of normalized complexity and bolstered resubsti-
tution error and univariate marginal histograms.
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Figure 2: (Colon) Bivariate distribution of normalized complexity and bolstered resubstitu-
tion error and univariate marginal histograms.
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Figure 3: (Brain 1) Bivariate distribution of normalized complexity and bolstered resubsti-
tution error and univariate marginal histograms.
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Figure 4: (SAGE 2) Bivariate distribution of normalized complexity and bolstered resubsti-
tution error and univariate marginal histograms.
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Figure 5: (Prostate 1) Bivariate distribution of normalized complexity and bolstered resub-
stitution error and univariate marginal histograms.
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Figure 6: (Prostate 2) Bivariate distribution of normalized complexity and bolstered resub-
stitution error and univariate marginal histograms.
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Figure 7: (Brain 2) Bivariate distribution of normalized complexity and bolstered resubsti-
tution error and univariate marginal histograms.

0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
0

0.1

0.2

0.3

0.4

Dataset complexity

B
ol

st
er

ed
 r

es
ub

st
itu

tio
n 

er
ro

r

Figure 8: (Lymphoma) Bivariate distribution of normalizedcomplexity and bolstered re-
substitution error and univariate marginal histograms.
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of one random variable correspond to large (small) values ofanother variable (concordance
relations5 among variables). They are useful descriptors in our case since high (low) com-
plexity implies that the data are difficult (easy) to accurately classify, which, in turn, means
high (low) classification error. Unlike the linear correlation coefficient,ρ and τ are pre-
served under any monotonic (strictly increasing) transformation of the underlying random
variables.

Table 3: Spearman’sρ and Kendall’sτ estimated for all datasets.

Dataset no. τ ρ
1 0.3100 0.4468
2 0.3446 0.4964
3 0.3991 0.5581
4 0.4173 0.5864
5 0.4288 0.6006
6 0.3887 0.5107
7 0.3117 0.4486
8 0.3993 0.5667

To deeply explore dependence relations, we employed the copula method [10, 11, 12].
The word copula is a Latin noun which means ‘a link, tie or bond’ was first introduced by
Abe Sklar in [10]. Copulas are functions that describe dependencies among variables and
allow to model correlated multivariate data by combining univariate distributions. Using
copulas is an appropriate solution since the assumption that the joint distribution of random
variables is normal often does not hold for multivariate data in practice even if the marginal
distributions are normal.

A copula is a multivariate probability distribution, whereeach random variable has a
uniform marginal distribution on the interval [0,1]. The dependence between random vari-
ables is completely separated from the marginal distributions in the sense that random vari-
ables can follow any marginal distributions, and still havethe same rank correlation. This
is one of the main appeals of copulas: they allow separation of dependence and marginal
distribution. Though there are multivariate copulas, we will only talk about bivariate ones
since our dependence relation includes two variables.

Sklar’s theorem, which is the foundation theorem for copulas, states that for a given
joint multivariate distribution functionH(x,y) = P(X ≤ x,Y ≤ y) of a pair of random vari-
ablesX andY and the relevant marginal distributionsF(x) = P(X ≤ x) andG(y) = P(Y≤ y),
there exists a copula functionC relating them, i.e.H(x,y) = C(F(x),G(y)). If F andG
are continuous,C is unique. Otherwise,C is uniquely determined on RanX×RanY, where
‘RanX’ (‘RanY’) stands for the range ofX (Y). In other words, for each pair of real numbers
(x,y) there are three numbersF(x), G(y), andH(x,y) lying in the interval [0,1]. Alterna-
tively, each pair(x,y) is matched by a point(F(x),G(y)) in the unit squareI2 : [0,1]× [0,1],
and this ordered pair in turn is associated with a numberH(x,y) in [0,1]. The correspon-
dence assigning the value of the joint distribution function to each ordered pair of values of

5Since the definitions of these relations byρ andτ are different, there is a difference in absolute values in
Table 3.
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the individual distribution functions is a copula functionC [11].
Thus, a copula is a functionC from I2 to I with the following properties [11]:

1. For everyu,v in I ,
C(u,0) = 0 = C(0,v)

and
C(u,1) = u,C(1,v) = v.

2. for everyu1,u2,v1,v2 in I such thatu1 ≤ u2 andv1 ≤ v2,

C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1) ≥ 0.

If F andG are continuous, the following formula is used to construct copulas from the
joint distribution functions:C(u,v) = H(F−1(u),G−1(v)) [11], whereF−1 means a quasi-
inverse ofF, G−1 means a quasi-inverse ofG, andU andV are uniform random variables
distributed between 0 and 1. That is, the typical copula-based analysis of multivariate (or
bivariate) data starts with the transformation from the(X,Y) domain to theU,V domain,
and all manipulations with data are then done in the latter. Such a transformation to the
copula scale (unit squareI2) can be achieved through a kernel estimator of the cumulative
distribution function (cdf) (we used the MATLAB functionksdensity). After that the copula
function C(u,v) is generated according to the appropriate definition for a certain copula
family (see, e.g. Eq. 2 below).

In [26] it was shown that Spearman’sρ and Kendall’sτ can be expressed solely in terms
of the copula function as follows:

ρ = 12
∫ ∫

(C(u,v)−uv)dudv= 12
∫ ∫

C(u,v)dudv−3,

τ = 4
∫ ∫

C(u,v)dC(u,v)−1,

where integration is overI2.
The integrals in these formulas can be interpreted as the expected value of the function

C(u,v) of uniform [0,1] random variablesU andV whose joint distribution function is
C, i.e.

ρ = 12E(UV)−3, τ = 4E(C(u,v))−1.

As a consequence,ρ for a pair of continuous random variableX andY is identical to
Pearson’s linear correlation coefficient for random variablesU = F(X) andV = G(Y) [11].

In general, the choice of a particular copula may be based on the observed data. Among
numerous copula families, we preferred the Frank copula belonging to the Archimedean
family based on the visual look of plots in Figs. 1-8 and for dependence in the tail. Be-
sides, this copula type permits negative as well as positivedependence. We are particularly
concerned with lower tail dependence when low complexity isassociated with small classi-
fication error as this forms the basis for ensemble construction in our approach. The Frank
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copula is a one-parameter (θ is a parameter,θ ∈]−∞,+∞[\0) copula defined for uniform
variablesU andV (both are defined over the unit interval) as

Cθ(u,v) = −
1
θ

ln

(

1+
(e−θu−1)(e−θv−1)

e−θ −1

)

, (2)

with θ determining the degree of dependence between the marginals(we setθ to Pear-
son’s correlation coefficient betweenU andV so that asθ increases, the positive depen-
dence also increases). Fig. 9 shows 500 random points generated from the Frank copula
whenθ = 8.
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Figure 9: A random sample (500 points) generated from the Frank copula withθ = 8.

Correlation coefficients measure the overall strength of the association, but give no
information about how that varies across the distribution.The magnitude ofτ or ρ is not an
absolute indicator of such strength since for some distributions the attainable interval can be
very small, say between -0.1 and +0.2 so that finding correlation of 0.2 and concluding that
there is only weak dependence between variables would be a mistake since these variables
are actually perfectly related. Hence, additional characteristics of dependence structure are
necessary. They are quadrant dependence, tail monotonicity, stochastic monotonicity, with
quadrant dependence being the weakest form of association among all the three.

6.1 Quadrant Dependence

Random variablesX andY are positively quadrant dependent (PQD) if∀(x,y) in R2, either
inequality holds [11]:

P(X ≤ x,Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y),

P(X > x,Y > y) ≥ P(X > x)P(Y > y).
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X andY are PQD if the probability that they are simultaneously small (or simultaneously
large) is at least as it would be were they independent. In terms ofC, the PQD conditions
can be written asC(u,v) ≥ uv for all (u,v) in I2. By checking the last inequality, we found
that complexity and bolstered resubstitution error are PQDfor all datasets. Spearman’sρ
(or, to be precise,ρ/12) can be interpreted as a measure of “average” quadrant dependence
(both positive and negative) for random variables whose copula isC [11].

It is interesting to ask when one continuous bivariate distributionH1 is more PQD (more
concordant) than anotherH2. The answer is readily provided by comparingρ or τ [12]: if
ρ(H1) ≤ ρ(H2) or τ(H1) ≤ τ(H2), thenH2 is more PQD (more concordant) thanH1. From
Table 3 it can be seen that Prostate 1 is more PQD than other datasets, i.e. concordance
relations between complexity and bolstered resubstitution error are much stronger for this
data than those for other datasets.

6.2 Tail Monotonicity

As we mentioned above, we are interested in tail dependence when low (high) complexity
associates small (large) classification error. Tail monotonicity reflects this type of asso-
ciation and it is a stronger condition for dependence than PQD. Let X andY be random
variables. Then four types of tail monotonicity can be defined as follows [11]:

- Y is left tail decreasing inX (LTD(Y |X)) if P(Y ≤ y|X ≤ x) is a nonincreasing func-
tion of x for all y.

- X is left tail decreasing inY (LTD(X |Y)) if P(X ≤ x|Y ≤ y) is a nonincreasing func-
tion of y for all x.

- Y is right tail increasing inX (RTI(Y|X)) if P(Y > y|X > x) is a nondecreasing func-
tion of x for all y.

- X is right tail increasing inY (RTI(X|Y)) if P(X > x|Y > y) is a nondecreasing func-
tion of y for all x.

In terms of a copula and its first-order partial derivatives these conditions are equivalent
to

- LTD(Y |X) iff for any v in I , ∂C(u,v)/∂u≤C(u,v)/u for almost allu.

- LTD(X |Y) iff for any u in I , ∂C(u,v)/∂v≤C(u,v)/v for almost allv.

- RTI(Y|X) iff for any v in I , ∂C(u,v)/∂u≤ (v−C(u,v))/(1−u) for almost allu.

- RTI(X|Y) iff for any u in I , ∂C(u,v)/∂v≤ (u−C(u,v))/(1−v) for almost allv.

For the Frank copula, the first-order partial derivatives are (see Appendix A)

∂Cθ(u,v)
∂u

=
e−θu(e−θv−1)

e−θ −1+(e−θu−1)(e−θv−1)
, (3)

∂Cθ(u,v)
∂v

=
e−θv(e−θu−1)

e−θ −1+(e−θu−1)(e−θv−1)
. (4)
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Tail monotonicity is also guaranteed ifρ ≥ τ ≥ 0 is met [11].
We verified that for all datasets bolstered resubstitution error is left tail decreasing in

complexity, complexity is left tail decreasing in bolstered resubstitution error, bolstered
resubstitution error is right tail increasing in complexity, and complexity is right tail in-
creasing in bolstered resubstitution error. Thus, dependence in the tail between these two
variables exists.

6.3 Stochastic Monotonicity

Stochastic monotonicity is stronger than tail monotonicity. According to [11],

- Y is stochastically increasing inX (SI(Y|X)) if P(Y > y|X = x) is a nondecreasing
function ofx for all y.

- X is stochastically increasing inY (SI(X|Y)) if P(X > x|Y = y) is a nondecreasing
function ofy for all x.

Alternatively, stochastic monotonicity can be expressed as

- SI(Y|X) iff for any v in I , C(u,v) is a concave function ofu.

- SI(X|Y) iff for any u in I , C(u,v) is a concave function ofv.

A concave function implies that the second-order derivatives must be less than or equal
to zero. For the Frank copula, these derivatives are (see Appendix A)

∂2Cθ(u,v)
∂u2 =

θe−θu(e−θv−1)(e−θv−e−θ)

[e−θ −1+(e−θu−1)(e−θv−1)]
2 , (5)

∂2Cθ(u,v)
∂v2 =

θe−θv(e−θu−1)(e−θu−e−θ)

[e−θ −1+(e−θu−1)(e−θv−1)]
2 . (6)

Sinceθ > 0 in our case (positive dependence as expressed by the rank correlation coef-

ficients), it is easy to verify that∂
2Cθ(u,v)

∂u2 ≤ 0 and ∂2Cθ(u,v)
∂v2 ≤ 0, which, in turn, implies that

Cθ(u,v) is concave (see also Appendix A). Thus, for all datasets in our study, bolstered re-
substitution error is stochastically increasing in complexity and complexity is stochastically
increasing in bolstered resubstitution error.

7 Uncertainty of Single Classification

There exist many classifiers (k-NN, linear and quadratic discriminant analysis, support vec-
tor machine) showing good performance on gene expression data [8]. Each of them has its
strong and weak points and that is why none of them is superiorto others. In addition, when
feature selection precedes classification, there can be multiple subsets of genes resulting in
the same error rate. The fact that different subsets of genescan be equally relevant when
predicting cancer has been already highlighted in several works [27, 28, 29]. It was argued
that one of the possible explanations for such multiplicityand non-uniqueness is a strong
influence of the training set on gene selection. In other words, different groups of patients
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can lead to different gene importance rankings due to genuine differences between patients
(cancer grade, stage, etc.).

To mitigate this problem (complete alleviation seems to be currently impossible due
to small sample size of gene expression datasets), we propose to employ an ensemble of
classifiers instead of a single classifier, where each classifier in the ensemble works with its
own feature subset. Potential gains in doing so are twofold:error rate can be significantly
reduced and fewer biologically relevant genes can be missedwhen all subsets of genes are
combined together for further analysis.

8 Ensemble of Classifiers

An ensemble of classifiers consists of several base classifiers (members) that make predic-
tions independently of each other. After that, these predictions are combined together to
produce the final prediction. Though ensemble members can belong to different types of
algorithms, because of our interest in k-NN classifiers we utilize only this algorithm. More-
over, the value ofk is fixed to 3 for all ensemble members6. As a combination technique, the
conventional majority vote was selected in order to demonstrate that ensembles built with
our approach demonstrate good performance even when employing simple non-trainable
combiners.

It is well known that an ensemble is able to outperform its best performing member if
ensemble members make mistakes of different samples so thattheir predictions are uncor-
related and diverse as much as possible. On the other hand, anensemble must include a
sufficient number of accurate classifiers since if there are only few good votes, they can be
easily drowned out among many bad votes. As a result, an ensemble can predict wrongly
most of the time.

So far many definitions of diversity were proposed [7, 30], but unfortunately the precise
definition is still largely illusive and as commented in [31], the link between diversity of the
ensemble members and prediction accuracy of an ensemble is not straightforward. Because
of this fact, we decided not to follow anyexplicit definition of diversity, but introduce
diversity implicitly instead. Since we fixed the base classifier and its parameter, one of the
solutions is to let each ensemble member to work with its own feature subset.

Feature subset selection can be done in two ways: either applying a certain feature se-
lection algorithm or a group of such algorithms, or randomlysampling features from the
original feature set. As concluded in [5], differences in classification performance among
feature selection algorithms are less significant than performance differences among the er-
ror estimators used to implement these algorithms. In otherwords, the way of how error
is computed has a larger influence on classification accuracythan the choice of a feature
selection algorithm. Since bolstered resubstitution error is a low-biased and low-variance
estimate of classification error, which is what is needed forhigh dimensional gene expres-
sion data, we opt for random feature selection. Figs. 1-8 show that random feature selection
leads to diversity since one complexity value corresponds to several different errors. Given
that it is difficult to carry out biological analysis of many genes, we restricted the number
of genes to be sampled to 50, i.e. each ensemble member works with 1 to 50 randomly

6In our opinion,k = 1 tends to lead to optimistic estimation of bolstered resubstitution error.
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selected (sampled with replacement) genes. This will ensure that the combined list of all
genes is not too long.

Based on the abovementioned, two approaches to form ensembles consisting ofL clas-
sifiers are explored:

1. Randomly selectL feature subsets, one subset per classifier, as described above. Classify
the data with each classifier and combine votes.

2. Randomly selectM > L (e.g. M = 100) feature subsets and compute the dataset com-
plexity for each of them. Rank subsets according to their complexity and selectL
least complex subsets while ignoring the others. Classify the data with each classifier
and combine votes.

We will call the first approach conventional to distinguish it from ours, which is the sec-
ond approach. The typical (and perhaps the earliest) example of the former is [32]. As one
can see, the main difference between two approaches lies in the way of choosing feature
subsets: in the conventional approach, subsets are chosen regardless of their classification
power. As a result, one may equally expect both very good and very bad ensemble predic-
tions. In contrast, in our approach, subsets are chosen based on the measuredirectly related
to classification performance. As lower complexity is associated with smaller bolstered
resubstitution error as shown in Section 6, selection of thesubsets of smaller complexity
implies more accurate classifiers included into an ensemble. Thus, with our approach, both
diversity and accuracy requirements for ensembles are satisfied. Hence, we can expect
betteraverageclassification performance with our approach compared to the conventional
approach.

9 Experimental Results

In ensemble applications to bioinformatics problems, a small and accurate ensemble is of
importance, since too many ensemble members would complicate biological understanding
of relations among genes. Bearing this in mind, we set the number of 3-NNs (L) in the
ensemble to be equal 3, 5, 7, 9, and 11.

Table 4 represents the dataset complexity as estimated by the normalized rank sum
statisticW (see Section 4) for different values ofL when ensembles were built with our
approach. For each dataset, two values are given: average minimum and average maximum
complexity (averaging over 100 runs) of the selected feature subsets. It can be observed that
complexity for each dataset is rather stable asL grows. Prostate 1 appears to be far more
complex than the other datasets while Prostate 2 seems to be the least complex. For the
latter, the minimum and maximum complexity stays the same, which implies that the com-
plexity reached saturation during ensemble generation. The fact that saturation happened
at L as low as 3 implicitly points to low complexity of Prostate 2.For the conventional
ensemble approach ‘avr.max’ often went to a very big value, meaning poor class separation
according to the Wilcoxon rank sum test. For comparison, Table 5 lists dataset complexity
when all features are considered in computingW. Again Prostate 1 looks the most complex
while Prostate 2 and Brain 1 are among least complex.



Exploring the Link between Bolstered Classification Error .. . 21

Table 4: Average minimum and maximum normalizedW for feature subsets selected with
our ensemble generating approach for various values ofL.

Dataset no. L = 3 L = 5 L = 7 L = 9 L = 11
1 avr.min 0.1544 0.1517 0.1551 0.1546 0.1547

avr.max 0.1638 0.1681 0.1725 0.1749 0.1776
2 avr.min 0.1587 0.1584 0.1581 0.1587 0.1584

avr.max 0.1676 0.1723 0.1769 0.1800 0.1845
3 avr.min 0.0761 0.0760 0.0761 0.0760 0.0759

avr.max 0.0781 0.0803 0.0818 0.0831 0.0841
4 avr.min 0.1501 0.1494 0.1493 0.1503 0.1498

avr.max 0.1584 0.1619 0.1655 0.1683 0.1707
5 avr.min 0.3105 0.3117 0.3121 0.3105 0.3104

avr.max 0.3274 0.3349 0.3417 0.3447 0.3480
6 avr.min 0.0756 0.0756 0.0756 0.0756 0.0756

avr.max 0.0756 0.0756 0.0756 0.0756 0.0756
7 avr.min 0.1987 0.1979 0.1990 0.1978 0.1995

avr.max 0.2086 0.2140 0.2174 0.2190 0.2217
8 avr.min 0.2566 0.2565 0.2554 0.2553 0.2563

avr.max 0.2692 0.2756 0.2798 0.2837 0.2867

Table 5: Unnormalized and normalized rank sum statisticW when all features are used.
Dataset no. 1 2 3 4 5 6 7 8

W 465 409 48 496 1959 45 410 439
N 74 62 34 90 102 34 60 58

normalizedW 0.17 0.21 0.08 0.12 0.37 0.009 0.22 0.26

Table 6 summarizes the average bolstered resubstitution error (over 100 runs) and its
standard deviation achieved with two ensemble schemes. ‘C’and ‘O’ stand for the conven-
tional and our approaches to ensemble construction, respectively. It is clearly noticable that
both the average error and its standard deviation are smaller for our approach, regardless of
the number of k-NNs in the ensemble. It should be noted that one should not seek depen-
dence between ensemble error in Table 6 and feature subset complexity in Table 4, since
our hypothesis is only applied to the error of the individualclassifiers.

For comparison, we also included experiments with RBF [9], followed by 3-NN classi-
fication using selected genes. Table 7 lists the average bolstered resubstitution error and its
standard deviation computed over 100 runs when RBF was applied to each dataset prior to
3-NN classification. The third column contains the number ofgenes retained after filtering.
Results of 3-NN classification without prior gene selectionare given in the last column.

It can be observed that our ensemble scheme almost always outperforms RBF+3-NN,
except for Brain 1 data7, which were easy to classify according to dataset complexity. In
contrast, the conventional scheme was inferior to RBF+3-NNon many more occasions,

7L = 3,5.
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Table 6: Average bolstered resubstitution error and its standard deviation for two ensemble
schemes for different values ofL.

L = 3 L = 5 L = 7 L = 9 L = 11
1 C 0.141±0.025 0.125±0.024 0.119±0.021 0.110±0.018 0.111±0.018

O 0.119±0.016 0.105±0.017 0.098±0.014 0.094±0.014 0.088±0.015
2 C 0.110±0.025 0.091±0.019 0.080±0.013 0.074±0.015 0.068±0.013

O 0.092±0.014 0.077±0.012 0.071±0.014 0.066±0.010 0.064±0.010
3 C 0.129±0.035 0.117±0.032 0.101±0.031 0.092±0.027 0.088±0.028

O 0.081±0.022 0.062±0.019 0.054±0.017 0.047±0.016 0.045±0.015
4 C 0.177±0.034 0.160±0.040 0.152±0.040 0.143±0.039 0.151±0.043

O 0.130±0.023 0.113±0.022 0.098±0.019 0.093±0.017 0.089±0.016
5 C 0.141±0.034 0.111±0.026 0.096±0.020 0.084±0.016 0.076±0.014

O 0.101±0.022 0.078±0.016 0.071±0.012 0.066±0.011 0.063±0.010
6 C 0.046±0.039 0.027±0.026 0.015±0.014 0.013±0.014 0.013±0.013

O 0.023±0.018 0.011±0.012 0.007±0.008 0.004±0.005 0.004±0.005
7 C 0.172±0.024 0.147±0.021 0.133±0.020 0.128±0.019 0.120±0.016

O 0.145±0.017 0.119±0.015 0.104±0.014 0.098±0.014 0.092±0.013
8 C 0.188±0.036 0.150±0.029 0.122±0.025 0.103±0.023 0.087±0.019

O 0.164±0.027 0.130±0.022 0.099±0.020 0.087±0.021 0.075±0.020

Table 7: Average bolstered resubstitution error and its standard deviation 1) when RBF was
applied before 3-NN classification (RBF+3-NN) and 2) with 3-NN classification without
gene selection.

Dataset no. RBF+3-NN #genes 3-NN
1 0.199±0.011 12 0.160±0.005
2 0.107±0.010 3 0.098±0.006
3 0.055±0.010 6 0.074±0.008
4 0.145±0.005 152 0.132±0.001
5 0.117±0.008 2 0.099±0.002
6 0.003±0.003 1 0.029±0.000
7 0.173±0.013 15 0.216±0.009
8 0.217±0.014 37 0.174±0.005

which again confirms the superiority of our approach to ensemble construction.
We also provide a comparison of both conventional and our approaches to ensemble

construction versus a single best classifier (SBC) in each case. LeteSBC andeENS be bol-
stered resubstitution error achieved with a SBC and an ensemble, respectively. To meet
our goal, the following statistics widely used in machine learning and data mining were
computed over 100 ensemble generations:

- win-tie-loss count, where ‘win’/‘tie’/‘loss’ means the number of times when an en-
semble was superior/equal/inferior in terms of bolstered resubstitution error to a SBC
in the ensemble (in other words, the number of times wheneENS< eSBC, eENS= eSBC,
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eENS> eSBC, respectively).

- ‘min. win’, ‘max. win’, ‘avr. win’ (minimum, maximum, and average differences
eSBC−eENSwhen an ensemble outperforms its SBC,

- ‘min. loss’, ‘max. loss’, ‘avr. loss’ (minimum, maximum, and average differences
eENS−eSBCwhen a SBC outperforms an ensemble.

Tables 8-12 contain values of these statistics. If there were no losses, this fact is marked
as ‘no’. As one can see, both ensemble schemes were superior to a SBC on all eight
datasets for the most part. The degree of success, however, varied, depending on dataset
complexity. For example, Prostate 2 was much easier to classify compared to other datasets
and therefore a SBC often reached the top performance so thatan ensemble had nothing to
improve on. When analyzing the performance of two ensemble schemes, it was observed
that on average, our approach yields better results in the sense that its win (loss) count is
typically higher (lower) and the absolute losses to a SBC arelower, too. In contrast, the
conventional ensemble generating approach sometimes shows spectacular results (e.g. the
high max.win count), but it also suffers many defeats from a SBC. That is, its results are
less predictable since there is no control over complexity of the selected feature subsets and
hence, if such ‘complex’ subsets are selected, a SBC can render ensemble efforts to further
lower error fruitless. With the explicit selection of leastcomplex subsets, our approach is
able to succeed where the comparative approach failed.

Table 8: Comparison of a SBC and two ensembles whenL = 3.

win-tie-loss min.win max.win avr.win min.loss max.loss avr.loss
1 C 84/1/15 0.0014 0.0608 0.0234 0.0014 0.0446 0.0137

O 90/1/9 0.0014 0.0649 0.0277 < 10−4 0.0135 0.0066
2 C 84/3/13 0.0032 0.0629 0.0275< 10−4 0.0548 0.0166

O 96/2/2 0.0016 0.0532 0.0232 0.0065 0.0145 0.0105
3 C 79/2/19 0.0029 0.0824 0.0324 0.0029 0.0324 0.0135

O 98/0/2 0.0029 0.0794 0.0428 0.0059 0.0059 0.0059
4 C 81/1/18 0.0011 0.0700 0.0355 0.0011 0.0578 0.0252

O 99/0/1 0.0022 0.0856 0.0434 0.0056 0.0056 0.0056
5 C 86/0/14 0.0039 0.0824 0.0360 0.0020 0.0735 0.0212

O 92/1/7 0.0020 0.0657 0.0311 0.0020 0.0265 0.0116
6 C 55/7/38 < 10−4 0.0618 0.0224 0.0029 0.1412 0.0292

O 68/4/28 < 10−4 0.0559 0.0195 0.0029 0.0382 0.0123
7 C 91/1/8 0.0067 0.0750 0.0358 0.0017 0.0133 0.0081

O 100/0/0 0.0100 0.0750 0.0426 no no no
8 C 93/1/6 0.0052 0.0931 0.0429 0.0172 0.0569 0.0279

O 99/0/1 0.0017 0.1000 0.0499 0.0103 0.0103 0.0103
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Table 9: Comparison of a SBC and two ensembles whenL = 5.

win-tie-loss min.win max.win avr.win min.loss max.loss avr.loss
1 C 89/0/11 0.0027 0.0716 0.0310 0.0014 0.0581 0.0219

O 96/0/4 0.0027 0.0703 0.0361 0.0068 0.0405 0.0196
2 C 93/1/6 0.0016 0.0694 0.0359 0.0032 0.0274 0.0137

O 100/0/0 0.0016 0.0597 0.0340 no no no
3 C 76/2/22 0.0029 0.0853 0.0352 0.0029 0.0735 0.0217

O 99/1/0 0.0059 0.1000 0.0536 no no no
4 C 84/0/16 0.0033 0.1022 0.0449 0.0022 0.0800 0.0296

O 99/0/1 0.0122 0.1089 0.0578 0.0022 0.0022 0.0022
5 C 96/0/4 0.0029 0.0902 0.0455 0.0078 0.0333 0.0159

O 92/0/8 0.0010 0.0784 0.0386 < 10−4 0.0167 0.0056
6 C 60/11/29 < 10−4 0.0765 0.0232 0.0029 0.0941 0.0221

O 80/4/16 < 10−4 0.0588 0.0201 0.0029 0.0176 0.0083
7 C 100/0/0 0.0033 0.0883 0.0484 no no no

O 100/0/0 0.0200 0.0933 0.0602 no no no
8 C 99/0/1 0.0121 0.1121 0.0682 0.0121 0.0121 0.0121

O 100/0/0 0.0328 0.1224 0.0763 no no no

Table 10: Comparison of a SBC and two ensembles whenL = 7.

win-tie-loss min.win max.win avr.win min.loss max.loss avr.loss
1 C 90/2/8 0.0014 0.0649 0.0308 0.0014 0.0297 0.0084

O 96/1/3 0.0054 0.0662 0.0353 0.0081 0.0270 0.0158
2 C 99/0/1 0.0032 0.0726 0.0400 0.0113 0.0113 0.0113

O 99/1/0 0.0016 0.0694 0.0353 no no no
3 C 88/2/10 0.0029 0.0971 0.0394 0.0088 0.0412 0.0235

O 99/0/1 0.0088 0.1088 0.0566 0.0029 0.0029 0.0029
4 C 80/0/20 0.0022 0.1256 0.0474 0.0044 0.0700 0.0267

O 100/0/0 0.0178 0.1033 0.0652 no no no
5 C 96/0/4 0.0039 0.1078 0.0502 0.0069 0.0363 0.0223

O 96/0/4 0.0039 0.0843 0.0391 0.0029 0.0147 0.0078
6 C 73/3/24 < 10−4 0.0529 0.0194 0.0029 0.0618 0.0105

O 79/11/10 0.0029 0.0500 0.0176 0.0029 0.0176 0.0068
7 C 100/0/0 0.0183 0.0983 0.0595 no no no

O 100/0/0 0.0267 0.1067 0.0701 no no no
8 C 99/0/1 0.0241 0.1379 0.0874 0.0483 0.0483 0.0483

O 100/0/0 0.0414 0.1362 0.0956 no no no

10 Conclusion

We proposed a new ensemble generating scheme using a k-NN as abase classifier. Our ap-
proach leads to lower bolstered resubstitution error compared to the conventional ensemble
approach, purely based on random selection of features, andto a single best classifier in the
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Table 11: Comparison of a SBC and two ensembles whenL = 9.

win-tie-loss min.win max.win avr.win min.loss max.loss avr.loss
1 C 92/1/7 0.0014 0.0811 0.0329 0.0027 0.0270 0.0097

O 97/0/3 0.0027 0.0824 0.0375 0.0014 0.0203 0.0086
2 C 99/0/1 0.0016 0.0903 0.0424 0.0226 0.0226 0.0226

O 100/0/0 0.0032 0.0677 0.0363 no no no
3 C 91/1/8 0.0059 0.1206 0.0405 0.0029 0.0382 0.0158

O 100/0/0 0.0176 0.1029 0.0598 no no no
4 C 83/1/16 0.0011 0.1011 0.0491 0.0011 0.1022 0.0326

O 100/0/0 0.0322 0.1056 0.0709 no no no
5 C 98/0/2 0.0020 0.0990 0.0541 0.0020 0.0039 0.0029

O 100/0/0 0.0029 0.0765 0.0420 no no no
6 C 72/5/23 < 10−4 0.0618 0.0189 0.0029 0.0324 0.0106

O 76/8/16 0.0029 0.0500 0.0173 0.0029 0.0118 0.0051
7 C 100/0/0 0.0167 0.1017 0.0611 no no no

O 100/0/0 0.0400 0.1183 0.0767 no no no
8 C 100/0/0 0.0310 0.1655 0.1036 no no no

O 100/0/0 0.0207 0.1603 0.1038 no no no

Table 12: Comparison of a SBC and two ensembles whenL = 11.

win-tie-loss min.win max.win avr.win min.loss max.loss avr.loss
1 C 91/0/9 0.0014 0.0635 0.0304 0.0014 0.0284 0.0135

O 97/2/1 0.0054 0.0811 0.0401 0.0014 0.0014 0.0014
2 C 100/0/0 0.0016 0.0806 0.0469 no no no

O 100/0/0 0.0081 0.0726 0.0376 no no no
3 C 83/6/11 0.0029 0.0853 0.0422 0.0059 0.0676 0.0193

O 98/0/2 0.0147 0.0941 0.0562 0.0029 0.0029 0.0029
4 C 82/0/18 0.0022 0.0967 0.0422 0.0056 0.0911 0.0380

O 100/0/0 0.0256 0.1133 0.0741 no no no
5 C 100/0/0 < 10−4 0.0990 0.0566 no no no

O 98/0/2 0.0059 0.0794 0.0412 0.0088 0.0108 0.0098
6 C 76/6/18 0.0029 0.0353 0.0168 0.0029 0.0412 0.0108

O 67/21/12 0.0029 0.0441 0.0158 0.0029 0.0265 0.0074
7 C 100/0/0 0.0200 0.1083 0.0653 no no no

O 100/0/0 0.0383 0.1167 0.0766 no no no
8 C 100/0/0 0.0448 0.1603 0.1126 no no no

O 100/0/0 0.0603 0.1603 0.1112 no no no

ensemble. In addition, our scheme outperforms a 3-NN preceded by the RBF algorithm [9],
especially proposed to deal with redundancy among genes.

Our approach originates from the link between dataset complexity and bolstered re-
substitution error established through the copula method.We found that there is positive
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dependence between complexity and error, where low (high) complexity corresponds to
small (large) error. Hence, the dataset complexity serves as a reliable indicator of the ex-
pected classification performance. As a result, selection of least complex subsets of features
implies more accurate ensemble members and therefore it ensures better ensemble perfor-
mance. Extensive experiments with eight gene expression datasets containing different
types of cancer show feasibility of our approach. Its extra attractiveness comes from the
fact that good ensemble performance is achieved with a few 3-NNs (3 to 11), which limits
the number of genes to further analyze.

A Derivatives for the Frank Copula

The definition of the Frank copula is

Cθ(u,v) = −
1
θ

ln

(

1+
(e−θu−1)(e−θv−1)

e−θ −1

)

. (7)

The first-order derivative ofCθ(u,v) wrt u is

∂Cθ(u,v)
∂u

= −
1
θ

1

1+ (e−θu−1)(e−θv−1)
e−θ−1

e−θv−1
e−θ −1

(−θ)e−θu.

After simplifications, we obtain that

∂Cθ(u,v)
∂u

=
e−θu(e−θv−1)

e−θ −1+(e−θu−1)(e−θv−1)
. (8)

By analogy, the first-order partial derivativeCθ(u,v) wrt v is

∂Cθ(u,v)
∂v

=
e−θv(e−θu−1)

e−θ −1+(e−θu−1)(e−θv−1)
. (9)

Then, the second-order partial derivativeCθ(u,v) wrt u is

∂2Cθ(u,v)
∂u2 =

(e−θv−1)

[e−θ −1+(e−θu−1)(e−θv−1)]
2

[

θe−2θu(e−θv−1)

− θe−θu
(

e−θ −1+(e−θu−1)(e−θv−1)
)]

=
θe−θu(e−θv−1)

[e−θ −1+(e−θu−1)(e−θv−1)]
2

[

e−θu(e−θv−1)

− e−θ +1− (e−θu−1)(e−θv−1)
]

=
θe−θu(e−θv−1)

[e−θ −1+(e−θu−1)(e−θv−1)]
2

[

e−θ(u+v) −e−θu

− e−θ +1−e−θ(u+v) +e−θv+e−θu−1
]

.
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After some terms cancel out each other, we obtain that

∂2Cθ(u,v)
∂u2 =

θe−θu(e−θv−1)(e−θv−e−θ)

[e−θ −1+(e−θu−1)(e−θv−1)]
2 , (10)

and by analogy, the second-order partial derivativeCθ(u,v) wrt v is

∂2Cθ(u,v)
∂v2 =

θe−θv(e−θu−1)(e−θu−e−θ)

[e−θ −1+(e−θu−1)(e−θv−1)]
2 . (11)

Given thatθ > 0 (positive dependence observed between dataset complexity and bol-
stered resubstitution error), the following pairs of inequalities hold∀u,v∈ [0,1]:

e−θv−1≤ 0, e−θv−e−θ ≥ 0,

e−θu−1≤ 0, e−θu−e−θ ≥ 0.

Hence, the product of the inequalities in each row above is less than or equal to zero.

Given that other terms in Eqs. 10-11 are positive, it means that ∂2Cθ(u,v)
∂u2 ≤ 0 and∂2Cθ(u,v)

∂v2 ≤ 0,
which, in turn, implies thatCθ(u,v) is concave.

B Marsaglia Polar Method

This is the polar form of the Box-Müller transformation [33] intended to generate Gaussian
pseudo-random numbers from the uniform pseudo-random numbers. Its C-like pseudo-
code is given below, whererand() is the function for uniform [0,1] random number gener-
ation, p is the data dimensionality,n is equal toMMC (see Section 5),log() is the natural
logarithm,m ands are the mean and the standard deviation, respectively. After each itera-
tion over i two samples are generated and stored inX so that aftern/2 iterations, we have
2MMC/2 = MMC samples.

for (i = 0; i < n/2; i++)
{

/* Generate normal random numbers */
for (j = 0; j < p; j++)
{

do
{

u1 = 2.0*rand()/RAND_MAX - 1;
u2 = 2.0*rand()/RAND_MAX - 1;
r = u1*u1 + u2*u2;

} while(r == 0 || r >= 1);
r = sqrt(-2*log(r)/r);
X[i*p+j)] = m[j] + s[j]*r*u1;
X[(i+n/2)*p+j] = m[j] - s[j]*r*u2;

}
}
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