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Abstract. The computational genome-wide annotation of gene func-
tions requires the prediction of hierarchically structured functional classes
and can be formalized as a multiclass, multilabel, multipath hierarchi-
cal classification problem, characterized by very unbalanced classes. We
recently proposed two hierarchical protein function prediction methods:
the Hierarchical Bayes (hbayes) and True Path Rule (tpr) ensemble
methods, both able to reconcile the prediction of component classifiers
trained locally at each term of the ontology and to control the overall
precision-recall trade-off. In this contribution, we focus on the experi-
mental comparison of the hbayes and tpr hierarchical gene function
prediction methods and their cost-sensitive variants, using the model or-
ganism S. cerevisiae and the FunCat taxonomy. The results show that
cost-sensitive variants of these methods achieve comparable results, and
significantly outperform both flat and their non cost-sensitive hierar-
chical counterparts.

1 Introduction

The hierarchical prediction of protein function annotations, such as terms in
the Gene Ontology (GO), is a complex computational problem, characterized by
several items: the number of functional classes is large, and a gene may belong
to multiple classes; functional classes are structured according to a hierarchy;
classes are usually unbalanced, with more negative than positive examples [1].
The simplest approach makes predictions for each term independently and, con-
sequently, the predictor may assign to a single protein a set of terms that are
inconsistent with one another. A possible solution for this problem is to train a
classifier for each term of the reference ontology, to produce a set of prediction
at each term and, finally, to reconcile the predictions by tacking into account
the structure of the ontology. Many recent published works clearly demonstrated
that this approach ensures an increment in precision, but this comes at expenses
of the overall recall [2, 3].

Different research lines have been proposed for the hierarchical prediction
of gene functions, ranging from structured-output methods, based on the joint



kernelization of both input variables and output labels [4, 5], to ensemble meth-
ods, where different classifiers are trained to learn each class, and then com-
bined to take into account the hierarchical relationships between functional
classes [6, 3, 7].

Our work goes along this latter line of research. Our main contribution to
this research area is represented by two methods, the hbayes and tpr hierarchi-
cal ensemble-based gene function predictors [8, 16]. Both the methods are based
on the concept of per-term predictions “reconciliation” which exploits informa-
tion derived from the hierarchical relationships between the terms composing
the considered functional ontology [6]. In this approach the first step is consti-
tuted by the prediction of protein functions (that is, the Functional Catalogue
(FunCat) [10] or the Gene Ontology (GO) [11] terms) on a per-term basis. The
obtained predictions are then combined in a post processing stage. The combi-
nation step can be realized using many methods and depends on the individual
predictions performed by the component classifiers at each term of the ontology.

As observed in [6], many reconciliation methods yield reconciled probabilities
with significantly lower precision than the original, unreconciled estimates. This
problem can be solved by introducing one or more parameters able to modulate
the overall precision but this approach is often associated with a corresponding
loss in sensitivity that decrease the practical relevance of the prediction method.
In order to ensure the applicability of the hbayes and tpr ensemble methods
in real world problems we recently proposed variants able to control the overall
precision-recall trade-off. In this contribution we compare the hierarchical gene
function prediction performances of the hbayes and tpr ensemble methods,
both in their respective “vanilla” and cost-sensitive versions, in order to highlight
differences in their ability to reconcile base learners predictions and to preserve
the overall precision and recall.

2 Methods

2.1 Concepts and notation

Genome-wide gene function prediction can be modeled as a hierarchical, multi-
class and multilabel classification problem. Indeed a gene/gene product x can be
assigned to one or more functional classes of the set Ω = {ω1, ω2, . . . , ωm}. The
assignments can be coded through a vector of multilabels y =< y1, y2, . . . , ym >∈
{0, 1}m, by which if x belongs to class ωi, then yi = 1, otherwise yi = 0, where
the variable i, 1 ≤ i ≤ m, refers to the indices corresponding to the m classes
belonging to the set Ω.

In both the Gene Ontology (GO) and FunCat taxonomies the functional
classes are structured according to a hierarchy and can be represented by a
directed graph, where nodes correspond to classes, and arcs to relationships
between classes. Hence the node corresponding to the class ωi can be simply
denoted by i. We represent the set of children nodes of i by child(i), and the
set of its parents by par(i). Moreover ychild(i) denotes the labels of the children



classes of node i and analogously ypar(i) denotes the labels of the parent classes of
i. Note that in FunCat only one parent is permitted, since the overall hierarchy is
a tree forest, while in the GO, more parents are allowed, because the relationships
are structured according to a directed acyclic graph.

Hierarchical ensemble methods train a calibrated classifier at each node of the
taxonomy T . This is used to derive estimates p̂i(x) of the probabilities pi(x) =
Pr

(
Vi = 1 | Vpar(i) = 1, x

)
for all x and i, where (V1, . . . , VN ) ∈ {0, 1}N is the

vector random variable modeling the multilabel of a gene x and par(i) is the
unique parent of node i in T . In order to enforce that only multilabels V that
respect T should have nonzero probability, the base learner at node i is only
trained on the subset of the training set including all examples (x,y) such that
ypar(i) = 1.

All the experiments presented in this work are performed using FunCat as
reference functional ontology.

2.2 The Hierarchical Bayes (HBAYES) ensemble

The hbayes ensemble method is a general technique for solving hierarchical
classification problems on generic taxonomies [12, 13]. In the evaluation phase,
hbayes predicts the Bayes-optimal multilabel ŷ ∈ {0, 1}N for a gene x based
on the estimates p̂i(x) for i = 1, . . . , N . Namely, ŷ = argminy E

[
`H(y, V ) | x ]

,
where the expectation is w.r.t. the distribution of V . Here `H(y, V ) denotes the
H-loss [12, 13], measuring a notion of discrepancy between the multilabels y and
V . Given fixed cost coefficients c1, . . . , cN > 0, `H(ŷ, v) is computed as follows:
all paths in the taxonomy T from the root 0 down to each leaf are examined
and, whenever a node i ∈ {1, . . . , N} is encountered such that ŷi 6= yi, then ci is
added to the loss, while all the other loss contributions from the subtree rooted
at i are discarded. As shown in [13], ŷ can be computed via a simple bottom-up
message-passing procedure whose only parameters are the probabilities p̂i(x). In
the rest of the paper if there is no ambiguity we denote p̂i(x) simply by p̂i.

2.3 Cost-sensitive variant of HBAYES

A simple cost-sensitive variant, hbayes-cs, of hbayes, described in [8] is suitable
for learning datasets whose multilabels are sparse. This variant introduces a
parameter α that is used to trade-off the cost of false positive (FP) and false
negative (FN) mistakes. We start from an equivalent reformulation of the hbayes
prediction rule:

ŷi = argmin
y∈{0,1}


c−i p̂i(1− y) + c+

i (1− p̂i)y + p̂i{y = 1}
∑

j∈child(i)

Hj


 (1)

where Hj = c−j p̂j(1 − ŷj) + c+
j (1 − p̂j)ŷj +

∑
k∈child(j) Hk is recursively defined

over the nodes j in the subtree rooted at i with each ŷj set according to (1),
and {A } is the indicator function of event A. Furthermore, c−i = c+

i = ci/2 are



the costs associated to a FN (resp., FP) mistake. In order to vary the relative
costs of FP and FN, in [8] we introduce a factor α ≥ 0 such that c−i = αc+

i while
keeping c+

i + c−i = 2ci. Then (1) can be rewritten as

ŷi = 1 ⇐⇒ p̂i


2ci −

∑

j∈child(i)

Hj


 ≥ 2ci

1 + α
. (2)

This is the rule used by hbayes-cs in our experiments.

2.4 The True Path Rule (TPR) ensemble

The True Path Rule (tpr) ensemble method [16] not only explicitly takes into
account the hierarchical relationships between functional classes, but is also di-
rectly inspired by the true path rule that can be summarized as follows [14]:
“An annotation for a class in the hierarchy is automatically transferred to its
ancestors, while genes unannotated for a class cannot be annotated for its de-
scendants”. According to this rule, that governs the annotations of both GO
and FunCat taxonomies, the proposed ensemble method is characterized by a
two-way asymmetric flow of information that traverses the graph-structured en-
semble: positive predictions for a node influence in a recursive way its ancestors,
while negative predictions influence its offsprings. The resulting ensemble em-
beds the functional relationships between functional classes that characterize
the hierarchical taxonomy. In other words, if a gene is annotated with a specific
functional term (functional class), then it is annotated with all the ”parent”
classes, and with all its ancestors in a recursive way.

The base classifiers estimate local probabilities p̄i(x) that a given example x
belongs to class ωi, but the core of the algorithm is represented by the evaluation
phase, where the ensemble provides an estimate of the “consensus” global prob-
ability pi(x). Let us consider the set φi(x) of the children of node i for which we
have a positive prediction for a given example x:

φi(x) = {j|j ∈ child(i), ŷj(x) = 1} (3)

The global consensus probability p̂i(x) of the ensemble depends both on the
local prediction p̄i(x) and on the prediction of the nodes belonging to φi(x):

p̂i(x) =
1

1 + |φi(x)|


p̄i(x) +

∑

j∈φi(x)

p̂j(x)


 (4)

The decision ŷi(x) at node/class i is set to 1 if p̂i(x) > t, and to 0 otherwise (a
natural choice for t is 0.5). Note that the restriction to nodes belonging to φi(x)
in the summation of eq. 4 depends on the true path rule: indeed only children
nodes for which we have a positive prediction can influence their parent. In the
leaf nodes the sum of eq. 4 disappears and eq. 4 reduces to p̂i(x) = p̄i(x). In
this way positive predictions propagate from bottom to top. On the contrary if
for a given node ŷi(x) = 0, then this decision is propagated to its subtree.



2.5 The weighted TPR (TPR-W) method

In the tpr algorithm there is no way to explicitly balance the local prediction
p̄i(x) at node i with the positive predictions coming from its offsprings (eq. 4).
By balancing the local predictions with the positive predictions coming from the
ensemble, we can explicitly modulate the interplay between local and descendant
predictors. To this end we introduced a weight w, 0 ≤ w ≤ 1, such that if
w = 1 the decision at node i depends only by the local predictor, otherwise the
prediction is shared proportionally to w and 1−w between respectively the local
parent predictor and the set of its children [15]:

p̂i(x) = w · p̄i(x) +
1− w

|φi(x)|
∑

j∈φi(x)

p̂j(x) (5)

3 Experimental Setup

In order to compare the capabilities of the hbayes and tpr methods in hi-
erarchical gene function prediction, we predicted the functions of genes of the
unicellular eukaryote S. cerevisiae at genome and ontology-wide level using the
FunCat taxonomy [10], and the data sets described below.

Data sets : In our experiments we used 7 bio molecular data sets, whose char-
acteristics are summarized in Tab. 1. In order to get a not too small set of positive

Table 1. Data sets

Data set Description n. examples n. feat. n.classes

Pfam-1 protein domain binary data from Pfam 3529 4950 211

Pfam-2 protein domain log E data from Pfam 3529 5724 211

Phylo phylogenetic data 2445 24 187

Expr gene expression data 4532 250 230

PPI-BG PPI data from BioGRID 4531 5367 232

PPI-VM PPI data from von Mering experiments 2338 2559 177

SP-sim Sequence pairwise similarity data 3527 6349 211

examples for training, for each data set we selected only the FunCat-annotated
genes and the classes with at least 20 positive examples. As negative examples
we selected for each node/class all genes not annotated to that node/class, but
annotated to its parent class. From the data sets we also removed uninformative
features (e.g., features with the same value for all the available examples).



Cross validated comparison of ensemble methods: For each ensemble
we used gaussian SVMs as base learners. The probabilistic output of the SVMs
composing the ensembles has been computed using the sigmoid fitting proposed
in [17]. Given a set p̂1, . . . , p̂N of trained estimates, we compared on these es-
timates the results of the hbayes and TPR ensembles with their correspond-
ing cost-sensitive versions: hbayes-cs and tpr-w. Both the cost factor α for
hbayes-cs and the w parameter in tpr-w ensembles have been set by internal
cross-validation of the F-measure with training data. The threshold t of tpr
ensembles has been set to 0.5 in all the experiments. The performance of the
ensembles have been compared using external 5-fold cross-validation techniques.

Performances evaluation : Considering the unbalance between positive and
negative examples, we could adopt the classical F-score to jointly take into ac-
count the precision and recall of the ensemble for each class of the hierarchy.
Nevertheless, the classical precision and recall measures, conceived for unstruc-
tured classification problems, appear to be inadequate to fully address the hier-
archical nature of functional annotation. To this end we used the Hierarchical
F-measure. This measure is based on the estimation of how much the predicted
classification paths correspond to the correct paths. More precisely, given a gen-
eral taxonomy G representing the graph of the functional classes, for a given
gene/gene product x consider the graph P (x) ⊂ G of the predicted classes and
the graph C(x) of the correct classes associated to x, and let be l(P ) the set
of the leaves (nodes without children) of the graph P . Given a leaf p ∈ P (x),
let be ↑ p the set of ancestors of the node p that belong to P (x), and given a
leaf c ∈ C(x), let be ↑ c the set of ancestors of the node c that belong to C(x).
Starting from the definitions of Hierarchical Precision (HP), Hierarchical Recall
(HR) and Hierarchical F-score (HF) provided in [18], it is easy to demonstrate
that in the case of the FunCat taxonomy, since it is structured as a tree, we can
simplify HP , HR and HF as follows:

HP =
1

|l(P (x))|
∑

p∈l(P (x))

|C(x) ∩ ↑p|
| ↑p|

HR =
1

|l(C(x))|
∑

c∈l(C(x))

| ↑c ∩ P (x)|
| ↑c|

HF =
2 ·HP ·HR

HP + HR
(6)

The hierarchical F-measure expresses the correctness of the structured prediction
of the functional classes, taking into account also partially correct paths in the
overall hierarchical taxonomy, thus providing in a synthetic way the effectiveness
of the hierarchical prediction.



4 Results

4.1 Hierarchical F-measure results

As explained in the experimental set-up (Sect. 3), the hierarchical F-measure is
a more appropriate performance metric for the hierarchical classification of gene
functions. We compared the performances of the considered “vanilla” and cost-
sensitive probability reconciliation methods using the Hierarchical F-measure
and gaussian SVMs as component classifiers. The results collected in this test
are reported in Tab. 2. flat ensembles corresponds to predictions directly made

Table 2. Hierarchical F-measures comparison between “vanilla” and cost-sensitive hi-
erarchical methods. tpr: True Path Rule hierarchical ensembles; hb-cs: Hierarchical
Bayesian bottom-up Cost Sensitive ensembles; tpr-w True Path Rule weighted hier-
archical ensembles. Base learners: gaussian SVMs

Data set flat hbayes tpr hb-cs tpr-w

Pfam-1 0.1624 0.3359 0.3113 0.4518 0.4188

Pfam-2 0.0402 0.0476 0.1929 0.2030 0.1892

Phylo 0.1196 0.0694 0.2557 0.2682 0.2780

Expr 0.1153 0.0639 0.2390 0.2555 0.2638

PPI-BG 0.0836 0.0847 0.2709 0.2920 0.2315

PPI-VM 0.1720 0.3468 0.3983 0.4329 0.4381

SP-sim 0.1432 0.3246 0.2502 0.4542 0.4501

Average 0.1194 0.1818 0.2732 0.3368 0.3242

by the base learners without any ”reconciliation” of the local predictions. Ac-
cording to the Wilcoxon signed-ranks test [19], both hbayes-cs and tpr-w out-
perform at 0.01 significance level flat, hbayes and tpr ensemble. No significant
difference between hbayes-cs and tpr-w can be detected (p-value ' 0.24).

4.2 Tuning precision and recall in HBAYES-CS and TPR-W
ensembles

In order to compare the capabilities of both the hbayes and TPR ensemble
methods in the modulation of the precision-recall trade-off we tested their per-
formances by varying the values of alpha and the parent weight w hyper param-
eters. Results of this test are reported in (Fig. 1).

The precision/recall characteristics of hbayes-cs ensemble can be tuned via
a single global parameter, the cost factor α = c−i /c+

i (Sect. 2). By setting α = 1
we obtain the original version of the hierarchical Bayesian ensemble and by incre-
menting α we introduce progressively lower costs for positive predictions, thus
encouraging the ensemble to make positive predictions. Indeed, by increasing
the cost factor, the recall of the ensemble tends to increase (Fig. 1 (a) and (c)).
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Fig. 1. Precision, Recall and F-measure as a function of the parent weight in tpr-
w ensembles and of the global α parameter in hbayes-cs. PPI BioGRID data: (a)
hbayes-cs (b) tpr-w; Pairwise sequence similarity data: (c) hbayes-cs (d) tpr-w.

The behavior of the precision is more complex: it tends to increase and then to
decrease after achieving a maximum. Quite interestingly, the maximum of the
hierarchical F-measure is achieved for values of α between 2 and 5 not only for
the two data sets reported in Figure 1, but also for all the considered data sets
(data not shown).

As seen for hbayes-cs also the tpr-w ensembles is capable of tuning pre-
cision and recall rates, through a single global parameter: the weight w (eq. 5).
Fig. 1 (graphs (b) and (d) ) shows the hierarchical precision, recall and F-measure
as functions of the parameter w. For small values of w (w can vary from 0 to 1)
the weight of the decision of the parent local predictor is small, and the ensem-
ble decision depends mainly by the positive predictions of the offsprings nodes
(classifiers): as a consequence we obtain a higher hierarchical recall for the tpr-
w ensemble. On the contrary higher values of w correspond to a higher weight
of the parent predictor, with a resulting higher precision. The opposite trends
of precision and recall are quite clear in graphs (b) and (d) of Fig. 1. The best
F-score is achieved for “middle” or relatively high values of the w parameter: in



practice in most of the analyzed data sets the best F-measure is achieved for w
between 0.5 and 0.8, but if we need higher recall rates (at the expense of the
precision) we can choose lower w values, and higher values of w are needed if
precision is our first aim. Comparable results were obtained for all the considered
data sets (data not shown)

5 Conclusions

In this work we compared the performances of two recently proposed hierarchi-
cal gene function prediction methods, the hbayes and tpr-w ensemble systems.
Looking at the results summarized in Tab. 1 it is clear that the usage of hier-
archical prediction methods results in a consistent increment in performances
if compared with methods that does not take into account the structure of the
reference ontology. Also the application of hierarchical methods unable to finely
modulate the precision-recall trade-off is suboptimal because the hierarchical
F-measure is consistently lowered by the loss in sensitivity associated to the in-
crement in precision due to the reconciliation of the local predictions.
With respect to the comparison of the ability of the cost-sensitive variants of
both the hbayes and tpr methods in the modulation of the overall precision-
recall trade-off, the observed results do not allow to define a clear winner. Indeed
the performances of the compared methods are quite similar, even if small dif-
ferences can be found in the performances achieved in the evaluation of different
datasets. Both methods share the same top-down strategy to set negative nodes
belonging to the subtree rooted at a node predicted as negative by the ensemble,
but they pursue very different strategies in the bottom-up computation of the
ensemble probabilities. Indeed hbayes approximates the Bayesian-optimal pre-
dictor w.r.t. the H-loss, while tpr is based on a heuristic borrowed from the true
path rule. Interestingly enough, these different methods lead to similar results,
and their cost-sensitive counterparts significantly outperform flat and ”vanilla”
hierarchical ensembles. The hierarchical algorithms are general enough to be ap-
plied to problems other then gene function prediction. Indeed, the cost-sensitive
hbayes and tpr methods, even if conceived for gene function problems, can be
applied to other hierarchical classification problems where the descendant classes
can be interpreted as parts or subclasses of their corresponding ancestors.
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