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Abstract. The assessment of the reliability of clusters discovered in
bio-molecular data is a central issue in several bioinformatics problems.
Several methods based on the concept of stability have been proposed to
estimate the reliability of each individual cluster as well as the ”optimal”
number of clusters. In this conceptual framework a clustering ensemble
is obtained through bootstrapping techniques, noise injection into the
data or random projections into lower dimensional subspaces. A mea-
sure of the reliability of a given clustering is obtained through specific
stability /reliability scores based on the similarity of the clusterings com-
posing the ensemble. Classical stability-based methods do not provide
an assessment of the statistical significance of the clustering solutions
and are not able to directly detect multiple structures (e.g. hierarchical
structures) simultaneously present in the data. Statistical approaches
based on the chi-square distribution and on the Bernstein inequality,
show that stability-based methods can be successfully applied to the
statistical assessment of the reliability of clusters, and to discover multi-
ple structures underlying complex bio-molecular data. In this paper we
provide an overview of stability based methods, focusing on stability in-
dices and statistical tests that we recently proposed in the context of the
analysis of gene expression data.

1 Introduction

Clustering of complex of bio-molecular data represents one of the main prob-
lems in bioinformatics [1]. Classes of co-expressed genes, classes of functionally
related proteins, or subgroups of patients with malignancies differentiated at
bio-molecular level can be discovered through clustering algorithms, and several
other tasks related to the analysis of bio-molecular data require the development
and application of unsupervised clustering techniques [2, 3, 4]. From a general
standpoint the discovered clusters depend on the clustering algorithm, the initial
condition, the parameters of the algorithm, the distance or correlation measure
applied to the data and other clustering and data-dependent factors [5].



Moreover the bioinformatics domain raises specific and challenging problems
that characterize clustering applications in bio-molecular biology and medicine.
In particular the integration of multiple data sources [6], the very high dimen-
sionality [7, 8], and the visualization of the data [9, 10], as well as interactive
data analysis in clustering genomic data [11, 12] represent relevant topics in the
unsupervised analysis of bio-molecular data.

Another relevant problem is the assessment of the reliability of the discovered
clusters, as well as the proper selection of the "natural” number of clusters
underlying bio-molecular data [13, 14]. Indeed in many cases we have no sufficient
biological knowledge to ”a priori” evaluate both the number of clusters (e.g. the
number of biologically distinct tumor classes), as well as the validity of the
discovered clusters (e.g. the reliability of new discovered tumor classes). Note
that this is an intrinsically ”ill-posed” problem, since in unsupervised learning
we lack an external objective criterion, that is we have not an equivalent of a
priori known class label as in supervised learning, and hence the evaluation of
the validity/reliability of the discovered classes becomes elusive and difficult.

Most of the works focused on the estimate of the number of clusters in gene
expression data [15, 16, 17, 18, 19], while the problem of stability of each individ-
ual cluster has been less investigated. Nevertheless, the stability and reliability
of the obtained clusters is crucial to assess the confidence and the significance
of a bio-medical discovery [20, 21].

Considerings the complexity and the characteristics of the data used in bioin-
formatics applications (e.g. the low cardinality and very high dimensionality of
DNA microarray data), classical parametric methods in many cases may fail to
discover structures in the data. This is the main reason why non parametric
methods, based on the concept of the stability, have been recently introduced in
the context of significant bioinformatics problems.

In particular, several methods based on the concept of stability have been
proposed to estimate the ”optimal” number of clusters in complex bio-molecular
data [22, 23, 24, 17, 25, 26]. In this conceptual framework multiple clusterings
are obtained by introducing perturbations into the original data, and a cluster-
ing is considered reliable if it is approximately maintained across multiple per-
turbations. Several perturbation techniques have been proposed, ranging from
bootstrap techniques [19, 16, 23|, to random projections to lower dimensional
subspaces [21, 27] to noise injection procedures [20].

Another major problem related to stability-based methods is to estimate the
statistical significance of the structures discovered by clustering algorithms. To
face this problem we proposed a x2-based statistical test [26] and a test based on
the classical Bernstein inequality [28, 29]. These statistical tests may be applied
to any stability method based on the distribution of similarity measures between
pairs of clusterings. We experimentally showed that by this approach we may
discover multiple structures simultaneously present in the data (e.g. hierarchical
structures), associating a p-value to the clusterings selected by a given stability-
based method for model order selection [30, 31].



In this paper we introduce the main concepts behind stability based methods,
focusing on the work developed in [27, 26, 29]. More precisely, in the next sec-
tion an overview of the main characteristics of stability-based methods is given.
Then in Sect. 3 a stability index, proposed in [26] to assess the reliability of a
clustering solution, is described. Sect. 4 introduces two statistical tests to assess
the significance of overall clustering solutions, while Sect. 5 provides an intro-
duction to stability indices proposed in [27] to estimate the reliability of each
individual cluster inside a given clustering. Then the main drawbacks and lim-
itations of the proposed approaches, as well as new research lines are discussed
and the conclusions end the paper. In the appendix 7, we briefly describe the
main characteristics of two R packages implementing the stability indices and
statistical tests described in the previous sections.

2 An overview of stability based methods

A major requirement for clustering algorithms is the reproducibility of their so-
lutions on other data sets drawn from the same source. In this context, several
methods based on the concept of stability have been proposed to estimate the
”optimal” number of clusters in clustered data [23, 24]: multiple clusterings are
obtained by introducing perturbations into the original data, and a clustering is
considered reliable if it is approximately maintained across multiple perturba-
tions.

A general stability-based algorithmic scheme for assessing the reliability of
clustering solutions may be summarized in the following way:

1. For a fixed number k of clusters, randomly perturb the data many times
according to a given perturbation procedure.

2. Apply a given clustering algorithm to the perturbed data

3. Apply a given clustering similarity measure to multiple pairs of k-clusterings
obtained according to steps 1 and 2.

4. Use appropriate similarity indices (stability scores) to assess the stability of
a given clustering.

5. Repeat steps 1 to 4 for multiple values of k£ and select the most stable
clustering(s) as the most reliable.

Several approaches have been proposed to implement the first step: a random
”perturbation” of the data may be obtained through bootstrap samples drawn
from the available data [19, 23], or random noise injection into the data [20]
or random subspace [21] or random projections into lower dimensional sub-
spaces [27].

The application of a given algorithm (step 2) represents a choice based on
7a priori” knowledge or assumptions about the characteristics of the data. To
estimate the similarity between clusterings (step 3), classical measures, such as
the Rand Index [32], or the Jaccard or the Fowlkes and Mallows coefficients [5] or
their equivalent dot-product representations [16] may be applied. More precisely,



for a given clustering algorithm C applied to a data set X, we may obtain the
following clustering;:

C(X, k) =< Ay, Ag, ..., A, >, U A4, =X (1)

For each clustering C' = C(X, k) we may obtain a pairwise similarity matriz M
with n x n elements, where n is the cardinality of X:
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Given two clusterings C") and C'(® obtained from the same data set X, we may
compute the corresponding similarity matrices M) and M. Then we count
the number of entries M; ; for which M) and M) have corresponding values
equal to 1 (that is the number of entries N1; for which the clusterings agree about
the membership of a pair of examples to the same cluster). Equivalently we may
compute Npg, that is the number of entries for which a given pair of examples
belongs to the same cluster in CV), but does not belong to the same cluster in
C®@). Ny; and Nyo can be computed in the same way. From this quantities we
may compute the classical similarity measures between clusterings:

the Matching coefficient:
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the Jaccard coefficient:
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Several stability indices for model order selection have been proposed in the
literature (see, e.g. [20, 21, 23, 24]): very schematically they can be divided into
indices that use statistics of the similarity measures [21, 27] or their overall
empirical distribution [16, 26].

The last step, that is the selection of the most stable/reliable clustering,
given a set of similarity measures and the related stability indices, has been
usually approached by choosing the best scored clustering (according to the
chosen stability index). A major problem in this last step is represented by the
estimate of the statistical significance of the discovered solutions.

3 A stability index based on the distribution of the
similarity measures

In [26] we extended the approach proposed by Ben-Hur, Ellisseeff and Guyon [16],
by providing a quantitative estimate of a stability score based on the overall dis-
tribution of the similarities between pairs of clusterings.



Let be C a clustering algorithm, p(D) a given random perturbation procedure
applied to a data set D and sim a suitable similarity measure between two
clusterings (e.g. the Fowlkes and Mallows similarity [33]). For instance p may be
a random projection from a high dimensional to a low dimensional subspace [34],
or a bootstrap procedure to sample a random subset of data from the original
data set D [16].

We define S (0 < Sk < 1) as the random variable given by the similarity
between two k-clusterings obtained by applying a clustering algorithm C to pairs
D, and D5 of random independently perturbed data. The intuitive idea is that if
Sk is concentrated close to 1, the corresponding clustering is stable with respect
to a given controlled perturbation and hence it is reliable.

As an example, consider a a 1000-dimensional synthetic multivariate gaus-
sian data set with relatively low cardinality (60 examples), characterized by a
two-level hierarchical structure, highlighted by the projection of the data into
the two main principal components (Fig. 1): indeed a two-level structure, with
respectively 2 and 6 clusters is self-evident in the data.
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Fig. 1: A two-level hierarchical structure with 2 and 6 clusters is revealed by principal
components analysis (data projected into the two components with highest variance).

We can estimate Sy, for the number of clusters k varying e.g. from 2 to 9.
This can be performed by using 100 pairs of Bernoulli projections [26], with
a distortion bounded to 20 % with respect to the original data, yielding to
random projections from 1000 to 479-dimensional subspaces, and using PAM
(Partitioning Around Medoids) as clustering algorithm [35]. The distribution
of the similarity values is depicted in Fig. 2: the histograms of the similarity
measures for £ = 2 and k = 6 clusters are tightly concentrated near 1, showing
that these clusterings are very stable, while for other values of k£ the similarity
measures are spread across multiple values.
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Fig. 2: Histograms of the similarity measure distributions for different numbers of
clusters.

These results suggest that we could try to exploit the cumulative distribution
of the similarities between pairs of clusterings to compute a reliable stability score
for a given k-clustering. Indeed if the similarities are spread across multiple
values, the clustering is unstable, while if they are cumulated close to 1 the
clustering is stable. In the following we derive a more formal derivation of a
stability score based on the cumulative distribution of the similarity measure
between clusterings.

Let be fi(s) the density function of the random variable Sk, and

ne) - [ C fuls)ds (6)

its cumulative distribution function.



We define g(k) as the integral of the cumulative distribution function:

o(k) = / Fi(s)ds (7)

Intuitively g(k) represents the ”concentration” of the similarity values close to 1;
that is, if g(k) ~ 0 then the distribution of the values of Sy is concentrated near
1, or, in other words, the k-clustering is stable. On the other hand, if g(k) ~ 1
then the clusterings are totally unstable, while if the distribution is close to the
uniform distribution, we have g(k) ~ 1/2.

We may directly estimate eq. 7 by numerical integration, or we may more
easily obtain g(k) from the estimate of the expectation E[Sj]:

E[Sk] :/0 sfk(s)ds:/o sF}(s)ds
1 1
= sFy(s) o —/ Fr(s)ds =1 —/ Fy(s)ds (8)

0 0

Hence from eq. 8 we may easily compute g(k):

o) = [ Fi(s)ds =1~ E[5) (9)

Eq. 9 shows that we have a very stable and reliable clustering (E[S] close to
1), if and only if g(k) is close to 0.

In practice we can compute the empirical means £ of the similarity values,
while varying the number of clusters k from 2 to H and then we can perform a
sorting of the obtained values:

(0,35, Em) "' (&p(1)>&p2)s - - - > Ep(r—1)) (10)

where p is the permutation index such that §,1) > §p0) 2> ... > Eu—1)-
Roughly speaking, this ordering represents the "most reliable” p(1)-clustering
down to the least reliable p(H — 1)-clustering and &, provides a stability score
of the obtained k-clustering.

4 Statistical tests to assess the significance of overall
clustering solutions

In [26] we proposed a x? test to assess the significance of clustering solutions
and to discover multiple structures underlying gene expression data. Moreover,
in [28, 36], we proposed a distribution-free approach that does not assume any
”a priori” distribution of the similarity measures, and that does not require any
user-defined additional parameter, using the classical Bernstein inequality [37].



4.1 A x2-based test to discover multiple structures in bio-molecular
data

Consider a set of k-clusterings k € IC, where K is a set of numbers of clusters. By
estimating the expectations E[Sg] or equivalently by computing eq. 7 through
numerical integration, we obtain a set of values G = {gx|k € K}. We can sort G
obtaining G with values g; in ascending order. For each k-clustering we consider
two groups of pairwise clustering similarities values separated by a threshold ¢°
(a reasonable threshold could be t° = 0.9.). Thus we may obtain: P(Sy > t°) =
1— Fi(s =t°), where Fi(s = t°) is computed according to eq. 6. If n represents
the number of trials for estimating the value of Sy then xp = P(S > t°)n is the
number of times for which the similarity values are larger than ¢°. The x; may
be interpreted as the successes from |K| binomial populations with parameters
0. If the number of trials n is sufficiently large, and setting X as a random
variable that counts how many times Sy > t°, we have that the following random
variable, for sufficiently large values of n is distributed according to a normal
distribution:

Xk — nGk

m ~ N(0,1) (11)

A sum of i.i.d. squared normal variables is distributed according to a x? distri-
bution:

DR VNP (12)

Pt n0y (1 — )

Considering the null hypothesis Hy: all the 6 are equal to 6, where the unknown
ZkeK Tk

0 is estimated through its pooled estimate 6 = =Kn then the null hypothesis
may be evaluated against the alternative hypothesis that the 8y are not all equal
using the statistic

(z — n9
= Z X|21q—1 (13)

pre n9 1—-6

Ity > Xi,wq—l we may reject the null hypothesis at « significance level,
that is we may conclude that with probability 1 — « the considered proportions
are different, and hence that at least one k-clustering significantly differ from
the others. Using the above test we start considering all the k-clustering. If a
significant difference is registered according to the statistical test we exclude
the last clustering (according to the sorting of G). This is repeated until no
significant difference is detected (or until only 1 clustering is left out): the set of
the remaining (top sorted) k-clusterings represents the set of the estimate stable
number of clusters discovered (at « significance level).

It is worth noting that the above y?-based procedure can be also applied to
automatically find the optimal number of clusters independently of the applied
perturbation method.

Anyway, note that with the previous x2-based statistical test we implicitly
assume that some probability distributions are normal. Moreover test results
depend on the choice of user-defined parameters (the threshold ¢°). Using the



classical Bernstein inequality [37] we may apply a partially ”distribution inde-
pendent” approach to assess the significance of the discovered clustering.

4.2 A Bernstein inequality-based test to discover multiple
structures in bio-molecular data

We briefly recall the Bernstein inequality, because this inequality is used to
build-up our proposed hypothesis testing procedure, without introducing any
user defined parameter.

Bernstein inequality. If Y7,Y5,...,Y,, are independent random variables
st. 0 <Y; <1, with u = E[Y;],0% = Var[V;],Y = 3. Y;/n then

—na?

Prob{Y — pu > A} < e27+2/34 (14)
Consider the following random variables:
Py = Sp) = Spy  and - Xi = &) — &pii) (15)

We start considering the first and last ranked clustering p(1) and p(H). In
this case the null hypothesis becomes: E[S,1)] < E[Spm)], that is: E[S,1)] —
E[Spm)] = E[Py] < 0. The distribution of the random variable Xz (eq. 15) is
in general unknown; anyway note that in the Bernstein inequality no assumption
is made about the distribution of the random variables Y; (eq. 14). Hence, fixing
a parameter A > 0, considering true the null hypothesis F[Pg] < 0, and using
Bernstein inequality, we have:

—na?
Prob{Xpy > A} < Prob{Xpy — E[Py] > A} < ez7+2/34 (16)

Considering an instance (a measured value) Xy of the random variable X,
if we let A = Xy we obtain the following probability of type I error:

T2
—nX7r

Perr{XH Z XH} S 626%+2/3XH

with o, = o +AU’2’(H)'

If Popr{ Xy > Xu} < a, we reject the null hypothesis: a significant difference
between the two clusterings is detected at « significance level and we continue
by testing the p(H — 1) clustering. More in general if the null hypothesis has
been rejected for the p(H — r 4+ 1) clustering, 1 < r < H — 2 then we consider
the p(H — r) clustering, and by union bound we can estimate the type I error:

H H nx?
P...(H—r) = Prob{ \/ X; > XZ} < Z Prob{X; > )A(z} < €27 +2/3%;
H—r<i<H i=H—r i=H—r
(17)

As in the previous case, if P..(H — r) < « we reject the null hypothesis: a
significant difference is detected between the reliability of the p(1) and p(H — )
clustering and we iteratively continue the procedure estimating P,,..(H —r —1).



This procedure stops if either of these cases succeeds:

I) The null hypothesis is rejected till to r = H — 2, that is Vr,1 < r < H —
2, Per(H —7) < a: all the possible hypotheses have been rejected and the
only reliable clustering at a-significance level is the top ranked one, that is the
p(1) clustering.

IT) The null hypothesis cannot be rejected for r < H — 2, that is, Ir,1 < r <
H -2, P.,,.(H—r)>« in this case the clusterings that are significantly less
reliable than the top ranked p(1) clustering are the p(r + 1), p(r + 2),...,p(H)
clusterings.

Note that in this second case we cannot state that there is no significant
difference between the first r top-ranked clusterings, since the upper bound pro-
vided by the Bernstein inequality is not guaranteed to be tight. To answer to this
question, we may apply the x2-based hypothesis testing proposed in [26] to the
remaining top ranked clusterings to establish which of them are significant at «
level, but in this case we need to assume that the similarity measures between
pairs of clusterings are distributed according to a normal distribution.

For applications of the y2-based and the Bernstein inequality-based to the
analysis of bio-molecular data see e.g. [26, 28, 29]. The experimental results show
that Bernstein test is more sensitive to multiple structures underlying the data,
but at the same time more susceptible to false positives with respect to the x?2
test.

5 Stability indices for the assessment of the reliability of
individual clusters

In this section we provide an overview of the approach proposed in [27] to as-
sess the validity of each individual cluster, using random projections to lower
dimensional subspaces as perturbation methods.

5.1 Perturbations through randomized embedding

Dimensionality reduction may be obtained by mapping points from a high to
a low-dimensional space, approximately preserving some characteristics, i.e. the
distances between points. In this context randomized embeddings with low dis-
tortion represent a key concept. Randomized embeddings have been successfully
applied both to combinatorial optimization and data compression [38].

A randomized embedding between Lo normed metric spaces with distortion
1 + €, with € > 0 and failure probability P is a distribution probability over
mappings p : R? — Rd/, such that for every pair p, ¢ € R?, the following property
holds with probability 1 — P:

U letp) = w9l
L+e™  lp—dll

<l+e (18)

The main result on randomized embedding is due to Johnson and Linden-
strauss [39], who proved the existence of a randomized embedding y : R — R4



with distortion 1 + € and failure probability en(*d'é’), for every 0 < e < 1/2. As
a consequence, for a fixed data set S C RY, with |S| = n, by union bound, for
all p,q € S, it holds:

1 - /
PTOb < S ||:u’(p) :u‘(q)HQ S 1 + 6) Z 1 _ n269(7d 62) (19)
L+ lp = qll2

Hence, by choosing d’ such that n2e?(-4'<") < 1/2, it is proved the following:
Johnson-Lindenstrauss (JL) lemma: Given a set S with |S| = n there exists a
1 + e-distortion embedding into RY with d’ = ¢ logn/e2, where ¢ is a suitable
constant.

The embedding exhibited in [39] consists in random projections from R? into
Rd/, represented by matrices d’ x d with random orthonormal vectors. Simi-
lar results may be obtained by using simpler embeddings, represented through
random d’ x d matrices P = 1/v/d'(r;;), where r;; are random variables such
that:

E[rij] = 0, VGT[TZ']‘] =1

For sake of simplicity, we call random projections even this kind of embeddings.
In particular in [34] matrices are proposed such that their entries are uniformly
chosen in {—1,1}, or in {—+/3,0,+/3} , by choosing 0 with probability 2/3 and
—/3 or /3 with probability 1/6. In this case the JL lemma holds with ¢ ~ 4.

Consider now a data set represented by a d x n matrix X whose columns
represent n d-dimensional observations. Suppose that d’ = 4 logn/e? << d; the
JL lemma guarantees the existence of a d’ x d matrix P such that the columns
of the ”compressed” data set X = PX have approximately the same distance
(up to a distortion 1+ €) of the corresponding columns in X. Moreover there is
a randomized algorithm that, having in input X, outputs X% in time O(dd'n)
with high confidence.

5.2 Stability measures for individual clusters

The JL lemma shows that we may generate relatively low-distorted random
projected data. Our aim is to exploit random projections to estimate stability of
clusters, because random projections do not induce relevant distortions (as long
as we provide a projection into a sufficiently high-dimensional subspace).

Given a finite set X C RY, we denote (with abuse of notation) with X the
metric space < X, f >, where f(x,y) = ||z — y||2, ¥,y € R% In the following of
this section we consider a fixed random projection p : R — RY that verifies the
JL lemma, and we propose a stability index for clustering by using a pairwise
similarity matrix between the projected examples.

Let C be a clustering algorithm, that, having in input X, outputs a set of k
clusters:

C(X):<A1,A2,...,Ak >, AJCX,].SJSIC (20)

Then we compute a ”similarity” matrix M, with indices in X, using the
following algorithm:



1. Generate t independent projections p; : RY — Rdl, 1 < i < t, such that
d = log\X|+logt

2. Apply C to the new projected data p;(X), obtaining a set of clusterings, for
1 <1<t

C(pi(X))=<Bi,....B,> B, C X;,1<j<k (21)

where Bl is the j*" cluster of the i*" clustering.
3. Set the elements M, of the similarity matrix:

k t
= > > xmi(ui() - xpi (ui(y)) (22)

j=114i=1

w\»—l

where xpg: is the characteristic function for the cluster B]l
J

Since the elements M, measure the occurrences of the examples i, (x), p;(y) €
1;(X) in the same clusters Bz for 1 < i < ¢, then M represents the “tendency” of
the projections to belong to the same cluster. It is easy to see that 0 < M, <1,
for each z,y € X.

Using the similarity matrix M (eq. 22) we propose the following stability
index s for a cluster A; [27]:

1
sy — L M, 23
(4s) | Ail(JAs| — 1) (I,y)eAinAi,z#y ’ !

The index s(A;) estimates the stability of a cluster A; in the original non pro-
jected space, by measuring how much the projections of the pairs (z,y) € 4; x 4;
occur together in the same cluster in the projected subspaces. The stability in-
dex has values between 0 and 1: values near 1 denote stable clusters, while lower
values indicate less reliable clusters. The above stability index is very similar to
that proposed by [23]. The main difference of our approach consists in the way
the similarity matrix is computed: we applied randomized projections into lower
dimensional subspaces, while [23] applied bootstrap techniques.

An overall measure of the stability of the clustering in the original space may
be obtained averaging between the stability indices:

- g

In this case also we have that 0 < S(k) < 1, where k is the number of clusters.
Experimental applications of the stability indices (eq. 23 and 24) to the
discovery of bio-molecular subclasses of malignancies are described in [40, 41, 27].

\ =

6 Drawbacks of stability-based methods and new research
lines

Despite their successful application to several real-world problems, and in par-
ticular in bioinformatics, the theory underlying stability-based methods is not



well-understood and several problems remain open from a theoretical stand-
point [42]. Moreover, using clustering stability in a high sample setting can be
problematic. In particular it has been shown the bounding the difference between
the finite sample stability and the ”true stability” can exist only if one makes
strong assumptions on the underlying distribution [43].

Moreover stability-based method may converge to a suboptimal solution ow-
ing to the shape of the data manifold and not to the real structure of the data [13],
especially if the distribution of the data obey to a some rule of symmetry.

A problem that cannot be directly addressed by stability-based methods is
the detection of "no structure” in the data. However, we may obtain an indirect
evidence of "no structure” if the stability scores are always very low and com-
parable for a large set of numbers of clusters, or if the statistical tests consider
equally reliable all or a large part of the possible clusterings.

Another problem relies on the characteristics of the perturbations that may
induce bias into the stability indices used to estimate the reliability of the dis-
covered clusters. In particular if the intensity of the perturbation is too high,
significant distortions can be introduced, and the structure of the data cannot
be preserved. For instance we showed that random subspace perturbations can
induce significant distortions into real gene expression data. We showed also
that random projections obeying the Johnson-Lindenstrauss lemma may induce
bounded distortions, thus providing a theoretically-founded way to perturb the
data approximately preserving their underlying structure [27, 26]. Unfortunately
similar results are not available when we introduce perturbations through resam-
pling techniques or noise injection into the data.

Apart from these theoretical problems, that need to be considered in future
research work, we would like to cite at least two other problems that to our
opinion are relevant in the bioinformatics context.

The first one is related to problems characterized by a very high number of
possible clusters and clusterings. These problems naturally come from genomics
and proteomics: consider, e.g. the unsupervised search for functional classes of
genes or proteins. In this context the number of possible clusters is too high for
classical stability based methods (consider e.g. Gene Ontology taxonomy that
includes thousands of possible functional classes [44]), and the the iterative ap-
proach is too computationally expensive. For relatively moderate sized problems
parallel computation could be a solution, but from a more general standpoint the
problem is too complex and requires the development of new specific algorithms.
A possible solution could be the reduction of possible candidate clusters, making
some assumption about the characteristics of the data. To this end approaches
based on hierarchical clustering ensembles and non parametric tests have been
recently proposed [45, 46].

A related problem of paramount importance in medicine is the detection of
stable clusters considering at the same time both patients and the genes involved
in subclass separation. To this end a new approach based on stability indices for
biclustering algorithms has been recently proposed [47].



A second problem is related to data integration. Indeed different sources of
biomolecular data are available for unsupervised analysis and for the analysis
of the reliability of clustering results. Even if this topic has been investigated
in supervised analysis of bio-molecular data [48, 49], largely less efforts have
been devoted to the unsupervised analysis and in particular to the integration
of multiple sources of data in the context of stability based methods. However,
the integration of multiple sources of data to assess the validity of clustering
solutions should in principle significantly improve the reliability of stability-
based methods.

7 Conclusions

We presented an overview of stability based methods to estimate the reliability
of clusterings discovered in bio-molecular data. These methods, if jointly used
with statistical tests specifically designed to discover multiple structures, can be
successfully applied to assess the statistical significance and to discover multiple
structures in complex bio-molecular data. Summarizing, stability based methods
can be applied for:

Assessment of the reliability of a given clustering solution

Assessment of the reliability of a each cluster inside a clustering
Assessment of the reliability of each example to a given cluster

Clustering model order selection: selection of the "natural” number of clus-
ters.

5. Assessment of the statistical significance of a given clustering solution

6. Discovery of multiple structures underlying the data

=L

In this introduction we focused on methods, without discussing in detail appli-
cations to real bio-molecular data. Anyway, bioinformatics applications of sta-
bility based methods can be found in most of the papers cited in this paper (see
e.g. [21, 16, 20, 40]). Several problems not discussed in the paper remain open,
ranging from the applicability of stability-based methods to problems character-
ized by very high number of examples and clusters (e.g.: discovery of functional
classes of proteins), to their theoretical foundations [42].

Appendix: R software packages implementing stability
based methods

Two main R packages, implementing stability based methods, are freely available
on the web:

1. Mosclust: Model order selection for clustering problems. It implements sta-
bility based methods to discover the number of clusters and multiple struc-
tures underlying bio-molecular data [30]

2. Clusterv: Cluster validation. It implements a set of functions to assess the
reliability of individual clusters discovered by clustering algorithms [25]



Overview of the clusterv R package

The clusterv R package implements a set of functions to assess the reliability
of clusters discovered by clustering algorithms [25] This library is tailored to
the analysis of high dimensional data and in particular it is conceived for the
analysis of the reliability of clusters discovered using DNA microarray data.

Indeed cluster analysis has been used for investigating structure in microarray
data, such as the search of new tumor taxonomies [50],[3],[51]. It provides a way
for validating groups of patients according to prior biological knowledge or to
discover new ”natural groups” inside the data. Anyway, clustering algorithms
always find structure in the data, even when no structure is present instead.
Hence we need methods for assessing the validity of the discovered clusters to
test the existence of biologically meaningful clusters.

To assess the reliability of the discovered classes, clusterv provides a set
of measures that estimate the stability of the clusters obtained by perturbing
the original data set. This perturbation is achieved through random projections
of the original high dimensional data to lower dimensional subspaces, approxi-
mately preserving the distances between examples, in order to avoid too large
distortions of the data. These random projections are repeated many times and
each time a new clustering is performed. The obtained multiple clusterings are
then compared with the clustering for which we need to evaluate its reliability.
Intuitively a cluster will be reliable if it will be maintained across multiple clus-
terings performed in the lower dimensional subspaces. The measures provided
by clusterv are based on the evaluation of the stability of the clusters across
multiple random projections. By these measures we can assess:

1. the reliability of single individual clusters inside a clustering

2. the reliability of the overall clustering (that is, an estimate of the ”optimal”
number of clusters)

3. the confidence by which example may be assigned to each cluster

The clusterv R source package is downloadable from the clusterv web-site:
http://homes.dsi.unimi.it/~valenti/SW/clusterv/

Overview of the mosclust R package

The mosclust R package (that stands for model order selection for clustering
problems) implements a set of functions to discover significant structures in
bio-molecular data [30]. One of the main problems in unsupervised clustering
analysis is the assessment of the "natural” number of clusters. Several methods
and software tools have been proposed to tackle this problem (see [13] for a
recent review).

Recently, several methods based on the concept of stability have been pro-
posed to estimate the ”optimal” number of clusters in complex bio-molecular
data [22, 23, 24, 17, 25]. In this conceptual framework multiple clusterings are
obtained by introducing perturbations into the original data, and a clustering is



considered reliable if it is approximately maintained across multiple perturba-
tions.

Several perturbation techniques have been proposed, ranging form boot-
strap techniques [19, 16, 23], to random projections to lower dimensional sub-
spaces [21, 27] to noise injection procedures [20]. All these perturbation tech-
niques are implemented in mosclust.

The library implements indices of stability /reliability of the clusterings based
on the distribution of similarity measures between multiple instances of cluster-
ings performed on multiple instances of data obtained through a given random
perturbation of the original data.

These indices provides a ”score” that can be used to compare the reliability
of different clusterings. Moreover statistical tests based on x? and on the clas-
sical Bernstein inequality [37] are implemented in order to assess the statistical
significance of the discovered clustering solutions. By this approach we could also
find multiple structures simultaneously present in the data. For instance, it is
possible that data exhibit a hierarchical structure, with subclusters inside other
clusters, and using the indices and the statistical tests implemented in mosclust
we may detect them at a given significance level.

The mosclust R source package is downloadable from the mosclust web-site:
http://homes.dsi.unimi.it/~valenti/SW/mosclust/
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