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Abstra
t

Ensembles of 
lassi�ers represent one of the main resear
h dire
tions in ma
hine learning.

Two main theories are invoked to explain the su

ess of ensemble methods. The �rst one


onsider the ensembles in the framework of large margin 
lassi�ers, showing that ensembles

enlarge the margins, enhan
ing the generalization 
apabilities of learning algorithms. The

se
ond is based on the 
lassi
al bias{varian
e de
omposition of the error, and it shows that

ensembles 
an redu
e varian
e and/or bias.

In a

ordan
e with this se
ond approa
h, this thesis pursues a twofold purpose: on the

one hand it explores the possibility of using bias{varian
e de
omposition of the error as an

analyti
al tool to study the properties of learning algorithms; on the other hand it explores

the possibility of designing ensemble methods based on bias{varian
e analysis of the error.

At �rst, bias{varian
e de
omposition of the error is 
onsidered as a tool to analyze learning

algorithms. This work shows how to apply Domingos and James theories on bias{varian
e

de
omposition of the error to the analysis of learning algorithms. Extended experiments

with Support Ve
tor Ma
hines (SVMs) are presented, and the analysis of the relationships

between bias, varian
e, kernel type and its parameters provides a 
hara
terization of the

error de
omposition, o�ering insights into the way SVMs learn.

In a similar way bias{varian
e analysis is applied as a tool to explain the properties of en-

sembles of learners. A bias{varian
e analysis of ensembles based on resampling te
hniques

is 
ondu
ted, showing that, as expe
ted, bagging is a varian
e redu
tion ensemble method,

while the theoreti
al property of 
an
eled varian
e holds only for Breiman's random ag-

gregated predi
tors.

In addition to analyzing learning algorithms, bias{varian
e analysis 
an o�er guidan
e to

the design of ensemble methods. This work shows that it provides a theoreti
al and pra
ti
al

tool to develop new ensemble methods well-tuned to the 
hara
teristi
s of a spe
i�
 base

learner.

On the basis of the analysis and experiments performed on SVMs and bagged ensembles of

SVMs, new ensemble methods based on bias{varian
e analysis are proposed. In parti
ular

Lobag (Low bias bagging ) sele
ts low bias base learners and then 
ombines them through

bootstrap aggregating te
hniques. This approa
h a�e
ts both bias, through the sele
tion

of low bias base learners, and varian
e, through bootstrap aggregation of the sele
ted low

bias base learners. Moreover a new potential 
lass of ensemble methods (heterogeneous



ensembles of SVMs), that aggregate di�erent SVM models on the basis of their bias{

varian
e 
hara
teristi
s, is introdu
ed.

From an appli
ative standpoint it is also shown that the proposed ensemble methods 
an

be su

essfully applied to the analysis of DNA mi
roarray data.



Al mio 
aro topo





A
knowledgements

I would like to thank Tom Dietteri
h for his friendly indire
t support to my thesis. Indeed

the main idea behind my thesis, that is applying bias{varian
e analysis as a tool to study

learning algorithms and to develop new ensemble methods 
omes from Tom. Moreover

I would like to thank him for the long dis
ussions (espe
ially by e-mail) about di�erent

topi
s related to my thesis, for his suggestions and 
onstru
tive 
riti
ism.

I would like also to thank Fran
o Masulli: without his support and en
ouragement probably

I would have not �nish my Ph.D. in Computer S
ien
e. I thank him also for the large degree

of freedom I enjoyed during my resear
h a
tivity.

Thanks to DISI and to the University of Genova for allowing me to pursue my Ph.D

a
tivity, and to the DISI people who helped me during my Ph.D a
tivity.

Thanks to INFM, Istituto Nazionale di Fisi
a della Materia, espe
ially for the �nan
ial

support to my resear
h a
tivity and for the 
luster of workstations that I used for my

experiments.

Finally I would like to thank my wife Cristina, for bearing the too many saturdays and

sundays with her husband on his papers, books and 
omputers. This thesis is dedi
ated to

her, even if I suspe
t that she wisely prefers her an
ient potteries and ar
heologi
al sites.





Table of Contents

List of Figures 6

List of Tables 11

Chapter 1 Introdu
tion 12

Chapter 2 Ensemble methods 18

2.1 Reasons for Combining Multiple Learners . . . . . . . . . . . . . . . . . . . 19

2.2 Ensemble Methods Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Non-generative Ensembles . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Generative Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2.1 Resampling methods . . . . . . . . . . . . . . . . . . . . . 23

2.2.2.2 Feature sele
tion methods . . . . . . . . . . . . . . . . . . 24

2.2.2.3 Mixtures of experts methods . . . . . . . . . . . . . . . . 25

2.2.2.4 Output Coding de
omposition methods . . . . . . . . . . 25

2.2.2.5 Test and sele
t methods . . . . . . . . . . . . . . . . . . . 26

2.2.2.6 Randomized ensemble methods . . . . . . . . . . . . . . . 27

2.3 New dire
tions in ensemble methods resear
h . . . . . . . . . . . . . . . . . 27

Chapter 3 Bias{varian
e de
omposition of the error 30

3.1 Bias{Varian
e De
omposition for the 0/1 loss fun
tion . . . . . . . . . . . 31

1



3.1.1 Expe
ted loss depends on the randomness of the training set and the

target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Optimal and main predi
tion. . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Bias, unbiased and biased varian
e. . . . . . . . . . . . . . . . . . . 33

3.1.4 Domingos bias{varian
e de
omposition. . . . . . . . . . . . . . . . . 36

3.1.5 Bias, varian
e and their e�e
ts on the error . . . . . . . . . . . . . . 37

3.2 Measuring bias and varian
e . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Measuring with arti�
ial or large ben
hmark data sets . . . . . . . 39

3.2.2 Measuring with small data sets . . . . . . . . . . . . . . . . . . . . 41

Chapter 4 Bias{Varian
e Analysis in single SVMs 43

4.1 Support Ve
tor Ma
hines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1.1 P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1.2 Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1.3 Grey-Landsat . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1.4 Letter-Two . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1.5 Spam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1.6 Musk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Experimental tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2.1 Set up of the data . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.3 Software used in the experiments . . . . . . . . . . . . . . . . . . . 54

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Gaussian kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1.1 The dis
riminant fun
tion 
omputed by the SVM-RBF 
las-

si�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2



4.3.1.2 Behavior of SVMs with large � values . . . . . . . . . . . 61

4.3.1.3 Relationships between generalization error, training error,

number of support ve
tors and 
apa
ity . . . . . . . . . . 64

4.3.2 Polynomial and dot-produ
t kernels . . . . . . . . . . . . . . . . . . 69

4.3.3 Comparing kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Chara
terization of Bias{Varian
e De
omposition of the Error . . . . . . . 78

4.4.1 Gaussian kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2 Polynomial and dot-produ
t kernels . . . . . . . . . . . . . . . . . . 81

Chapter 5 Bias{varian
e analysis in random aggregated and bagged en-

sembles of SVMs 84

5.1 Random aggregating and bagging . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Random aggregating in regression . . . . . . . . . . . . . . . . . . . 86

5.1.2 Random aggregating in 
lassi�
ation . . . . . . . . . . . . . . . . . 87

5.1.3 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Bias{varian
e analysis in bagged SVM ensembles . . . . . . . . . . . . . . 91

5.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 Bagged RBF-SVM ensembles . . . . . . . . . . . . . . . . . . . . . 94

5.2.2.1 Bias{varian
e de
omposition of the error . . . . . . . . . . 94

5.2.2.2 De
omposition with respe
t to the number of base learners 94

5.2.2.3 Comparison of bias{varian
e de
omposition in single and

bagged RBF-SVMs . . . . . . . . . . . . . . . . . . . . . . 94

5.2.3 Bagged polynomial SVM ensembles . . . . . . . . . . . . . . . . . . 96

5.2.3.1 Bias{varian
e de
omposition of the error . . . . . . . . . . 96

5.2.3.2 De
omposition with respe
t to the number of base learners 98

5.2.3.3 Comparison of bias{varian
e de
omposition in single and

bagged polynomial SVMs . . . . . . . . . . . . . . . . . . 99

5.2.4 Bagged dot-produ
t SVM ensembles . . . . . . . . . . . . . . . . . 99

5.2.4.1 Bias{varian
e de
omposition of the error . . . . . . . . . . 99

3



5.2.4.2 De
omposition with respe
t to the number of base learners 100

5.2.4.3 Comparison of bias{varian
e de
omposition in single and

bagged dot-produ
t SVMs . . . . . . . . . . . . . . . . . . 101

5.2.5 Bias{varian
e 
hara
teristi
s of bagged SVM ensembles . . . . . . . 102

5.3 Bias{varian
e analysis in random aggregated ensembles of SVMs . . . . . . 103

5.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.2 Random aggregated RBF-SVM ensembles . . . . . . . . . . . . . . 107

5.3.2.1 Bias{varian
e de
omposition of the error . . . . . . . . . . 107

5.3.2.2 De
omposition with respe
t to the number of base learners 108

5.3.2.3 Comparison of bias{varian
e de
omposition in single and

random aggregated RBF-SVMs . . . . . . . . . . . . . . . 109

5.3.3 Random aggregated polynomial SVM ensembles . . . . . . . . . . . 111

5.3.3.1 Bias{varian
e de
omposition of the error . . . . . . . . . . 111

5.3.3.2 De
omposition with respe
t to the number of base learners 111

5.3.3.3 Comparison of bias{varian
e de
omposition in single and

random aggregated polynomial SVMs . . . . . . . . . . . 113

5.3.4 Random aggregated dot-produ
t SVM ensembles . . . . . . . . . . 115

5.3.4.1 Bias{varian
e de
omposition of the error . . . . . . . . . . 115

5.3.4.2 De
omposition with respe
t to the number of base learners 117

5.3.4.3 Comparison of bias{varian
e de
omposition in single and

random aggregated dot-produ
t SVMs . . . . . . . . . . . 117

5.3.5 Bias{varian
e 
hara
teristi
s of random aggregated SVM ensembles 117

5.4 Undersampled bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Summary of bias{varian
e analysis results in random aggregated and bagged

ensembles of SVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 6 SVM ensemble methods based on bias{varian
e analysis 126

6.1 Heterogeneous Ensembles of SVMs . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Bagged Ensemble of Sele
ted Low-Bias SVMs . . . . . . . . . . . . . . . . 130

4



6.2.1 Parameters 
ontrolling bias in SVMs . . . . . . . . . . . . . . . . . 130

6.2.2 Aggregating low bias base learners by bootstrap repli
ates . . . . . 130

6.2.3 Measuring Bias and Varian
e . . . . . . . . . . . . . . . . . . . . . 132

6.2.4 Sele
ting low-bias base learners. . . . . . . . . . . . . . . . . . . . . 132

6.2.5 Previous related work . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 The lobag algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3.1 The Bias{varian
e de
omposition pro
edure . . . . . . . . . . . . . 134

6.3.2 The Model sele
tion pro
edure . . . . . . . . . . . . . . . . . . . . . 136

6.3.3 The overall Lobag algorithm . . . . . . . . . . . . . . . . . . . . . . 136

6.3.4 Multiple hold-out Lobag algorithm . . . . . . . . . . . . . . . . . . . 137

6.3.5 Cross-validated Lobag algorithm . . . . . . . . . . . . . . . . . . . . 139

6.3.6 A heterogeneous Lobag approa
h . . . . . . . . . . . . . . . . . . . . 141

6.4 Experiments with lobag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.5 Appli
ation of lobag to DNA mi
roarray data analysis . . . . . . . . . . . 146

6.5.1 Data set and experimental set-up. . . . . . . . . . . . . . . . . . . . 147

6.5.2 Gene sele
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.5.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Con
lusions 152

Bibliography 155

5



List of Figures

3.1 Case analysis of error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 E�e
ts of biased and unbiased varian
e on the error. The unbiased varian
e

in
rements, while the biased varian
e de
rements the error. . . . . . . . . . 36

4.1 Separating hyperplane and margins in a two-
lass 
lassi�
ation problem . . 44

4.2 P2 data set, a bidimensional two 
lass syntheti
 data set. . . . . . . . . . . 49

4.3 Pro
edure to generate samples to be used for bias{varian
e analysis with

single SVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Pro
edure to perform bias{varian
e analysis on single SVMs . . . . . . . . 52

4.5 Grey-Landsat data set. Error (a) and its de
omposition in bias (b), net

varian
e (
), unbiased varian
e (d), and biased varian
e (e) in SVM RBF,

varying both C and �. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Bias-varian
e de
omposition of the error in bias, net varian
e, unbiased and

biased varian
e in SVM RBF, varying � and for �xed C values: (a) Wave-

form, (b) Grey-Landsat, (
) Letter-Two with C = 0:1, (
) Letter-Two with

C = 1, (e) Letter-Two with added noise and (f) Spam. . . . . . . . . . . . 57

4.7 Letter-Two data set. Bias-varian
e de
omposition of error in bias, net vari-

an
e, unbiased and biased varian
e in SVM RBF, while varying C and for

some �xed values of �: (a) � = 0:01, (b) � = 0:1, (
) � = 1, (d) � = 5, (e)

� = 20, (f) � = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 The dis
riminant fun
tion 
omputed by the SVM on the P2 data set with

� = 0:01, C = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.9 The dis
riminant fun
tion 
omputed by the SVM on the P2 data set, with

� = 1, C = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6



4.10 The dis
riminant fun
tion 
omputed by the SVM on the P2 data set. (a)

� = 20, C = 1, (b) � = 20 C = 1000. . . . . . . . . . . . . . . . . . . . . . 62

4.11 Grey-Landsat data set. Bias-varian
e de
omposition of error in bias, net

varian
e, unbiased and biased varian
e in SVM RBF, while varying � and

for some �xed values of C: (a) C = 0:1, (b) C = 1, (
) C = 10, (d) C = 100. 63

4.12 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in SVM RBF, while varying � and for some �xed values of

C: (a) P2, with C = 1, (b) P2, with C = 1000, Musk, with C = 1, (d)

Musk, with C = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.13 Letter-Two data set. Error, bias, training error, halved fra
tion of support

ve
tors, and estimated VC dimension while varying the � parameter and for

some �xed values of C: (a) C = 1, (b) C = 10, (
) C = 100, and C = 1000. 66

4.14 Grey-Landsat data set. Error, bias, training error, halved fra
tion of support

ve
tors, and estimated VC dimension while varying the � parameter and for

some �xed values of C: (a) C = 1, (b) C = 10, (
) C = 100, and C = 1000. 68

4.15 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in polynomial SVM, while varying the degree and for some

�xed values of C: (a) Waveform, C = 0:1, (b) Waveform, C = 50, (
)

Letter-Two, C = 0:1, (d) Letter-Two, C = 50. . . . . . . . . . . . . . . . . 70

4.16 P2 data set. Error (a) and its de
omposition in bias (b) and net varian
e

(
), varying both C and the polynomial degree. . . . . . . . . . . . . . . . 71

4.17 Letter-Two data set. Bias-varian
e de
omposition of error in bias, net vari-

an
e, unbiased and biased varian
e in polynomial SVM, while varying C

and for some polynomial degrees: (a) degree = 2, (b) degree = 3, (
)

degree = 5, (d) degree = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.18 Bias in polynomial SVMs with (a) Waveform and (b) Spam data sets, vary-

ing both C and polynomial degree. . . . . . . . . . . . . . . . . . . . . . . 73

4.19 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and bi-

ased varian
e in polynomial SVM, varying C: (a) P2 data set with degree =

6, (b) Spam data set with degree = 3. . . . . . . . . . . . . . . . . . . . . 73

4.20 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in dot-produ
t SVM, varying C: (a) P2, (b) Grey-Landsat,

(
) Letter-Two, (d) Letter-Two with added noise, (e) Spam, (f) Musk. . . . 75

7



4.21 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e with respe
t to C, 
onsidering di�erent kernels. (a) P2,

gaussian; (b) Musk, gaussian (
) P2, polynomial; (d) Musk, polynomial; (e)

P2, dot{produ
t; (f) Musk, dot{produ
t. . . . . . . . . . . . . . . . . . . . 76

4.22 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and bi-

ased varian
e with respe
t to C, 
onsidering di�erent kernels. (a) Waveform,

gaussian; (b) Letter-Two, gaussian (
) Waveform, polynomial; (d) Letter-

Two, polynomial; (e) Waveform, dot{produ
t; (f) Letter-Two, dot{produ
t. 77

4.23 The 3 regions of error in RBF-SVM with respe
t to �. . . . . . . . . . . . 80

4.24 Behaviour of polynomial SVM with respe
t of the bias{varian
e de
ompo-

sition of the error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.25 Behaviour of the dot{produ
t SVM with respe
t of the bias{varian
e de-


omposition of the error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Bagging for 
lassi�
ation problems. . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Pro
edure to generate samples to be used for bias{varian
e analysis in bagging 92

5.3 Pro
edure to perform bias{varian
e analysis on bagged SVM ensembles . . 93

5.4 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in bagged RBF-SVMs, while varying � and for some �xed

values of C. P2 data set: (a) C = 1, (b) C = 100. Letter-Two data set: (
)

C = 1, (d) C = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and bi-

ased varian
e in bagged SVM RBF, with respe
t to the number of iterations.

(a) Grey-Landsat data set (b) Spam data set. . . . . . . . . . . . . . . . . 96

5.6 Comparison between bias-varian
e de
omposition between single RBF-SVMs

(lines labeled with 
rosses) and bagged SVM RBF ensembles (lines labeled

with triangles), while varying � and for some �xed values of C. Letter-Two

data set: (a) C = 1, (b) C = 100. Waveform data set: (
) C = 1, (d) C = 100. 97

5.7 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in bagged polynomial SVM, while varying the degree and

for some �xed values of C. P2 data set: (a) C = 0:1, (b) C = 100. Letter-

Two data set: (
) C = 0:1, (d) C = 100 . . . . . . . . . . . . . . . . . . . . 98

5.8 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in bagged polynomial SVMs, with respe
t to the number of

iterations. (a) P2 data set (b)Letter-Two data set. . . . . . . . . . . . . . . 99

8



5.9 Comparison between bias-varian
e de
omposition between single polynomial

SVMs (lines labeled with 
rosses) and bagged polynomial SVM ensembles

(lines labeled with triangles), while varying the degree and for some �xed

values of C. P2 data set: (a) C = 1, (b) C = 100. Grey-Landsat data set:

(
) C = 1, (d) C = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.10 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in bagged dot-produ
t SVM, while varying C. (a) Waveform

data set (b) Grey-Landsat (
) Letter-Two with noise (d) Spam . . . . . . . 101

5.11 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in bagged dot-produ
t SVMs, with respe
t to the number

of iterations. (a) Grey-Landsat data set (b) Letter-Two data set. . . . . . . 102

5.12 Comparison between bias-varian
e de
omposition between single dot-produ
t

SVMs (lines labeled with 
rosses) and bagged dot-produ
t SVM ensembles

(lines labeled with triangles), while varying the values of C. (a) Waveform

(b) Grey-Landsat (
) Spam (d) Musk. . . . . . . . . . . . . . . . . . . . . 103

5.13 Pro
edure to generate samples to be used for bias{varian
e analysis in ran-

dom aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.14 Pro
edure to perform bias{varian
e analysis on random aggregated SVM

ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.15 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in random aggregated gaussian SVMs, while varying � and

for some �xed values of C. P2 data set: (a) C = 1, (b) C = 100. Letter-Two

data set: (
) C = 1, (d) C = 100 . . . . . . . . . . . . . . . . . . . . . . . . 109

5.16 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in random aggregated SVMRBF, with respe
t to the number

of iterations. P2 dataset: (a) C = 1; � = 0:2, (b) C = 100; � = 0:5. Letter-

Two data set: (
) C = 100; � = 1, (d) C = 100; � = 2 . . . . . . . . . . . 110

5.17 Comparison of bias-varian
e de
omposition between single RBF-SVMs (lines

labeled with 
rosses) and random aggregated ensembles of RBF-SVMs (lines

labeled with triangles), while varying � and for some �xed values of C.

Letter-Two data set: (a) C = 1, (b) C = 100. Waveform data set: (
)

C = 1, (d) C = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.18 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in random aggregated polynomial SVM, while varying the

degree and for some �xed values of C. P2 data set: (a) C = 1, (b) C = 100.

Letter-Two data set: (
) C = 1, (d) C = 100 . . . . . . . . . . . . . . . . . 113

9



5.19 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in random aggregated polynomial SVMs, with respe
t to

the number of iterations. P2 dataset: (a) C = 1, degree = 6 (b) C = 100,

degree = 9. Letter-Two data set: (
) C = 1, degree = 3, (d) C = 100,

degree = 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.20 Comparison of bias-varian
e de
omposition between single polynomial SVMs

(lines labeled with 
rosses) and random aggregated polynomial SVM ensem-

bles (lines labeled with triangles), while varying the degree and for some

�xed values of C. P2 data set: (a) C = 1, (b) C = 100. Grey-Landsat data

set: (
) C = 1, (d) C = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.21 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in random aggregated dot-produ
t SVM, while varying C.

(a) Grey-Landsat data set (b) Letter-Two (
) Letter-Two with noise (d) Spam116

5.22 Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in random aggregated dot-produ
t SVM, with respe
t to

the number of iterations. (a) Waveform (b) Letter-Two (
) Spam (d) Musk. 118

5.23 Comparison of bias-varian
e de
omposition between single dot-produ
t SVMs

(lines labeled with 
rosses) and random aggregated dot-produ
t SVM en-

sembles (lines labeled with triangles), while varying the values of C. (a)

Waveform (b) Grey-Landsat (
) Spam (d) Musk. . . . . . . . . . . . . . . 119

5.24 Comparison of the error between single SVMs, bagged and random aggre-

gated ensembles of SVMs. Results refers to 7 di�erent data sets. (a) Gaus-

sian kernels (b) Polynomial kernels (
) Dot-produ
t kernels. . . . . . . . . 122

5.25 Comparison of the relative error, bias and unbiased varian
e redu
tion be-

tween bagged and single SVMs (lines labeled with triangles), and between

random aggregated and single SVMs (lines labeled with squares). B/S

stands for Bagged versus Single SVMs, and R/S for random aggregated

versus Single SVMs. Results refers to 7 di�erent data sets. (a) Gaussian

kernels (b) Polynomial kernels (
) Dot-produ
t kernels. . . . . . . . . . . 123

6.1 Graphi
al 
omparison of Lobag, bagging, and single SVM. . . . . . . . . . 144

6.2 GCM data set: bias-varian
e de
omposition of the error in bias, net-varian
e,

unbiased and biased varian
e, while varying the regularization parameter

with linear SVMs (a), the degree with polynomial kernels (b), and the ker-

nel parameter � with gaussian SVMs (
). . . . . . . . . . . . . . . . . . . . 150

10



List of Tables

4.1 Data sets used in the experiments. . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Compared best results with di�erent kernels and data sets. RBF-SVM

stands for SVM with gaussian kernel; Poly-SVM for SVM with polynomial

kernel and D-prod SVM for SVM with dot-produ
t kernel. Var unb. and

Var. bias. stand for unbiased and biased varian
e. . . . . . . . . . . . . . . 78

5.1 Comparison of the results between single and bagged SVMs. . . . . . . . . 104

5.2 Comparison of the results between single and random aggregated SVMs. . 120

6.1 Results of the experiments using pairs of train D and test T sets. E

lobag

,

E

bag

and E

SVM

stand respe
tively for estimated error of lobag, bagged and

single SVMs on the test set T . The three last 
olumns show the 
on�den
e

level a

ording to the M
 Nemar test. L=B, L=S andB=S stand respe
tively

for the 
omparison Lobag/Bagging, Lobag/Single SVM and Bagging/Single

SVM. If the 
on�den
e level is equal to 1, no signi�
ant di�eren
e is registered.142

6.2 Comparison of the results between lobag, bagging and single SVMs. E

lobag

,

E

bag

and E

SVM

stand respe
tively for average error of lobag, bagging and

single SVMs. r.e.r. stands for relative error redu
tion between lobag and

single SVMs and between bagging and single SVMs. . . . . . . . . . . . . . 145

6.3 GCM data set: results with single SVMs . . . . . . . . . . . . . . . . . . . 148

6.4 GCM data set: 
ompared results of single and bagged SVMs . . . . . . . . 149

6.5 GCM data set: 
ompared results of single, bagged and Lobag SVMs on

gene expression data. An asterisk in the last three 
olumns points out that

a statisti
al signi�
ant di�eren
e is registered (p = 0:05) a

ording to the

M
 Nemar test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11



Chapter 1

Introdu
tion

Ensembles of 
lassi�ers represent one of the main resear
h dire
tions in ma
hine learn-

ing [43, 184℄.

The su

ess of this emerging dis
ipline is the result of the ex
hange and intera
tions be-

tween di�erent 
ultural ba
kgrounds and di�erent perspe
tives of resear
hers from diverse

dis
iplines, ranging from neural networks, to statisti
s, pattern re
ognition and soft 
om-

puting, as reported by the re
ent international workshops on Multiple Classi�er System

organized by Josef Kittler and Fabio Roli [106, 107, 157℄.

Indeed empiri
al studies showed that both in 
lassi�
ation and regression problems en-

sembles are often mu
h more a

urate than the individual base learners that make them

up [8, 44, 63℄, and di�erent theoreti
al explanations have been proposed to justify the

e�e
tiveness of some 
ommonly used ensemble methods [105, 161, 111, 2℄.

Nonetheless, the variety of terms and spe
i�
ations used to indi
ate sets of learning ma-


hines that work together to solve a ma
hine learning problem [123, 192, 193, 105, 92,

30, 51, 12, 7, 60℄, re
e
ts the absen
e of an uni�ed theory on ensemble methods and the

youngness of this resear
h area.

A large number of 
ombination s
hemes and ensemble methods have been proposed in lit-

erature. The 
ombination by majority voting [103, 147℄, where the 
lass most represented

among the base 
lassi�ers is 
hosen, is probably the �rst ensemble method proposed in the

literature, far before the �rst 
omputers appeared [38℄. A re�nement of this approa
h is

represented by a 
ombination through Bayesian de
ision rules, where the 
lass with the

highest posterior probability 
omputed through the estimated 
lass 
onditional probabil-

ities and the Bayes' formula is sele
ted [172℄. The base learners 
an also be aggregated

using simple operators as Minimum, Maximum, Average and Produ
t and Ordered Weight

Averaging [160, 20, 117℄, and if we 
an interpret the 
lassi�er outputs as the support for the
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lasses, fuzzy aggregation methods 
an be applied [30, 190, 118℄. Other methods 
onsist in

training the 
ombining rules, using se
ond-level learning ma
hines on top of the set of the

base learners [55℄ or meta-learning te
hniques [25, 150℄. Other 
lasses of ensemble methods

try to improve the overall a

ura
y of the ensemble by dire
tly boosting the a

ura
y and

the diversity of the base learners. For instan
e they 
an modify the stru
ture and the


hara
teristi
s of the available input data, as in resampling methods [15, 63, 161℄ or in

feature sele
tion [81℄ methods. They 
an also manipulate the aggregation of the 
lasses,

as in Output Coding methods [45, 46℄, or they 
an sele
t base learners spe
ialized for a

spe
i�
 input region, as in mixture of experts methods [98, 90℄. Other approa
hes 
an

inje
t randomness at di�erent levels to the base learning algorithm [44, 19℄, or 
an sele
t

a proper set of base learners evaluating the performan
es of the 
omponent base learners,

as in test-and-sele
t methods [166, 156℄.

Despite the variety and the di�eren
es between the diverse 
lasses of ensemble methods

proposed in literature, they share a 
ommon 
hara
teristi
: they emphasize in parti
ular

the 
ombination s
heme, or more in general the way the base learners are aggregated. Of


ourse this is a fundamental aspe
t of ensemble methods, as it represents the main stru
-

tural element of any ensemble of learning ma
hines. Indeed ensemble methods have been


on
eived quite independently of the 
hara
teristi
s of spe
i�
 base learners, emphasizing

the 
ombination s
heme instead of the properties of the applied basi
 learning algorithm.

However, several resear
hers showed that the e�e
tiveness of ensemble methods depends on

the spe
i�
 
hara
teristi
s of the base learners; in parti
ular on their individual a

ura
y,

on the relationship between diversity and a

ura
y of the base learners [77, 119, 72, 121℄,

on their stability [16℄, and on their general geometri
al properties [32℄. In other words,

the analysis of the features and properties of the base learners used in ensemble methods

is another important item for the design of ensemble methods [43℄. Then we 
ould try to

develop ensemble methods well-tuned to the 
hara
teristi
s of spe
i�
 base learners.

A

ording to this this standpoint, this resear
h starts from the "bottom edge" of ensemble

methods: trying to exploit the features of base learning algorithms in order to build around

them ensemble methods well-tuned to the learning 
hara
teristi
s of the base learners.

This requires the analysis of their learning properties, dis
overing and using appropriate

tools to perform/exe
ute this task. In prin
iple, we 
ould use measures of a

ura
y, di-

versity and 
omplexity to study and 
hara
terize the behaviour of learning algorithms.

However, as shown by L. Kun
heva [121℄, diversity may be related in a 
omplex way to

a

ura
y, and it may be very diÆ
ult to 
hara
terize the behaviour of a learning algorithm

in terms of 
apa
ity/
omplexity of the resulting learning ma
hine [188℄.

De
omposition of the error in bias and varian
e is a 
lassi
al topi
 in statisti
al learn-

ing [52, 68℄. Re
ently, Domingos proposed an uni�ed theory on bias-varian
e analysis of

the error, independent of the parti
ular loss fun
tion [47℄, and James extended the Domin-
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gos approa
h, introdu
ing the notions of bias and varian
e e�e
t [94℄.

Using the theoreti
al tools provided by Domingos, we tried to evaluate if the analysis of

bias and varian
e 
an provide insights into the way learning algorithms work. In prin
iple,

we 
ould use the knowledge obtained from this analysis to design new learning algorithms,

as suggested by Domingos himself [49℄, but in this work we did not follow this resear
h

line.

We used bias-varian
e analysis as a tool to study the behavior of learning methods, fo
using

in parti
ular on Support Ve
tor Ma
hines [35℄. A related issue of this work was also to

evaluate if it was possible to 
hara
terize learning in terms of bias{varian
e de
omposition

of the error, studying the relationships between learning parameters and the bias and

varian
e 
omponents of the error. We 
onsidered also if and how this analysis 
ould be

extended from spe
i�
 learning algorithms to ensemble methods, trying to 
hara
terize

also the behaviour of ensemble methods based on resampling te
hniques in terms of bias{

varian
e de
omposition of the error.

Besides studying if bias-varian
e theory o�ers a rationale to analyze the behaviour of

learning algorithms and to explain the properties of ensembles of 
lassi�ers, the se
ond

main resear
h topi
 of this thesis 
onsists in resear
hing if the de
omposition of the error

in bias and varian
e 
an also give guidan
e to the design of ensemble methods by relating

measurable properties of learning algorithms to expe
ted performan
es of ensembles [182℄.

On the basis of the knowledge gained from the bias varian
e analysis of spe
i�
 learning

algorithms, we tried to understand if it was possible to design new ensemble methods well-

tuned to the bias{varian
e 
hara
teristi
s of spe
i�
 base learners. Moreover we studied

also if we 
ould design ensemble methods with embedded bias{varian
e analysis pro
edures

in order to take into a

ount bias{varian
e 
hara
teristi
s of both the base learner and the

ensemble. For instan
e, we resear
hed if ensemble methods based on resampling te
hniques

(e.g. bagging) 
ould be enhan
ed through the bias{varian
e analysis approa
h, or if we


ould build variants of bagging exploiting the bias{varian
e 
hara
teristi
s of the base

learners. This resear
h line was motivated also by an appli
ative standpoint, in order to


onsider low-sized and high-dimensional 
lassi�
ation problems in bioinformati
s.

Outline of the thesis

Chapter 2 (Ensemble methods) introdu
es the main subje
t of this thesis into the the

general framework of ensemble methods. It presents an overview of ensembles of learning

ma
hines, explaining the main reasons why they are able to outperform any single 
lassi�er

within the ensemble, and proposing a taxonomy based on the main ways base 
lassi�ers


an be generated or 
ombined together. New dire
tions in ensemble methods resear
h are

depi
ted, introdu
ing ensemble methods well-tuned to the learning 
hara
teristi
s of the

base learners.
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The main goal of this work is twofold: on one hand it 
onsists in evaluating if bias-varian
e

analysis 
an be used as a tool to study and 
hara
terize learning algorithms and ensemble

methods; on the other hand it 
onsists in evaluating if the de
omposition of the error

into bias and varian
e 
an guide the design of ensemble methods by relating measurable

properties of algorithms to the expe
ted performan
es of ensembles. In both 
ases bias{

varian
e theory plays a 
entral role, and 
hapter 3 (Bias{varian
e de
omposition of the

error) summarizes the main topi
s of Domingos bias{varian
e theory. After a brief outline

of the literature on bias{varian
e de
omposition, the 
hapter fo
uses on bias{varian
e

de
omposition for the 0/1 loss, as we are mainly interested in 
lassi�
ation problems. We

underline that in this 
ontext bias varian
e is not additive, and we present an analysis of

the 
ombined e�e
t of bias, varian
e and noise on the overall error, 
omparing also the

theoreti
al approa
hes of Domingos and James on this topi
. Moreover we 
onsider the

pro
edures to measure bias and varian
e, distinguishing the 
ase when "large" or "small"

data sets are available. In the latter 
ase we propose to use out-of-bag pro
edures, as

they are unbiased and 
omputationally less expensive 
ompared with multiple hold-out

and 
ross-validation te
hniques.

Chapter 4 (Bias{varian
e analysis in single SVMs) presents an experimental bias{varian
e

analysis in SVMs. The main goal of this 
hapter is to study the learning properties of SVMs

with respe
t to their bias{varian
e 
hara
teristi
s and to 
hara
terize their learning behav-

ior. In parti
ular this analysis gets insights into the way SVMs learn, unraveling the spe
i�


e�e
ts of bias, unbiased and biased varian
e on the overall error. Firstly, the experimental

set-up, involving training and testing of more than half-million of di�erent SVMs, using

gaussian, polynomial and dot-produ
t kernels, is presented. Then we analyzed the rela-

tionships of bias{varian
e de
omposition with di�erent kernels, regularization and kernel

parameters, using both syntheti
 and "real world" data. In parti
ular, with gaussian ker-

nels we studied the reasons why usually SVMs do not learn with small values of the spread

parameter, their behavior with large values of the spread, and the relationships between

generalization error, training error, number of support ve
tors and 
apa
ity. We provided

also a 
hara
terization of bias{varian
e de
omposition of the error in gaussian kernels, dis-

tinguishing three main regions 
hara
terized by spe
i�
 trends of bias and varian
e with

respe
t to the values of the spread parameter �. Similar 
hara
terizations were provided

also for polynomial and dot-produ
t kernels.

Bias-varian
e 
an also be a useful tool to analyze bias{varian
e 
hara
teristi
s of ensemble

methods. To this purpose 
hapter 5 (Bias{varian
e analysis in random aggregated and

bagged ensembles of SVMs) provides an extended experimental analysis of bias{varian
e

de
omposition of the error for ensembles based on resampling te
hniques. We 
onsider

theoreti
al issues about the relationships between random aggregating and bagging. In-

deed bagging 
an be seen as an approximation of random aggregating, that is a pro
ess

by whi
h base learners, trained on samples drawn a

ordingly to an unknown probability

distribution from the entire universe population, are aggregated through majority voting
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(
lassi�
ation) or averaging between them (regression). Breiman showed that random ag-

gregating and bagging are e�e
tive with unstable learning algorithms, that is when small


hanges in the training set 
an result in large 
hanges in the predi
tions of the base learn-

ers; we prove that there is a stri
t relationship between instability and the varian
e of the

base predi
tors. Theoreti
al analysis shows that random aggregating should signi�
antly

redu
e varian
e, without in
rementing bias. Bagging also, as an approximation of random

aggregating, should redu
e varian
e. We performed an extended experimental analysis, in-

volving training and testing of about 10 million SVMs, to test these theoreti
al out
omes.

Moreover, we analyzed bias{varian
e in bagged and random aggregated SVM ensembles, to

understand the e�e
t of bagging and random aggregating on bias and varian
e 
omponents

of the error in SVMs. In both 
ases we evaluated for ea
h kernel the expe
ted error and

its de
omposition in bias, net-varian
e, unbiased and biased varian
e with respe
t to the

learning parameters of the base learners. Then we analyzed the bias{varian
e de
omposi-

tion as a fun
tion of the number of the base learners employed. Finally, we 
ompared bias

and varian
e with respe
t to the learning parameters in random aggregated and bagged

SVM ensembles and in the 
orresponding single SVMs, in order to study the e�e
t of

bagging and random aggregating on the bias and varian
e 
omponents of the error. With

random aggregated ensembles we registered a very large redu
tion of the net-varian
e with

respe
t to single SVMs. It was always redu
ed 
lose to 0, independently of the type of

kernel used. This behaviour is due primarily to the unbiased varian
e redu
tion, while

the bias remains un
hanged with respe
t to the single SVMs. With bagging we have also

a redu
tion of the error, but not as large as with random aggregated ensembles. Indeed,

unlike random aggregating, net and unbiased varian
e, although redu
ed, are not a
tually

redu
ed to 0, while bias remains un
hanged or slightly in
reases. An interesting byprodu
t

of this analysis is that undersampled bagging 
an be viewed as another approximation of

random aggregating (using a bootstrap approximation of the unknown probability distri-

bution), if we 
onsider the universe U as a data set from whi
h undersampled data, that

is data sets whose 
ardinality is mu
h less than the 
ardinality of U , are randomly drawn

with repla
ement. This approa
h should provide very signi�
ant redu
tion of the varian
e

and 
ould be in pra
ti
e applied to data mining problems, when learning algorithms 
annot


omfortably manage very large data sets.

In addition to providing insights into the behavior of learning algorithms, the analysis of

the bias{varian
e de
omposition of the error 
an identify the situations in whi
h ensemble

methods might improve base learner performan
es. Indeed the de
omposition of the error

into bias and varian
e 
an guide the design of ensemble methods by relating measurable

properties of algorithms to the expe
ted performan
e of ensembles. Chapter 6 (SVM

ensemble methods based on bias{varian
e analysis), presents two possible ways of applying

bias{varian
e analysis to develop SVM-based ensemble methods. The �rst approa
h tries

to apply bias{varian
e analysis to enhan
e both a

ura
y and diversity of the base learners.

The se
ond resear
h dire
tion 
onsists in bootstrap aggregating low bias base learners in
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order to lower both bias and varian
e. Regarding the �rst approa
h, only some very

general resear
h lines are depi
ted. About the se
ond dire
tion, a spe
i�
 new method

that we named Lobag, that is Low bias bagged SVMs, is introdu
ed, 
onsidering also

di�erent variants. Lobag applies bias{varian
e analysis in order to dire
t the tuning of

Support Ve
tor Ma
hines toward the optimization of the performan
e of bagged ensembles.

Spe
i�
ally, sin
e bagging is primarily a varian
e-redu
tion method, and sin
e the overall

error is (to a �rst approximation) the sum of bias and varian
e, this suggests that SVMs

should be tuned to minimize bias before being 
ombined by bagging. The key-issue of this

methods 
onsists in eÆ
iently evaluating the bias{varian
e de
omposition of the error.

We embed this pro
edure inside the Lobag ensemble method implementing a relatively

inexpensive out-of-bag estimate of bias and varian
e. The pseudo
ode of Lobag is provided,

as well as a C++ implementation (available on-line). Numeri
al experiments show that

Lobag 
ompares favorably with bagging, and some preliminary results show that it 
an be

su

essfully applied to DNA mi
roarray data analysis.

The 
on
lusions summarize the main results a
hieved, and several open questions delineate

possible future works and developments.
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Chapter 2

Ensemble methods

Ensembles are sets of learning ma
hines whose de
isions are 
ombined to improve the

performan
e of the overall system. In this last de
ade one of the main resear
h areas in

ma
hine learning has been represented by methods for 
onstru
ting ensembles of learning

ma
hines. Although in the literature [123, 192, 193, 105, 92, 30, 51, 12, 7, 60℄ a plethora

of terms, su
h as 
ommittee, 
lassi�er fusion, 
ombination, aggregation and others are

used to indi
ate sets of learning ma
hines that work together to solve a ma
hine learning

problem, in this paper we shall use the term ensemble in its widest meaning, in order to

in
lude the whole range of 
ombining methods. This variety of terms and spe
i�
ations

re
e
ts the absen
e of an uni�ed theory on ensemble methods and the youngness of this

resear
h area. However, the great e�ort of the resear
hers, re
e
ted by the amount of the

literature [167, 106, 107, 157℄ dedi
ated to this emerging dis
ipline, a
hieved meaningful

and en
ouraging results.

Empiri
al studies showed that both in 
lassi�
ation and regression problem ensembles

are often mu
h more a

urate than the individual base learner that make them up [8,

44, 63℄, and re
ently di�erent theoreti
al explanations have been proposed to justify the

e�e
tiveness of some 
ommonly used ensemble methods [105, 161, 111, 2℄.

The interest in this resear
h area is motivated also by the availability of very fast 
omputers

and networks of workstations at a relatively low 
ost that allow the implementation and

the experimentation of 
omplex ensemble methods using o�-the-shelf 
omputer platforms.

However, as explained in Se
t. 2.1 there are deeper reasons to use ensembles of learning

ma
hines. motivated by the intrinsi
 
hara
teristi
s of the ensemble methods.

This 
hapter presents a brief overview of the main areas of resear
h, without pretending

to be exhaustive or to explain the detailed 
hara
teristi
s of ea
h ensemble method.
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2.1 Reasons for Combining Multiple Learners

Both empiri
al observations and spe
i�
 ma
hine learning appli
ations 
on�rm that a given

learning algorithm outperforms all others for a spe
i�
 problem or for a spe
i�
 subset of

the input data, but it is unusual to �nd a single expert a
hieving the best results on the

overall problem domain. As a 
onsequen
e multiple learner systems try to exploit the lo
al

di�erent behavior of the base learners to enhan
e the a

ura
y and the reliability of the

overall indu
tive learning system. There are also hopes that if some learner fails, the overall

system 
an re
over the error. Employing multiple learners 
an derive from the appli
ation


ontext, su
h as when multiple sensor data are available, indu
ing a natural de
omposition

of the problem. In more general 
ases we 
an dispose of di�erent training sets, 
olle
ted

at di�erent times, having eventually di�erent features and we 
an use di�erent spe
ialized

learning ma
hine for ea
h di�erent item.

However, there are deeper reasons why ensembles 
an improve performan
es with respe
t

to a single learning ma
hine. As an example, 
onsider the following one given by Tom

Dietteri
h in [43℄. If we have a di
hotomi
 
lassi�
ation problem and L hypotheses whose

error is lower than 0:5, then the resulting majority voting ensemble has an error lower than

the single 
lassi�er, as long as the error of the base learners are un
orrelated. In fa
t, if

we have 21 
lassi�ers, and the error rates of ea
h base learner are all equal to p = 0:3 and

the errors are independent, the overall error of the majority voting ensemble will be given

by the area under the binomial distribution where more than L=2 hypotheses are wrong:

P

error

=

L

X

(i=dL=2e)

�

L

i

�

p

i

(1� p)

L�i

) P

error

= 0:026� p = 0:3

This result has been studied by mathemati
ians sin
e the end of the XVIII 
entury in

the 
ontext of so
ial s
ien
es: in fa
t the Condor
et Jury Theorem [38℄) proved that the

judgment of a 
ommittee is superior to those of individuals, provided the individuals have

reasonable 
ompeten
e (that is, a probability of being 
orre
t higher than 0:5). As noted

in [122℄, this theorem theoreti
ally justi�es re
ent resear
h on multiple "weak" 
lassi-

�ers [95, 81, 110℄, representing an interesting resear
h dire
tion diametri
ally opposite to

the development of highly a

urate and spe
i�
 
lassi�ers.

This simple example shows also an important issue in the design of ensembles of learning

ma
hines: the e�e
tiveness of ensemble methods relies on the independen
e of the error


ommitted by the 
omponent base learner. In this example, if the independen
e assumption

does not hold, we have no assuran
e that the ensemble will lower the error, and we know

that in many 
ases the errors are 
orrelated. From a general standpoint we know that

the e�e
tiveness of ensemble methods depends on the a

ura
y and the diversity of the

base learners, that is if they exhibit low error rates and if they produ
e di�erent errors
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[78, 174, 132℄. The 
orrelated 
on
ept of independen
e between the base learners has been


ommonly regarded as a requirement for e�e
tive 
lassi�er 
ombinations, but Kun
heva

and Whitaker have re
ently shown that not always independent 
lassi�ers outperform

dependent ones [121℄. In fa
t there is a trade-o� between a

ura
y and independen
e:

more a

urate are the base learners, less independent they are.

Learning algorithms try to �nd an hypothesis in a given spa
e H of hypotheses, and in

many 
ases if we have suÆ
ient data they 
an �nd the optimal one for a given problem. But

in real 
ases we have only limited data sets and sometimes only few examples are available.

In these 
ases the learning algorithm 
an �nd di�erent hypotheses that appear equally

a

urate with respe
t to the available training data, and although we 
an sometimes sele
t

among them the simplest or the one with the lowest 
apa
ity, we 
an avoid the problem

averaging or 
ombining them to get a good approximation of the unknown true hypothesis.

Another reason for 
ombining multiple learners arises from the limited representational


apability of learning algorithms. In many 
ases the unknown fun
tion to be approximated

is not present inH, but a 
ombination of hypotheses drawn fromH 
an expand the spa
e of

representable fun
tions, embra
ing also the true one. Although many learning algorithms

present universal approximation properties [86, 142℄, with �nite data sets these asymptoti


features do not hold: the e�e
tive spa
e of hypotheses explored by the learning algorithm

is a fun
tion of the available data and it 
an be signi�
antly smaller than the virtual H


onsidered in the asymptoti
 
ase. From this standpoint ensembles 
an enlarge the e�e
tive

hypotheses 
overage, expanding the spa
e of representable fun
tions.

Many learning algorithms apply lo
al optimization te
hniques that may get stu
k in lo
al

optima. For instan
e indu
tive de
ision trees employ a greedy lo
al optimization approa
h,

and neural networks apply gradient des
ent te
hniques to minimize an error fun
tion over

the training data. Moreover optimal training with �nite data both for neural networks and

de
ision trees is NP-hard [13, 88℄. As a 
onsequen
e even if the learning algorithm 
an

in prin
iple �nd the best hypothesis, we a
tually may not be able to �nd it. Building an

ensemble using, for instan
e, di�erent starting points may a
hieve a better approximation,

even if no assuran
e of this is given.

Another way to look at the need for ensembles is represented by the 
lassi
al bias{varian
e

analysis of the error [68, 115℄: di�erent works have shown that several ensemble methods

redu
e varian
e [15, 124℄ or both bias and varian
e [15, 62, 114℄. Re
ently the improved

generalization 
apabilities of di�erent ensemble methods have also been interpreted in the

framework of the theory of large margin 
lassi�ers [129, 162, 2℄, showing that methods su
h

as boosting and ECOC enlarge the margins of the examples.
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2.2 Ensemble Methods Overview

A large number of 
ombination s
hemes and ensemble methods have been proposed in liter-

ature. Combination te
hniques 
an be grouped and analyzed in di�erent ways, depending

on the main 
lassi�
ation 
riterion adopted. If we 
onsider the representation of the input

patterns as the main 
riterion, we 
an identify two distin
t large groups, one that uses the

same and one that uses di�erent representations of the inputs [104, 105℄.

Assuming the ar
hite
ture of the ensemble as the main 
riterion, we 
an distinguish between

serial, parallel and hierar
hi
al s
hemes [122℄, and if the base learners are sele
ted or not by

the ensemble algorithm we 
an separate sele
tion-oriented and 
ombiner-oriented ensemble

methods [92, 118℄. In this brief overview we adopt an approa
h similar to the one 
ited

above, in order to distinguish between non-generative and generative ensemble methods.

Non-generative ensemble methods 
on�ne themselves to 
ombine a set of given possibly

well-designed base learners: they do not a
tively generate new base learners but try to


ombine in a suitable way a set of existing base 
lassi�ers. Generative ensemble methods

generate sets of base learners a
ting on the base learning algorithm or on the stru
ture of

the data set and try to a
tively improve diversity and a

ura
y of the base learners.

Note that in some 
ases it is diÆ
ult to assign a spe
i�
 ensemble method to either of the

proposed general super
lasses: the purpose of this general taxonomy is simply to provide

a general framework for the main ensemble methods proposed in the literature.

2.2.1 Non-generative Ensembles

This large group of ensemble methods embra
es a large set of di�erent approa
hes to


ombine learning ma
hines. They share the very general 
ommon property of using a

predetermined set of learning ma
hines previously trained with suitable algorithms. The

base learners are then put together by a 
ombiner module that may vary depending on its

adaptivity to the input patterns and on the requirement of the output of the individual

learning ma
hines.

The type of 
ombination may depend on the type of output. If only labels are available or

if 
ontinuous outputs are hardened, then majority voting, that is the 
lass most represented

among the base 
lassi�ers, is used [103, 147, 124℄.

This approa
h 
an be re�ned assigning di�erent weights to ea
h 
lassi�er to optimize the

performan
e of the 
ombined 
lassi�er on the training set [123℄, or, assuming mutual in-

dependen
e between 
lassi�ers, a Bayesian de
ision rule sele
ts the 
lass with the highest

posterior probability 
omputed through the estimated 
lass 
onditional probabilities and

the Bayes' formula [193, 172℄. A Bayesian approa
h has also been used in Consensus

based 
lassi�
ation of multisour
e remote sensing data [10, 9, 21℄, outperforming 
onven-
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tional multivariate methods for 
lassi�
ation. To over
ome the problem of the indepen-

den
e assumption (that is unrealisti
 in most 
ases), the Behavior-Knowledge Spa
e (BKS)

method [87℄ 
onsiders ea
h possible 
ombination of 
lass labels, �lling a look-up table using

the available data set, but this te
hnique requires a large volume of training data.

Where we interpret the 
lassi�er outputs as the support for the 
lasses, fuzzy aggrega-

tion methods 
an be applied, su
h as simple 
onne
tives between fuzzy sets or the fuzzy

integral [30, 29, 100, 190℄; if the 
lassi�er outputs are possibilisti
, Dempster-S
hafer 
om-

bination rules 
an be applied [154℄. Statisti
al methods and similarity measures to estimate


lassi�er 
orrelation have also been used to evaluate expert system 
ombination for a proper

design of multi-expert systems [89℄.

The base learners 
an also be aggregated using simple operators as Minimum, Maximum,

Average and Produ
t and Ordered Weight Averaging and other statisti
s [160, 20, 117, 155℄.

In parti
ular, on the basis of a 
ommon bayesian framework, Josef Kittler provided a

theoreti
al underpinning of many existing 
lassi�er 
ombination s
hemes based on the

produ
t and the sum rule, showing also that the sum rule is less sensitive to the errors of

subsets of base 
lassi�ers [105℄.

Re
ently Ludmila Kun
heva has developed a global 
ombination s
heme that takes into

a

ount the de
ision pro�les of all the ensemble 
lassi�ers with respe
t to all the 
lasses,

designing De
ision templates that summarize in matrix format the average de
ision pro�les

of the training set examples. Di�erent similarity measures 
an be used to evaluate the

mat
hing between the matrix of 
lassi�er outputs for an input x, that is the de
ision

pro�les referred to x, and the matrix templates (one for ea
h 
lass) found as the 
lass

means of the 
lassi�er outputs [118℄. This general fuzzy approa
h produ
e soft 
lass labels

that 
an be seen as a generalization of the 
onventional 
risp and probabilisti
 
ombination

s
hemes.

Another general approa
h 
onsists in expli
itly training 
ombining rules, using se
ond-level

learning ma
hines on top of the set of the base learners [55, 191℄. This sta
ked stru
ture

makes use of the outputs of the base learners as features in the intermediate spa
e: the

outputs are fed into a se
ond-level ma
hine to perform a trained 
ombination of the base

learners.

Meta-learning te
hniques 
an be interpreted as an extension of the previous approa
h [25,

26℄. Indeed they 
an be de�ned as learning from learned knowledge and are 
hara
terized

by meta-level training sets generated by the �rst level base learners trained on the "true"

data set, and a meta-learner trained from the meta-level training set [150℄. In other words,

in meta-learning the integration rule is learned by the meta-learner on the basis of the

behavior of the trained base learners.
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2.2.2 Generative Ensembles

Generative ensemble methods try to improve the overall a

ura
y of the ensemble by

dire
tly boosting the a

ura
y and the diversity of the base learner. They 
an modify the

stru
ture and the 
hara
teristi
s of the available input data, as in resampling methods or

in feature sele
tion methods, they 
an manipulate the aggregation of the 
lasses (Output

Coding methods), 
an sele
t base learners spe
ialized for a spe
i�
 input region (mixture

of experts methods), 
an sele
t a proper set of base learners evaluating the performan
e

and the 
hara
teristi
s of the 
omponent base learners (test-and-sele
t methods) or 
an

randomly modify the base learning algorithm (randomized methods).

2.2.2.1 Resampling methods

Resampling te
hniques 
an be used to generate di�erent hypotheses. For instan
e, boot-

strapping te
hniques [56℄ may be used to generate di�erent training sets and a learning

algorithm 
an be applied to the obtained subsets of data in order to produ
e multiple

hypotheses. These te
hniques are e�e
tive espe
ially with unstable learning algorithms,

whi
h are algorithms very sensitive to small 
hanges in the training data, su
h as neural-

networks and de
ision trees.

In bagging [15℄ the ensemble is formed by making bootstrap repli
ates of the training

sets, and then multiple generated hypotheses are used to get an aggregated predi
tor.

The aggregation 
an be performed averaging the outputs in regression or by majority or

weighted voting in 
lassi�
ation problems [169, 170℄.

While in bagging the samples are drawn with repla
ement using a uniform probability

distribution, in boosting methods the learning algorithm is 
alled at ea
h iteration using a

di�erent distribution or weighting over the training examples [160, 63, 161, 62, 164, 159,

50, 61, 51, 50, 17, 18, 65, 64℄. This te
hnique pla
es the highest weight on the examples

most often mis
lassi�ed by the previous base learner: in this way the base learner fo
uses

its attention on the hardest examples. Then the boosting algorithm 
ombines the base

rules taking a weighted majority vote of the base rules. S
hapire and Singer showed

that the training error exponentially drops down with the number of iterations [163℄ and

S
hapire et al. [162℄ proved that boosting enlarges the margins of the training examples,

showing also that this fa
t translates into a superior upper bound on the generalization

error. Experimental work showed that bagging is e�e
tive with noisy data, while boosting,


on
entrating its e�orts on noisy data seems to be very sensitive to noise [153, 44℄. Re
ently,

variants of boosting, spe
i�
 for noisy data, have been proposed by several authors [152, 39℄.

Another resampling method 
onsists in 
onstru
ting training sets by leaving out disjoint

subsets of the training data as in 
ross-validated 
ommittees [143, 144℄ or sampling without

repla
ement [165℄.
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Another general approa
h, named Sto
hasti
 Dis
rimination [109, 110, 111, 108℄, is based

on randomly sampling from a spa
e of subsets of the feature spa
e underlying a given

problem, then 
ombining these subsets to form a �nal 
lassi�er, using a set-theoreti
 ab-

stra
tion to remove all the algorithmi
 details of 
lassi�ers and training pro
edures. By

this approa
h the 
lassi�ers' de
ision regions are 
onsidered only in form of point sets,

and the set of 
lassi�ers is just a sample into the power set of the feature spa
e. A rigor-

ous mathemati
al treatment starting from the "representativeness" of the examples used

in ma
hine learning problems leads to the design of ensemble of weak 
lassi�ers, whose

a

ura
y is governed by the law of large numbers [27℄.

2.2.2.2 Feature sele
tion methods

This approa
h 
onsists in redu
ing the number of input features of the base learners, a

simple method to �ght the e�e
ts of the 
lassi
al 
urse of dimensionality problem [66℄. For

instan
e, in the Random Subspa
e Method [81, 119℄, a subset of features is randomly sele
ted

and assigned to an arbitrary learning algorithm. This way, one obtains a random subspa
e

of the original feature spa
e, and 
onstru
ts 
lassi�ers inside this redu
ed subspa
e. The

aggregation is usually performed using weighted voting on the basis of the base 
lassi�ers

a

ura
y. It has been shown that this method is e�e
tive for 
lassi�ers having a de
reasing

learning 
urve 
onstru
ted on small and 
riti
al training sample sizes [168℄

The Input De
imation approa
h [175, 139℄ redu
es the 
orrelation among the errors of the

base 
lassi�ers, de
oupling the base 
lassi�ers by training them with di�erent subsets of

the input features. It di�ers from the previous Random Subspa
e Method as for ea
h 
lass

the 
orrelation between ea
h feature and the output of the 
lass is expli
itly 
omputed,

and the base 
lassi�er is trained only on the most 
orrelated subset of features.

Feature subspa
e methods performed by partitioning the set of features, where ea
h subset

is used by one 
lassi�er in the team, are proposed in [193, 141, 20℄. Other methods for


ombining di�erent feature sets using geneti
 algorithms are proposed in [118, 116℄. Di�er-

ent approa
hes 
onsider feature sets obtained by using di�erent operators on the original

feature spa
e, su
h as Prin
ipal Component Analysis, Fourier 
oeÆ
ients, Karhunen-Loewe


oeÆ
ients, or other [28, 55℄. An experiment with a systemati
 partition of the feature

spa
e, using nine di�erent 
ombination s
hemes is performed in [120℄, showing that there

are no "best" 
ombinations for all situations and that there is no assuran
e that in all 
ases

a 
lassi�er team will outperform the single best individual.
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2.2.2.3 Mixtures of experts methods

The re
ombination of the base learners 
an be governed by a supervisor learning ma
hine,

that sele
ts the most appropriate element of the ensemble on the basis of the available

input data. This idea led to the mixture of experts methods [91, 90℄, where a gating

network performs the division of the input spa
e and small neural networks perform the

e�e
tive 
al
ulation at ea
h assigned region separately. An extension of this approa
h is

the hierar
hi
al mixture of experts method, where the outputs of the di�erent experts are

non-linearly 
ombined by di�erent supervisor gating networks hierar
hi
ally organized [97,

98, 90℄.

Cohen and Intrator extended the idea of 
onstru
ting lo
al simple base learners for di�erent

regions of input spa
e, sear
hing for appropriate ar
hite
tures that should be lo
ally used

and for a 
riterion to sele
t a proper unit for ea
h region of input spa
e [31, 32℄. They

proposed a hybrid MLP/RBF network by 
ombining RBF and Per
eptron units in the same

hidden layer and using a forward sele
tion approa
h [58℄ to add units until a desired error is

rea
hed. Although the resulting Hybrid Per
eptron/Radial Network is not in a stri
t sense

an ensemble, the way by whi
h the regions of the input spa
e and the 
omputational units

are sele
ted and tested 
ould be in prin
iple extended to ensembles of learning ma
hines.

2.2.2.4 Output Coding de
omposition methods

Output Coding (OC) methods de
ompose a multi
lass{
lassi�
ation problem in a set of two-


lass subproblems, and then re
ompose the original problem 
ombining them to a
hieve

the 
lass label [134, 130, 43℄. An equivalent way of thinking about these methods 
onsists

in en
oding ea
h 
lass as a bit string (named 
odeword), and in training a di�erent two-


lass base learner (di
hotomizer) in order to separately learn ea
h 
odeword bit. When the

di
hotomizers are applied to 
lassify new points, a suitable measure of similarity between

the 
odeword 
omputed by the ensemble and the 
odeword 
lasses is used to predi
t the


lass.

Di�erent de
omposition s
hemes have been proposed in literature: In the One-Per-Class

(OPC) de
omposition [4℄, ea
h di
hotomizer f

i

has to separate a single 
lass from all oth-

ers; in the PairWise Coupling (PWC) de
omposition [79℄, the task of ea
h di
hotomizer

f

i


onsists in separating a 
lass C

i

form 
lass C

j

, ignoring all other 
lasses; the Corre
ting

Classi�ers (CC) and the PairWise Coupling Corre
ting Classi�ers (PWC-CC) are variants

of the PWC de
omposition s
heme, that redu
e the noise originated in the PWC s
heme

due to the pro
essing of non pertinent information performed by the PWC di
hotomiz-

ers [137℄.

Error Corre
ting Output Coding [45, 46℄ is the most studied OC method, and has been

su

essfully applied to several 
lassi�
ation problems [1, 11, 69, 6, 177, 194℄. This de
om-
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position method tries to improve the error 
orre
ting 
apabilities of the 
odes generated

by the de
omposition through the maximization of the minimum distan
e between ea
h


ouple of 
odewords [114, 130℄. This goal is a
hieved by means of the redundan
y of the


oding s
heme [187℄.

ECOC methods present several open problems. The tradeo� between error re
overing


apabilities and 
omplexity/learnability of the di
hotomies indu
ed by the de
omposition

s
heme has been ta
kled in several works [2, 176℄, but an extensive experimental evaluation

of the tradeo� has to be performed in order to a
hieve a better understanding of this

phenomenon. A related problem is the analysis of the relationship between 
odeword length

and performan
es: some preliminary results seem to show that long 
odewords improve

performan
e [69℄. Another open problem, not suÆ
iently investigated in literature [69,

131, 11℄, is the sele
tion of optimal di
hotomi
 learning ma
hines for the de
omposition

unit. Several methods for generating ECOC 
odes have been proposed: exhaustive 
odes,

randomized hill 
limbing [46℄, random 
odes [93℄, and Hadamard and BCH 
odes [14, 148℄.

An open problems is still the joint maximization of distan
es between rows and 
olumns in

the de
omposition matrix. Another open problem 
onsists in designing 
odes for a given

multi
lass problem. An interesting greedy approa
h is proposed in [134℄, and a method

based on soft weight sharing to learn error 
orre
ting 
odes from data is presented in [3℄.

In [36℄ it is shown that given a set of di
hotomizers the problem of �nding an optimal

de
omposition matrix is NP-
omplete: by introdu
ing 
ontinuous 
odes and 
asting the

design problem of 
ontinuous 
odes as a 
onstrained optimization problem, we 
an a
hieve

an optimal 
ontinuous de
omposition using standard optimization methods.

The work in [131℄ highlights that the e�e
tiveness of ECOC de
omposition methods de-

pends mainly on the design of the learning ma
hines implementing the de
ision units, on

the similarity of the ECOC 
odewords, on the a

ura
y of the di
hotomizers, on the 
om-

plexity of the multi
lass learning problem and on the 
orrelation of the 
odeword bits.

In parti
ular, Peterson and Weldon [148℄ showed that if errors on di�erent 
ode bits are

dependent, the e�e
tiveness of error 
orre
ting 
ode is redu
ed. Consequently, if a de-


omposition matrix 
ontains very similar rows (di
hotomies), ea
h error of an assigned

di
hotomizer will be likely to appear in the most 
orrelated di
hotomizers, thus redu
ing

the e�e
tiveness of ECOC. These hypotheses have been experimentally supported by a

quantitative evaluation of the dependen
y among output errors of the de
omposition unit

of ECOC learning ma
hines using mutual information based measures [132, 133℄.

2.2.2.5 Test and sele
t methods

The test and sele
t methodology relies on the idea of sele
tion in ensemble 
reation [166℄.

The simplest approa
h is a greedy one [147℄, where a new learner is added to the en-

semble only if the resulting squared error is redu
ed, but in prin
iple any optimization
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te
hnique 
an be used to sele
t the "best" 
omponent of the ensemble, in
luding geneti


algorithms [138℄.

It should be noted that the time 
omplexity of the sele
tion of optimal subsets of 
lassi�ers

is exponential with respe
t to the number of base learners used. From this point of view

heuristi
 rules, as the "
hoose the best" or the "
hoose the best in the 
lass", using 
lassi�ers

of di�erent types strongly redu
e the 
omputational 
omplexity of the sele
ted phase, as

the evaluation of di�erent 
lassi�er subsets is not required [145℄. Moreover test and sele
t

methods impli
itly in
lude a "produ
tion stage", by whi
h a set of 
lassi�ers must be

generated.

Di�erent sele
tion methods based on di�erent sear
h algorithm mututated from feature

sele
tion methods (forward and ba
kward sear
h) or for the solution of 
omplex optimiza-

tion tasks (tabu sear
h) are proposed in [156℄. Another interesting approa
h uses 
lustering

methods and a measure of diversity to generate sets of diverse 
lassi�ers 
ombined by ma-

jority voting, sele
ting the ensemble with the highest performan
e [72℄. Finally, Dynami


Classi�er Sele
tion methods [85, 192, 71℄ are based on the de�nition of a fun
tion sele
ting

for ea
h pattern the 
lassi�er whi
h is probably the most a

urate, estimating, for instan
e

the a

ura
y of ea
h 
lassi�er in a lo
al region of the feature spa
e surrounding an unknown

test pattern [71, 74, 73℄.

2.2.2.6 Randomized ensemble methods

Inje
ting randomness into the learning algorithm is another general method to generate

ensembles of learning ma
hines. For instan
e, if we initialize with random values the initial

weights in the ba
kpropagation algorithm, we 
an obtain di�erent learning ma
hines that


an be 
ombined into an ensemble [113, 143℄.

Several experimental results showed that randomized learning algorithms used to generate

base elements of ensembles improve the performan
es of single non-randomized 
lassi�ers.

For instan
e in [44℄ randomized de
ision tree ensembles outperform single C4.5 de
ision

trees [151℄, and adding gaussian noise to the data inputs, together with bootstrap and

weight regularization 
an a
hieve large improvements in 
lassi�
ation a

ura
y [153℄.

2.3 New dire
tions in ensemble methods resear
h

Ensemble methods are one of the most in
reasing resear
h topi
 in ma
hine learning.

Without pretending to be exhaustive, here are summarized some new dire
tions in ensemble

method resear
h, emphasizing those topi
s most related to my resear
h interests.

Ensemble methods have been developed in 
lassi�
ation and regression settings, but there
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are very few approa
hes proposed for unsupervised 
lustering problems. For instan
e, a

multiple k-means method 
ombines multiple approximate k-means solution to obtain a

�nal set of 
luster 
enters [59℄, and 
luster ensembles based on partial sets of features

or multiple views of data have been applied to data mining problems and to stru
ture

rules in a knowledge base [99, 136℄. Re
ently a new interesting resear
h dire
tion has

been proposed for unsupervised 
lustering problems [70, 171℄. A

ording to this approa
h

multiple partitioning of a set of obje
ts, obtained from di�erent 
lustering algorithms or

di�erent instan
es of the same 
lustering algorithm, are 
ombined without a

essing the

original input features, but using only the 
luster labels provided by the applied 
lusterers.

Then the "optimal" partition labeling is sele
ted as the one that maximizes the mutual

information with respe
t to all the provided labelings. This approa
h should also permit to

integrate both di�erent 
lustering algorithms and views of data, exploiting heterogeneous

resour
es and data available in distributed environments.

Another resear
h dire
tion for ensemble methods 
ould be represented by ensemble meth-

ods spe
i�
 for feature sele
tion. Indeed, if only small sized samples are available, ensemble

methods 
ould provide robust estimates of sets of features 
orrelated with the output of a

learning ma
hines: several appli
ations, for instan
e in bioinformati
s, 
ould take advan-

tage of this approa
h.

Following the spirit of Breiman's random forests [19℄, we 
ould use randomness at dif-

ferent levels to improve performan
es of ensemble methods. For instan
e, we know that

random sele
tion of input samples 
ombined with random sele
tion of features improve

the performan
e of random forests. This approa
h 
ould be in prin
iple extended to other

base learners. Moreover we 
ould also extend this approa
h to other types of randomness,

as the strong law of large numbers assures the 
onvergen
e and no over�tting problems

in
rementing the number of base learners [19℄. For instan
e we 
ould design "forests", or,

more appropriately in this 
ontext, nets of neural networks, exploring suitable ways to in-

je
t randomness in building ensembles, extending the original Breiman's approa
h "limited

only" to random input and features.

Two main theories are invoked to explain the su

ess of ensemble methods. The �rst

one 
onsider the ensembles in the framework of large margin 
lassi�ers [129℄, showing

that ensembles enlarge the margins, enhan
ing the generalization 
apabilities of learning

algorithms [162, 2℄. The se
ond is based on the the 
lassi
al bias{varian
e de
omposition

of the error [68℄, and it shows that ensembles 
an redu
e varian
e [16℄ and also bias [114℄.

Re
ently Domingos proved that S
hapire's notion of margins [162℄ 
an be expressed in

terms of bias and varian
e and vi
eversa [49℄, and hen
e S
hapire's bounds of ensemble's

generalization error 
an be equivalently expressed in terms of the distribution of the margins

or in terms of the bias{varian
e de
omposition of the error, showing the equivalen
e of

margin-based and bias{varian
e-based approa
hes.
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Despite these important results, most of the theoreti
al problems behind ensemble methods

remain opened, and we need more resear
h work to understand the 
hara
teristi
s and

generalization 
apabilities of ensemble methods.

For instan
e, a substantially unexplored resear
h �eld is represented by the analysis of the

relationships between ensemble methods and data 
omplexity [126℄. The papers of Tin

Kam Ho [82, 83, 84℄ represent a fundamental starting point to explore the relationships

between ensemble methods (and more generally learning algorithms) and data 
omplexity

in order to 
hara
terize ensemble methods with respe
t to the spe
i�
 properties of the

data. Extending this approa
h we 
ould also try to design ensemble methods well-tuned

to the data 
hara
teristi
s, embedding analysis of data 
omplexity and/or the evaluation

of the geometri
al or topologi
al data 
hara
teristi
s into the ensemble method itself. An

interesting step in this dire
tion is represented bu the resear
h of Cohen and Intrator [31,

33℄. Even if they use a single learning ma
hine 
omposed by heterogeneous radial and

sigmoidal units to properly �t geometri
al data 
hara
teristi
s, their approa
h 
an be in

prin
iple extended to heterogeneous ensembles of learning ma
hines.

From a di�erent standpoint we 
ould also try to develop ensemble methods well-tuned

to the the 
hara
teristi
s of spe
i�
 base learners. Usually ensemble methods have been


on
eived quite independently of the 
hara
teristi
s of spe
i�
 base learners, emphasizing

the 
ombination s
heme instead of the properties of the applied basi
 learning algorithm.

Hen
e, a promising resear
h line 
ould 
onsist in 
hara
terizing the properties of a spe
i�


base learner, building around it an ensemble method well-tuned to the learning 
hara
ter-

isti
s of the base learner itself. Toward this resear
h dire
tion, bias-varian
e analysis [47℄


ould in prin
iple be used to 
hara
terize the properties of learning algorithms in order to

design ensemble methods well-tuned to the bias{varian
e 
hara
teristi
s of a spe
i�
 base

learner [182℄.
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Chapter 3

Bias{varian
e de
omposition of the

error

Our purpose 
onsists in evaluating if bias{varian
e analysis 
an be used to 
hara
terize

the behavior of learning algorithms and to tune the individual base 
lassi�ers so as to

optimize the overall performan
e of the ensemble. As a 
onsequen
e, to pursue these

goals, we 
onsidered the di�erent approa
hes and theories proposed in the literature, and

in parti
ular we propose a very general approa
h appli
able to any loss fun
tion and in

parti
ular to the 0/1 loss [47℄, as explained below in this 
hapter.

Histori
ally, the bias{varian
e insight was borrowed from the �eld of regression, using

squared{loss as the loss fun
tion [68℄. For 
lassi�
ation problems, where the 0=1 loss is the

main 
riterion, several authors proposed bias{varian
e de
ompositions related to 0=1 loss.

Kong and Dietteri
h [114℄ proposed a bias{varian
e de
omposition in the 
ontext of ECOC

ensembles [46℄, but their analysis is extensible to arbitrary 
lassi�ers, even if they de�ned

varian
e simply as a di�eren
e between loss and bias.

In Breiman's de
omposition [16℄ bias and varian
e are always non-negative (while Diet-

teri
h de�nition allows a negative varian
e), but at any input the redu
ible error (i.e. the

total error rate less noise) is assigned entirely to varian
e if the 
lassi�
ation is unbiased,

and to bias if biased. Moreover he for
ed the de
omposition to be purely additive, while

for the 0/1 loss this is not the 
ase. Kohavi and Wolpert approa
h [112℄ produ
ed a biased

estimation of bias and varian
e, assigning a non-zero bias to a Bayes 
lassi�er, while Tib-

shirani [173℄ did not use dire
tly the notion of varian
e, de
omposing the 0=1 loss in bias

and an unrelated quantity he 
alled "aggregation e�e
t", whi
h is similar to the James'

notion of varian
e e�e
t [94℄.

Friedman [66℄ showed that in 
lassi�
ation problems, bias and varian
e are not purely
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additive: in some 
ases in
reasing varian
e in
reases the error, but in other 
ases 
an also

redu
e the error, espe
ially when the predi
tion is biased.

Heskes [80℄ proposed a bias-varian
e de
omposition using the Kullba
k-Leibler divergen
e

as loss fun
tion. By this approa
h the error between the target and the predi
ted 
lassi-

�er densities is measured; anyway when he tried to extend this approa
h to the zero-one

fun
tion interpreted as the limit 
ase of log-likelihood type error, the resulting de
omposi-

tion produ
es a de�nition of bias that losses his natural interpretation as systemati
 error


ommitted by the 
lassi�er.

As brie
y outlined, these de
ompositions su�er of signi�
ant short
omings: in parti
ular

they lose the relationship to the original squared loss de
omposition, for
ing in most 
ases

bias and varian
e to be purely additive.

We 
onsider 
lassi�
ation problems and the 0=1 loss fun
tion in the Domingos' uni�ed

framework of bias{varian
e de
omposition of the error [49, 48℄. In this approa
h bias and

varian
e are de�ned for an arbitrary loss fun
tion, showing that the resulting de
omposition

spe
ializes to the standard one for squared loss, but it holds also for the 0=1 loss [49℄.

A similar approa
h has been proposed by James [94℄: he extended the notion of varian
e

and bias for general loss fun
tions, distinguishing also between bias and varian
e, inter-

preted respe
tively as the systemati
 error and the variability of an estimator, and the the

a
tual e�e
t of bias and varian
e on the error.

In the rest of this 
hapter we 
onsider Domingos and James bias{varian
e theory, fo
using

on bias{varian
e for the 0/1 loss. Moreover we show how to measure bias and varian
e of

the error in 
lassi�
ation problems, suggesting diverse approa
hes for respe
tively "large"

or "small" data sets.

3.1 Bias{Varian
e De
omposition for the 0/1 loss fun
-

tion

The analysis of bias{varian
e de
omposition of the error has been originally developed in

the standard regression setting, where the squared error is usually used as loss fun
tion.

Considering a predi
tion y = f(x) of an unknown target t, provided by a learner f on input

x, with x 2 R

d

and y 2 R, the 
lassi
al de
omposition of the error in bias and varian
e for

the squared error loss is [68℄:

E

y;t

[(y � t)

2

℄ = E

t

[(t� E[t℄)

2

℄ + E

y

[(y � E[y℄)

2

℄ + (E[y℄� E[t℄)

2

= Noise(t) + V ar(y) +Bias

2

(y)
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In words, the expe
ted loss of using y to predi
t t is the sum of the varian
es of t (noise) and

y plus the squared bias. E

y

[�℄ indi
ates the expe
ted value with respe
t to the distribution

of the random variable y.

This de
omposition 
annot be automati
ally extended to the standard 
lassi�
ation setting,

as in this 
ontext the 0/1 loss fun
tion is usually applied, and bias and varian
e are not

purely additive. As we are mainly interested in analyzing bias{varian
e for 
lassi�
ation

problems, we introdu
e the bias{varian
e de
omposition for the 0/1 loss fun
tion, a

ording

to the Domingos uni�ed bias{varian
e de
omposition of the error [48℄.

3.1.1 Expe
ted loss depends on the randomness of the training

set and the target

Consider a (potentially in�nite) population U of labeled training data points, where ea
h

point is a pair (x

j

; t

j

); t

j

2 C; x

j

2 R

d

; d 2 N , where C is the set of the 
lass labels. Let

P (x; t) be the joint distribution of the data points in U . Let D be a set of m points drawn

identi
ally and independently from U a

ording to P . We think of D as being the training

sample that we are given for training a 
lassi�er. We 
an view D as a random variable,

and we will let E

D

[�℄ indi
ate the expe
ted value with respe
t to the distribution of D.

Let L be a learning algorithm, and de�ne f

D

= L(D) as the 
lassi�er produ
ed by L

applied to a training set D. The model produ
es a predi
tion f

D

(x) = y. Let L(t; y) be

the 0=1 loss fun
tion, that is L(t; y) = 0 if y = t, and L(t; y) = 1 otherwise.

Suppose we 
onsider a �xed point x 2 R

d

. This point may appear in many labeled train-

ing points in the population. We 
an view the 
orresponding labels as being distributed

a

ording to the 
onditional distribution P (tjx). Re
all that it is always possible to fa
tor

the joint distribution as P (x; t) = P (x)P (tjx). Let E

t

[�℄ indi
ate the expe
tation with

respe
t to t drawn a

ording to P (tjx).

Suppose we 
onsider a �xed predi
ted 
lass y for a given x. This predi
tion will have an

expe
ted loss of E

t

[L(t; y)℄. In general, however, the predi
tion y is not �xed. Instead, it

is 
omputed from a model f

D

whi
h is in turn 
omputed from a training sample D.

Hen
e, the expe
ted loss EL of learning algorithm L at point x 
an be written by 
onsid-

ering both the randomness due to the 
hoi
e of the training set D and the randomness in

t due to the 
hoi
e of a parti
ular test point (x; t):

EL(L;x) = E

D

[E

t

[L(t; f

D

(x))℄℄;

where f

D

= L(D) is the 
lassi�er learned by L on training data D. The purpose of the

bias-varian
e analysis is to de
ompose this expe
ted loss into terms that separate the bias

and the varian
e.
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3.1.2 Optimal and main predi
tion.

To derive this de
omposition, we must de�ne two things: the optimal predi
tion and the

main predi
tion: a

ording to Domingos, bias and varian
e 
an be de�ned in terms of these

quantities.

The optimal predi
tion y

�

for point x minimizes E

t

[L(t; y)℄ :

y

�

(x) = argmin

y

E

t

[L(t; y)℄ (3.1)

It is equal to the label t that is observed more often in the universe U of data points. The

optimal model

^

f(x) = y

�

; 8x makes the optimal predi
tion at ea
h point x. The noise

N(x), is de�ned in terms of the optimal predi
tion, and represents the remaining loss that


annot be eliminated, even by the optimal predi
tion:

N(x) = E

t

[L(t; y

�

)℄

Note that in the deterministi
 
ase y

�

(x) = t and N(x) = 0.

The main predi
tion y

m

at point x is de�ned as

y

m

= argmin

y

0

E

D

[L(f

D

(x); y

0

)℄: (3.2)

This is a value that would give the lowest expe
ted loss if it was the \true label" of x. It

expresses the "
entral tenden
y" of a learner, that is its systemati
 predi
tion, or, in other

words, it is the label for x that the learning algorithm \wishes" were 
orre
t. For 0/1 loss,

the main predi
tion is the 
lass predi
ted most often by the learning algorithm L when

applied to training sets D.

3.1.3 Bias, unbiased and biased varian
e.

Given these de�nitions, the bias B(x) (of learning algorithm L on training sets of size m)

is the loss of the main predi
tion relative to the optimal predi
tion:

B(x) = L(y

�

; y

m

)

For 0/1 loss, the bias is always 0 or 1. We will say that L is biased at point x, if B(x) = 1.

The varian
e V (x) is the average loss of the predi
tions relative to the main predi
tion:

V (x) = E

D

[L(y

m

; f

D

(x))℄ (3.3)

It 
aptures the extent to whi
h the various predi
tions f

D

(x) vary depending on D.

33



In the 
ase of the 0/1 loss we 
an also distinguish two opposite e�e
ts of varian
e (and

noise) on the error: in the unbiased 
ase varian
e and noise in
rease the error, while in the

biased 
ase varian
e and noise de
rease the error.

There are three 
omponents that determine whether t = y:

1. Noise: is t = y

�

?

2. Bias: is y

�

= y

m

?

3. Varian
e: is y

m

= y ?

Note that bias is either 0 or 1 be
ause neither y

�

nor y

m

are random variables. From this

standpoint we 
an 
onsider two di�erent 
ases: the unbiased and the biased 
ase.

In the unbiased 
ase, B(x) = 0 and hen
e y

�

= y

m

. In this 
ase we su�er a loss if the

predi
tion y di�ers from the main predi
tion y

m

(varian
e) and the optimal predi
tion y

�

is equal to the target t, or y is equal to y

m

, but y

�

is di�erent from t (noise).

In the biased 
ase, B(x) = 1 and hen
e y

�

6= y

m

. In this 
ase we su�er a loss if the

predi
tion y is equal to the main predi
tion y

m

and the optimal predi
tion y

�

is equal to

the target t, or if both y is di�erent from to y

m

(varian
e), and y

�

is di�erent from t (noise).

Fig. 3.1 summarizes the di�erent 
onditions under whi
h an error 
an arise, 
onsidering

the 
ombined e�e
t of bias, varian
e and noise on the learner predi
tion.

Considering the above 
ase analysis of the error, if we let P (t 6= y

�

) = N(x) = � and

P (y

m

6= y) = V (x) = �, in the unbiased 
ase we have:

L(t; y) = �(1� �) + �(1� �) (3.4)

= � + � � 2��

= N(x) + V (x)� 2N(x)V (x)

while, in the the biased 
ase:

L(t; y) = �� + (1� �)(1� �) (3.5)

= 1� (� + � � 2��)

= B(x)� (N(x) + V (x)� 2N(x)V (x))

Note that in the unbiased 
ase (eq. 3.4) the varian
e is an additive term of the loss fun
tion,

while in the biased 
ase (eq. 3.5) the varian
e is a subtra
tive term of the loss fun
tion.

Moreover the intera
tion terms �� will usually be small, be
ause, for instan
e, if both noise

and varian
e term will be both lower than 0:1, the intera
tion term 2N(x)V (x) will be

redu
ed to less than 0:02
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Figure 3.1: Case analysis of error.

In order to distinguish between these two di�erent e�e
ts of the varian
e on the loss

fun
tion, Domingos de�nes the unbiased varian
e, V

u

(x), to be the varian
e when B(x) = 0

and the biased varian
e, V

b

(x), to be the varian
e when B(x) = 1. We 
an also de�ne the

net varian
e V

n

(x) to take into a

ount the 
ombined e�e
t of the unbiased and biased

varian
e:

V

n

(x) = V

u

(x)� V

b

(x)

Fig. 3.2 summarizes in graphi
 form the opposite e�e
ts of biased and unbiased varian
e

on the error.

If we 
an disregard the noise, the unbiased varian
e 
aptures the extents to whi
h the

learner deviates from the 
orre
t predi
tion y

m

(in the unbiased 
ase y

m

= y

�

), while

the biased varian
e 
aptures the extents to whi
h the learner deviates from the in
orre
t

predi
tion y

m

(in the biased 
ase y

m

6= y

�

).

More pre
isely, for the two-
lass 
lassi�
ation problem, with N(x) = 0, in the two 
ases

we have:

1. If B(x) = 0, p


orr

(x) > 0:5) V

u

(x) = 1� p


orr

(x).

2. If B(x) = 1, p


orr

(x) � 0:5) V

b

(x) = p


orr

(x)

where p


orr

is the probability that a predi
tion is 
orre
t: p


orr

(x) = P (y = tjx).
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Figure 3.2: E�e
ts of biased and unbiased varian
e on the error. The unbiased varian
e

in
rements, while the biased varian
e de
rements the error.

In fa
t, in the unbiased 
ase:

p


orr

(x) > 0:5 ) y

m

= t ) P (y = y

m

jx) = p


orr

) P (y 6= y

m

) = 1 � p


orr

)

E

D

[L(y

m

; y)℄ = V (x) = 1� p


orr

.

Hen
e the varian
e V (x) = V

u

(x) = 1 � p


orr

is given by the probability of an in
orre
t

predi
tion, or equivalently expresses the deviation from the 
orre
t predi
tion.

In the biased 
ase:

p


orr

(x) � 0:5 ) y

m

6= t ) P (y = y

m

jx) = 1 � p


orr

) P (y 6= y

m

) = p


orr

)

E

D

[L(y

m

; y)℄ = V (x) = p


orr

.

Hen
e the varian
e V (x) = V

b

(x) = p


orr

is given by the probability of a 
orre
t predi
tion,

or equivalently expresses the deviation from the in
orre
t predi
tion.

3.1.4 Domingos bias{varian
e de
omposition.

For quite general loss fun
tions L Domingos [47℄ showed that the expe
ted loss is:

EL(L;x) = 


1

N(x) +B(x) + 


2

V (x) (3.6)

For the 0=1 loss, 


1

is 2P

D

(f

D

(x) = y

�

)� 1 and 


2

is +1 if B(x) = 0 and �1 if B(x) = 1.

Note that 


2

V (x) = V

u

(x)� V

b

(x) = V

n

(x) (eq. 3.3), and if we disregard the noise, eq. 3.6
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an be simpli�ed to:

EL(L;x) = B(x) + V

n

(x) (3.7)

Summarizing, one of the most interesting aspe
ts of Domingos' de
omposition is that

varian
e hurts on unbiased points x, but it helps on biased points. Nonetheless, to obtain

low overall expe
ted loss, we want the bias to be small, and hen
e, we see to redu
e both

the bias and the unbiased varian
e. A good 
lassi�er will have low bias, in whi
h 
ase the

expe
ted loss will approximately equal the varian
e.

This de
omposition for a single point x 
an be generalized to the entire population by

de�ning E

x

[�℄ to be the expe
tation with respe
t to P (x). Then we 
an de�ne the average

bias E

x

[B(x)℄, the average unbiased varian
e E

x

[V

u

(x)℄, and the average biased varian
e

E

x

[V

b

(x)℄. In the noise-free 
ase, the expe
ted loss over the entire population is

E

x

[EL(L;x)℄ = E

x

[B(x)℄ + E

x

[V

u

(x)℄� E

x

[V

b

(x)℄:

3.1.5 Bias, varian
e and their e�e
ts on the error

James [94℄ provides de�nitions of bias and varian
e that are identi
al to those provided by

Domingos. Indeed bias and varian
e de�nitions are based on quantities that he named the

systemati
 part sy of y and the systemati
 part st of t. These 
orrespond respe
tively to

the Domingos main predi
tion (eq.3.2) and optimal predi
tion (eq.3.1).

Moreover James distinguishes between bias and varian
e and systemati
 and varian
e ef-

fe
ts. Bias and varian
e satisfy respe
tively the notion of the di�eren
e between the sys-

temati
 parts of y and t, and the variability of the estimate y. Systemati
 e�e
t SE

represents the 
hange in error of predi
ting t when using sy instead of st, and the varian
e

e�e
t V E the 
hange in predi
tion error when using y instead of sy in order to predi
t t.

Using Domingos notation (y

m

for sy, and y

�

for st) the varian
e e�e
t is:

V E(y; t) = E

y;t

[L(y; t)℄� E

t

[L(t; y

m

)℄

while the systemati
 e�e
t 
orresponds to:

SE(y; t) = E

t

[L(t; y

m

)℄� E

t

[L(t; y

�

)℄

In other words the systemati
 e�e
t represents the 
hange in predi
tion error 
aused by

bias, while the varian
e e�e
t the 
hange in predi
tion error 
aused by varian
e.

While for the squared loss the two sets of bias{varian
e de�nitions mat
h, for general loss

fun
tions the identity does not hold. In parti
ular for the 0/1 loss James proposes the

following de�nitions for noise, varian
e and bias with 0/1 loss:

N(x) = P (t 6= y

�

)

37



V (x) = P (y 6= y

m

)

B(x) = I(y

�

6= y

m

) (3.8)

where I(z) is 1 if z is true and 0 otherwise.

The varian
e e�e
t for the 0/1 loss 
an be expressed in the following way:

V E(y; t) = E

y;t

[L(y; t)� L(t; y

m

)℄ = P

y;t

(y 6= t)� P

t

(t 6= y

m

) =

= 1� P

y;t

(y = t)� (1� P

t

(t = y

m

)) = P

t

(t = y

m

)� P

y;t

(y = t) (3.9)

while the systemati
 e�e
t is:

SE(y; t) = E

t

[L(t; y

m

)℄� E

t

[L(t; y

�

)℄ = P

t

(t 6= y

m

)� P

t

(t 6= y

�

) =

= 1� P

t

(t = y

m

)� (1� P

t

(t = y

�

)) = P

t

(t = y

�

)� P

t

(t = y

m

) (3.10)

If we let N(x) = 0, 
onsidering eq. 3.7, eq. 3.8, and eq. 3.9 the varian
e e�e
t be
omes:

V E(y; t) = P

t

(t = y

m

)� P

y;t

(y = t) = P (y

�

= y

m

)� P

y

(y = y

�

) =

= 1� P (y

�

6= y

m

)� (1� P

y

(y 6= y

�

)) = 1�B(x)� (1� EL(L;x)) =

EL(L;x)� B(x) = V

n

(x) (3.11)

while from eq. 3.8 and eq. 3.10 the systemati
 e�e
t be
omes:

SE(y; t) = P

t

(t = y

�

)� P

t

(t = y

m

) = 1� P

t

(t 6= y

�

)� (1� P

t

(t 6= y

m

)) =

P (y� 6= y

m

) = I(y� 6= y

m

) = B(x) (3.12)

Hen
e if N(x) = 0, it follows that the varian
e e�e
t is equal to the net-varian
e (eq. 3.11),

and the systemati
 e�e
t is equal to the bias (eq. 3.12).

3.2 Measuring bias and varian
e

The pro
edures to measure bias and varian
e depend on the 
hara
teristi
s and on the


ardinality of the data sets used.

For syntheti
 data sets we 
an generate di�erent sets of training data for ea
h learner

to be trained. Then a large syntheti
 test set 
an be generated in order to estimate the

bias{varian
e de
omposition of the error for a spe
i�
 learner model.

Similarly, if a large data set is available, we 
an split it in a large learning set and in a

large testing set. Then we 
an randomly draw subsets of data from the large training set

in order to train the learners; bias{varian
e de
omposition of the error is measured on the

large independent test set.
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However, in pra
ti
e, for real data we dispose of only one and often small data set. In this


ase, we 
an use 
ross-validation te
hniques for estimating bias{varian
e de
omposition,

but we propose to use out-of-bag [19℄ estimation pro
edures, as they are 
omputationally

less expensive.

3.2.1 Measuring with arti�
ial or large ben
hmark data sets

Consider a set D = fD

i

g

n

i=1

of learning sets D

i

= fx

j

; t

j

g

m

j=1

. Here we 
onsider only a

two-
lass 
ase, i.e. t

j

2 C = f�1; 1g; x

j

2 X, for instan
e X = R

d

; d 2 N , but the

extension to the multi
lass 
ase is straightforward.

We de�ne f

D

i

= L(D

i

) as the model f

D

i

produ
ed by a learner L using a training set D

i

.

The model produ
es a predi
tion f

D

i

(x) = y.

In presen
e of noise and with the 0/1 loss, the optimal predi
tion y

�

is equal to the label

t that is observed more often in the universe U of data points:

y

�

(x) = argmax

t2C

P (tjx)

The noise N(x) for the 0/1 loss 
an be estimated if we 
an evaluate the probability of the

targets for a given example x:

N(x) =

X

t2C

L(t; y

�

)P (tjx) =

X

t2C

jjt 6= y

�

jjP (tjx)

where jjzjj = 1 if z is true, 0 otherwise,

In pra
ti
e, for "real world" data sets it is diÆ
ult to estimate the noise, and to simplify

the 
omputation we 
onsider the noise free 
ase. In this situation we have y

�

= t.

The main predi
tion is a fun
tion of the y = f

D

i

(x). Considering a 0=1 loss, we have

y

m

= argmax(p

1

; p

�1

)

where p

1

= P

D

(y = 1jx) and p

�1

= P

D

(y = �1jx), i.e. the main predi
tion is the mode.

To 
al
ulate p

1

, having a test set T = fx

j

; t

j

g

r

j=1

, it is suÆ
ient to 
ount the number of

learners that predi
t 
lass 1 on a given input x:

p

1

(x

j

) =

P

n

i=1

kf

D

i

(x

j

) = 1k

n

where kzk = 1 if z is true and kzk = 0 if z is false

The bias 
an be easily 
al
ulated after the evaluation of the main predi
tion:

B(x) =

�

1 if y

m

6= t

0 if y

m

= t

=

�

�

�

�

y

m

� t

2

�

�

�

�

(3.13)
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or equivalently:

B(x) =

�

1 if p


orr

(x) � 0:5

0 otherwise

where p


orr

is the probability that a predi
tion is 
orre
t, i.e. p


orr

(x) = P (y = tjx) =

P

D

(f

D

(x) = t).

In order to measure the varian
e V (x), if we de�ne y

D

i

= f

D

i

(x), we have:

V (x) =

1

n

n

X

i=1

L(y

m

; y

D

i

) =

1

n

n

X

i=1

jj(y

m

6= y

D

i

)jj

The unbiased varian
e V

u

(x) and the biased varian
e V

b

(x) 
an be 
al
ulated evaluating if

the predi
tion of ea
h learner di�ers from the main predi
tion respe
tively in the unbiased

and in the biased 
ase:

V

u

(x) =

1

n

n

X

i=1

jj(y

m

= t) and (y

m

6= y

D

i

)jj

V

b

(x) =

1

n

n

X

i=1

jj(y

m

6= t) and (y

m

6= y

D

i

)jj

In the noise-free 
ase, the average loss on the example x E

D

(x) is 
al
ulated by a simple

algebrai
 sum of bias, unbiased and biased varian
e:

E

D

(x) = B(x) + V

u

(x)� V

b

(x) = B(x) + (1� 2B(x))V (x)

In order to evaluate bias{varian
e de
omposition on the entire set of examples, 
onsider

a test set T = fx

j

; t

j

g

r

j=1

. We 
an easily 
al
ulate the average bias, varian
e, unbiased,

biased and net varian
e, averaging over the entire set of examples:

Average bias:

E

x

[B(x)℄ =

1

r

r

X

j=1

B(x

j

) =

1

r

r

X

j=1

�

�

�

�

y

m

(x

j

)� t

j

2

�

�

�

�

Average varian
e:

E

x

[V (x)℄ =

1

r

r

X

j=1

V (x

j

)

=

1

nr

r

X

j=1

n

X

i=1

L(y

m

(x

j

); f

D

i

(x

j

))

=

1

nr

r

X

j=1

n

X

i=1

jjy

m

(x

j

) 6= f

D

i

(x

j

)jj
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Average unbiased varian
e:

E

x

[V

u

(x)℄ =

1

r

r

X

j=1

V

u

(x

j

) =

1

nr

r

X

j=1

n

X

i=1

jj(y

m

(x

j

) = t

j

) and (y

m

(x

j

) 6= f

D

i

(x

j

))jj

Average biased varian
e:

E

x

[V

b

(x)℄ =

1

r

r

X

j=1

V

b

(x

j

) =

1

nr

r

X

j=1

n

X

i=1

jj(y

m

(x

j

) 6= t

j

) and (y

m

(x

j

) 6= f

D

i

(x

j

))jj

Average net varian
e:

E

x

[V

n

(x)℄ =

1

r

r

X

j=1

V

n

(x

j

) =

1

r

r

X

j=1

(V

u

(x

j

)� V

b

(x

j

))

Finally, the average loss on all the examples (with no noise) is the algebrai
 sum of the

average bias, unbiased and biased varian
e:

E

x

[L(t; y)℄ = E

x

[B(x)℄ + E

x

[V

u

(x)℄� E

x

[V

b

(x)℄

3.2.2 Measuring with small data sets

In pra
ti
e (unlike in theory), we have only one and often small data set S. We 
an

simulate multiple training sets by bootstrap repli
ates S

0

= fxjx is drawn at random with

repla
ement from Sg.

In order to measure bias and varian
e we 
an use out-of-bag points, providing in su
h a

manner an unbiased estimate of the error.

At �rst we need to 
onstru
t B bootstrap repli
ates of S (e. g., B = 200): S

1

; : : : ; S

B

.

Then we apply a learning algorithm L to ea
h repli
ate S

b

to obtain hypotheses f

b

= L(S

b

).

Let T

b

= SnS

b

be the data points that do not appear in S

b

(out of bag points). We 
an

use these data sets T

b

to evaluate the bias{varian
e de
omposition of the error; that is we


ompute the predi
ted values f

b

(x), 8x s:t: x 2 T

b

.

For ea
h data point x, we will now have the observed 
orresponding value t and several

predi
tions y

1

; : : : ; y

K

, where K = jfT

b

jx 2 T

b

; 1 � b � Bgj depends on x, K � B, and

on the average K ' B=3, be
ause about 1=3 of the predi
tors is not trained on a spe
i�


input x.

In order to 
ompute the main predi
tion, for a two-
lass 
lassi�
ation problem, we 
an

de�ne:

p

1

(x) =

1

K

B

X

b=1

jj(x 2 T

b

) and (f

b

(x) = 1)jj
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p

�1

(x) =

1

K

B

X

b=1

jj(x 2 T

b

) and (f

b

(x) = �1)jj

The main predi
tion y

m

(x) 
orresponds to the mode:

y

m

= argmax(p

1

; p

�1

)

The bias 
an be 
al
ulated as in eq. 3.13, and the varian
e V (x) is:

V (x) =

1

K

B

X

b=1

jj(x 2 T

b

)and(y

m

6= f

b

(x))jj

Similarly 
an be easily 
omputed unbiased, biased and net{varian
e:

V

u

(x) =

1

K

B

X

b=1

jj(x 2 T

b

) and (B(x) = 0) and (y

m

6= f

b

(x))jj

V

b

(x) =

1

K

B

X

b=1

jj(x 2 T

b

) and (B(x) = 1) and (y

m

6= f

b

(x))jj

V

n

(x) = V

u

(x)� V

b

(x)

Average bias, varian
e, unbiased, biased and net varian
e, 
an be easily 
al
ulated averag-

ing over all the examples.
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Chapter 4

Bias{Varian
e Analysis in single

SVMs

The bias{varian
e de
omposition of the error represents a powerful tool to analyze learning

pro
esses in learning ma
hines. A

ording to the pro
edures des
ribed in the previous


hapter, we analyzed bias and varian
e in SVMs, in order to study the relationships with

di�erent kernel types and their parameters. To a

omplish this task we 
omputed bias{

varian
e de
omposition of the error on di�erent syntheti
 and "real" data sets.

4.1 Support Ve
tor Ma
hines

In this se
tion we provide a very brief overview of Support Ve
tor Ma
hines in order to

introdu
e the main notions and 
on
epts used in the rest of the this 
hapter. For more

details, see, for instan
e [188, 37℄.

Given a data set Z = f(x

i

; y

i

)g

n

i=1

, x

i

2 R

N

; y

i

2 Y = f�1; 1g, where y

i

are the labels of

two di�erent 
lasses of examples, a linear 
lassi�er 
omputes a de
ision fun
tion g(x) =

sign(f(x)), where f(x) = w � x+ b.

For a point x

p

on the separating hyperplane f(x

p

) = w � x

p

+ b = 0 (Fig. 4.1), a point x

m

on the margin whose width is 
 
an be expressed as

x

m

= x

p

+

w

jjwjj




Then f(x

m

) = w � x

m

+ b = w � x

p

+

w�w

jjwjj


 + b = 
jjwjj.

The fun
tional margin is 
jjwjj and the geometri
 margin is 
 =

f(x

m

)

jjwjj

.
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px
xm

w

γ

Figure 4.1: Separating hyperplane and margins in a two-
lass 
lassi�
ation problem

To obtain the 
anoni
al separating hyperplane we need to normalize w.r.t the fun
tional

margin:

f




(x) =

f(x)


jjwjj

The 
anoni
al fun
tional margin is

f




(x

m

) =

f(x

m

)


jjwjj

= 1

The 
anoni
al margin is 





=

1

jjwjj

From this point we 
onsider only the 
anoni
al hyperplane (that is the hyperplane with


anoni
al margin 1=jjwjj.

In order to maximize the margin 
 =

1

jjwjj

and to 
orre
tly separate the examples we need

to solve a 
onstrained quadrati
 optimization problem:

Minimize w �w

subje
t to y

i

(w � x

i

+ b) � 1

1 � i � n
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The hyperplane w�x+b = 0 that solves this quadrati
 oprimization problem is the maximal

margin iperplane with margin 
 =

1

jjwjj

The lagrangian asso
iated with the primal optimization problem is:

L(w; b; �) =

1

2

w �w�

n

X

i=1

�

i

(y

i

(w � x

i

+ b)� 1)

leading to this set of optimality 
onditions:

�L(w; b; �)

�w

= w �

n

X

i=1

y

i

�

i

x

i

= 0

�L(w; b; �)

�b

=

n

X

i=1

y

i

�

i

= 0

hen
e

w =

n

X

i=1

y

i

�

i

x

i

0 =

n

X

i=1

y

i

�

i

Putting the relations obtained into the primal we have:

L(w; b; �) =

1

2

w �w �

n

X

i=1

�

i

(y

i

(w � x

i

+ b)� 1)

=

1

2

n

X

i=1

n

X

j=1

y

i

y

j

�

i

�

j

(x

i

� x

j

)�

n

X

i=1

n

X

j=1

y

i

y

j

�

i

�

j

(x

i

� x

j

) +

n

X

i=1

�

i

=

n

X

i=1

�

i

�

1

2

n

X

i=1

n

X

j=1

y

i

y

j

�

i

�

j

(x

i

� x

j

)

obtaining the asso
iated dual optimization problem:

Maximize �(�) =

P

n

i=1

�

i

�

1

2

P

n

i=1

P

n

j=1

y

i

y

j

�

i

�

j

(x

i

� x

j

)

subje
t to

P

n

i=1

y

i

�

i

= 0

�

i

� 0; 1 � i � n

The hyperplane whose weight ve
tor w

�

=

P

n

i=1

y

i

�

i

x

i

solves this quadrati
 optimization

problem is the maximal margin hyperplane with geometri
 margin 
 =

1

jjwjj

.
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The linear SVMs 
ompute the family of linear fun
tions:

F(x;w; b) = fx �w + b;w 2 R

n

; b 2 Rg

If �

�

is the solution of the dual optimization problem then

� w

�

=

P

n

i=1

y

i

�

�

i

x

i

is the weight ve
tor of the maximal margin hyperplane

� f(x) = w

�

� x+ b

�

=

P

n

i=1

y

i

�

�

i

x

i

� x+ b

�

is the 
orresponding dis
riminant fun
tion.

� The de
ision fun
tion g : R

n

! f�1;+1g is g(x) = sign(

P

n

i=1

y

i

�

�

i

x

i

� x + b

�

)

The SVM algorithm minimizes both the empiri
al risk and the 
on�den
e interval [188℄.

Indeed, maximizing the margin, that is equivalently minimizing jjwjj, we minimize the

Vapnik Chervonenkis (VC) dimension, and the 
on�den
e interval depends mainly on the

ratio (VC) dimension/ 
ardinality of the training set.

In order to 
onsider non lineraly separable data we nee to introdu
e soft margin SVM and

kernels. In this setting we �rst add to the primal optimization problems a set of sla
k

variables �

i

, and a

Minimize w �w + C

P

n

i=1

�

i

subje
t to y

i

(w � x

i

+ b) � 1� �

i

�

i

� 0

1 � i � n

If K(x;x

0

) is a symmetri
 fun
tion satis�ng Mer
er's 
onditions, that is:

Z Z

K(x;x

0

)f(x)f(x

0

)dxdx

0

� 0

for all f su
h that

R

f

2

(x)dx <1, then we 
an expand K(x;x

0

) in a some inner produ
t

feature spa
e:

K(x;x

0

) =

1

X

j=1

�

j

�(x)�(x

0

)

Note that in the dual representation of linear SVMs the inputs appears only in a dot-

produ
t form:as a 
onsequen
e we 
an substitute the dot-produ
ts in the input spa
e with

a kernel fun
tion obeying Mer
er's 
onditions:

Maximize �(�) =

P

n

i=1

�

i

�

1

2

P

n

i=1

P

n

j=1

y

i

y

j

�

i

�

j

K(x

i

x

j

)

subje
t to

P

n

i=1

y

i

�

i

= 0

0 � �

i

� C; 1 � i � n
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The dis
riminant fun
tion obtained from the solution of this quadrati
 optimization prob-

lem is:

f(x; �

�

; b) =

n

X

i=1

y

i

�

�

i

K(x

i

;x) + b

�

The SVM re
eives as inputs patterns x in the input spa
e, but works in a high dimensional

(possibly in�nite) feature spa
e, where it performs a linear separation of the data.

The symmetri
 fun
tion K(�; �) must be 
hosen among the kernels of Reprodu
ing Kernel

Hilbert Spa
es [189℄; three possible 
hoi
es are:

� Linear kernel: K(u;v) = u � v

� Polynomial kernel: K(u;v) = (u � v + 1)

d

� Gaussian kernel: K(u;v) = exp(�ku� vk

2

=�

2

)

The bias and varian
e of SVMs are typi
ally 
ontrolled by two parameters. The parameter

C 
ontrols the tradeo� between �tting the data (a
hieved by driving the �

i

's to zero) and

maximizing the margin (a
hieved by driving kwk to zero). Setting C large should tend to

minimize bias.

The se
ond parameter that 
ontrols bias arises only in SVMs that employ parameterized

kernels su
h as the polynomial kernel (where the parameter is the degree d of the polyno-

mial) and RBF kernels (where the parameter is the width � of the gaussian kernel). Bias

and varian
e depend 
riti
ally on these parameters [182℄.

4.2 Experimental setup

We performed an extended bias{varian
e analysis of the error in Support Ve
tor Ma
hines,

training and testing more than half million of di�erent SVMs on di�erent training and test

sets.

4.2.1 Data sets

In the experiments we employed 7 di�erent data sets, both syntheti
 and "real".

P2 is a syntheti
 bidimensional two{
lass data set; ea
h region is delimited by one or more

of four simple polynomial and trigonometri
 fun
tions (Fig. 4.2).
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The syntheti
 data set Waveform is generated from a 
ombination of 2 of 3 "base" waves;

we redu
ed the original three 
lasses of Waveform to two, deleting all samples pertaining

to 
lass 0. The other data sets are all from the UCI repository [135℄.

Tab. 4.1 summarizes the main features of the data sets used in the experiments. The rest

of this se
tion explains in more detail the 
hara
teristi
s of the data sets.

Table 4.1: Data sets used in the experiments.

Data set # of # of tr. # of tr. # base # of

attr. samples sets tr. set test samples

P2 2 100 400 syntheti
 10000

Waveform 21 100 200 syntheti
 10000

Grey-Landsat 36 100 200 4425 2000

Letter 16 100 200 614 613

Letter w. noise 16 100 200 614 613

Spam 57 100 200 2301 2300

Musk 166 100 200 3299 3299

4.2.1.1 P2

We used a syntheti
 bidimensional two{
lass data set (Fig. 4.2). Ea
h region, delimited

by one or more of four simple polynomial and trigonometri
 fun
tions, belongs to one of

the two 
lasses, a

ording to the Roman numbers I and II. We generated a series of 400

training sets with 100 independent examples randomly extra
ted a

ording to a uniform

probability distribution. The test set (10000 examples) was generated through the same

distribution. The appli
ation gensimple, that we developed to generate the data, is freely

available on line at ftp://ftp.disi.unige.it/person/ValentiniG/BV/gensimple.

4.2.1.2 Waveform

It is a syntheti
 data set from the UCI repository. Ea
h 
lass is generated from a 
ombina-

tion of 2 of 3 "base" waves. Using the appli
ation waveform we 
an generate an arbitrary

number of samples from the same distribution. We redu
ed the original three 
lasses of

Waveform to two, deleting all samples pertaining to 
lass 0.
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Figure 4.2: P2 data set, a bidimensional two 
lass syntheti
 data set.

4.2.1.3 Grey-Landsat

It is a data set from the UCI repository, modi�ed in order to be available for a di
hotomi



lassi�
ation problem. The attributes represent intensity values for four spe
tral bands

and nine neighbouring pixels, while the 
lassi�
ation refers to the 
entral pixel. Hen
e we

have 9 data values for ea
h spe
tral band for a total of 36 data attributes for ea
h pattern.

The data 
ome from a re
tangular area approximately �ve miles wide. The original data

set Landsat (available from UCI repository) is a 6 way 
lassi�
ation data set with 36

attributes. Following S
ott and Langdon [125℄, 
lasses 3, 4 and 7 were 
ombined into one

(positive gray), while 1, 2 and 5 be
ame the negative examples (not-Gray).

4.2.1.4 Letter-Two

It is a redu
ed version of the Letter data set from UCI: we 
onsider here only letter B

versus letter R, taken from the letter re
ognition data set. The 16 attributes are integer

values that refer to di�erent features of the letters. We used also a version of Letter-Two

with 20 % added 
lassi�
ation noise (Letter-Two with added noise data set).
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4.2.1.5 Spam

This data set from UCI separates "spam" e-mails from "non-spam' e-mails, 
onsidering

mainly attributes that indi
ate whether a parti
ular word or 
hara
ter frequently o

urs

in the e-mail. Of 
ourse, the 
on
ept of spam is somewhat subje
tive: in parti
ular the


reators of this data set sele
ted non-spam e-mails that 
ame from �led work and personal

e-mails, while 
olle
tion of spam e-mails 
ame from their postmaster and individuals who

had �led spam. However we have a relatively large data set with 4601 instan
es and 57


ontinuous attributes.

4.2.1.6 Musk

The dataset (available from UCI) des
ribes a set of 102 mole
ules of whi
h 39 are judged

by human experts to be musks and the remaining 63 mole
ules are judged to be non-

musks. The 166 features that des
ribe these mole
ules depend upon the exa
t shape, or


onformation, of the mole
ule. Be
ause bonds 
an rotate, a single mole
ule 
an adopt

many di�erent shapes. To generate this data set, all the low-energy 
onformations of the

mole
ules were generated to produ
e 6,598 
onformations. Then, a feature ve
tor was

extra
ted that des
ribes ea
h 
onformation.

In these experiments the data set was used as a normal data set, 
onsidering dire
tly the

di�erent 
onformations of the same mole
ule as a di�erent instan
e. As a 
onsequen
e,

ea
h feature ve
tor represents a di�erent example to be 
lassi�ed and the 
lassi�er does

not 
lassify a mole
ule as "musk" if any of its 
onformations is 
lassi�ed as a musk. In

other words we used the data set without 
onsidering the many-to-one relationship between

feature ve
tors and mole
ules that 
hara
terize the "multiple instan
e problem".

4.2.2 Experimental tasks

In order to perform a reliable evaluation of bias and varian
e we used small training set

and large test sets. For syntheti
 data we generated the desired number of samples. For

real data sets we used bootstrapping to repli
ate the data. In both 
ases we 
omputed

the main predi
tion, bias, unbiased and biased varian
e, net-varian
e a

ording to the

pro
edures explained in Se
t. 3.2.1. In our experiments, the 
omputation of varian
e e�e
t

and systemati
 e�e
t is redu
ed to the measurement of the net-varian
e and bias, as we

did not expli
itly 
onsider the noise (eq. 3.11 and 3.12).
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4.2.2.1 Set up of the data

With syntheti
 data sets, we generated small training sets of about 100 examples and

reasonably large test sets using 
omputer programs. In fa
t small samples show bias and

varian
e more 
learly than having larger samples. We produ
ed 400 di�erent training sets

for P2 and 200 training sets for Waveform. The test sets were 
hosen reasonably large

(10000 examples) to obtain reliable estimates of bias and varian
e.

For real data sets we �rst divided the data into a training D and a test T sets. If the

data sets had a prede�ned training and test sets reasonably large, we used them (as in

Grey-Landsat and Spam), otherwise we split them in a training and test set of equal size.

Then we drew from D bootstrap samples. We 
hosen bootstrap samples mu
h smaller than

jDj (100 examples). More pre
isely we drew 200 data sets from D, ea
h one 
onsisting of

100 examples uniformly drawn with repla
ement.

Fig. 4.3 outlines the experimental pro
edure we adopted for setting up the data and Fig. 4.4

the experimental pro
edure to evaluate bias{varian
e de
omposition of the error.

Pro
edure Generate samples

Input arguments:

- Data set S

- Number n of samples

- Size s of the samples

Output:

- Set

�

D = fD

i

g

n

i=1

of samples

begin pro
edure

[D; T ℄ = Split(S)

�

D = ;

for i = 1 to n

begin

D

i

= Draw with repla
ement(D; s)

�

D =

�

D +D

i

end

end pro
edure.

Figure 4.3: Pro
edure to generate samples to be used for bias{varian
e analysis with single

SVMs
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Pro
edure Bias{Varian
e analysis

Input arguments:

- Test set T

- Number of samples n

- Set of learning parameters A

- Set

�

D = fD

i

g

n

i=1

of samples

Output:

- Error, bias, net-varian
e, unbiased and biased varian
e BV = fbv(�)g

�2A

of the SVMs with learning parameters � 2 A.

begin pro
edure

For ea
h � 2 A

begin

SVM Set(�) = ;

for i = 1 to n

begin

svm(�; D

i

) = svm train (�; D

i

)

SVM Set(�) = SVM Set(�) [ svm(�; D

i

)

end

bv(�) = Perform BV analysis(SVM Set (�), T )

BV = BV [ bv(�)

end

end pro
edure.

Figure 4.4: Pro
edure to perform bias{varian
e analysis on single SVMs

Samples D

i

are drawn with repla
ement a

ording to an uniform probability distribution

from the training setD by the pro
edure Draw with repla
ement. This pro
ess is repeated

n times (pro
edure Generate samples, Fig. 4.3). Then the pro
edure Bias--Varian
e analysis

(Fig. 4.4) trains di�erent SVM models, a

ording to the di�erent learning parameters �

provided to the pro
edure svm train). SVM Set(�) is the set of the SVMs trained us-

ing the same learning parameter � and a set

�

D of samples generated by the pro
edure

Generate samples.

The bias{varian
e de
omposition of the error is performed on the separated test set T

using the previously trained SVMs (pro
edure Perform BV analysis).

4.2.2.2 Tasks

To evaluate bias and varian
e in SVMs we 
ondu
ted experiments with di�erent kernels

and di�erent kernel parameters.
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In parti
ular we 
onsidered 3 di�erent SVM kernels:

1. Gaussian kernels. We evaluated bias{varian
e de
omposition varying the parame-

ters � of the kernel and the C parameter that 
ontrols the trade{o� between training

error and the margin. In parti
ular we analyzed:

(a) The relationships between average error, bias, net{varian
e, unbiased and biased

varian
e and the parameter � of the kernel.

(b) The relationships between average error, bias, net{varian
e, unbiased and biased

varian
e and the parameter C (the regularization fa
tor) of the kernel.

(
) The relationships between generalization error, training error, number of sup-

port ve
tors and 
apa
ity with respe
t to �.

We trained RBF-SVM with all the 
ombinations of the parameters � and C, taken

from the following two sets:

�

� 2 f0:01; 0:02; 0:1; 0:2; 0:5; 1; 2; 5; 10; 20; 50; 100; 200; 300; 400; 500; 1000g

C 2 f0:01; 0:1; 1; 2; 5; 10; 20; 50; 100; 200; 500; 1000g

evaluating in su
h a way 17�12 = 204 di�erent RBF-SVM models for ea
h data set.

2. Polynomial kernels. We evaluated bias{varian
e de
omposition varying the degree

of the kernel and the C parameter that 
ontrols the trade{o� between training error

and the margin. In parti
ular we analyzed:

(a) The relationships between average error, bias, net{varian
e, unbiased and biased

varian
e and the degree of the kernel.

(b) The relationships between average error, bias, net{varian
e, unbiased and biased

varian
e and the parameter C (the regularization fa
tor) of the kernel.

We trained polynomial-SVM with all the 
ombinations of the parameters:

�

degree 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g

C 2 f0:01; 0:1; 1; 2; 5; 10; 20; 50; 100; 200; 500; 1000g

evaluating in su
h a way 10 � 12 = 120 di�erent polynomial-SVM models for ea
h

data set. Following the heuristi
 of Jakkola, the dot produ
t of polynomial kernel was

divided by the dimension of the input data, to "normalize" the dot{produ
t before

to raise to the degree of the polynomial.

3. Dot{produ
t kernels. We evaluated bias{varian
e de
omposition varying the C

parameter. We analyzed the relationships between average error, bias, net{varian
e,

unbiased and biased varian
e and the parameter C (the regularization fa
tor) of
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the kernel. We trained dot{produ
t-SVM 
onsidering the following values for the C

parameter:

C 2 f0:01; 0:1; 1; 2; 5; 10; 20; 50; 100; 200; 500; 1000g

evaluating in su
h a way 12 di�erent dot{produ
t-SVM models for ea
h data set.

Ea
h SVM model required the training of 200 di�erent SVMs, one for ea
h synthesized or

bootstrapped data set, for a total of (204+120+12)�200 = 67200 trained SVMs for ea
h

data set (134400 for the data set P2, as for this data set we used 400 data sets for ea
h

model).

Summarizing the experiments required the training of more than half million of SVMs,


onsidering all the data sets and of 
ourse the testing of all the SVM previously trained

in order to evaluate the bias{varian
e de
omposition of the error of the di�erent SVM

models. For ea
h SVM model we 
omputed the main predi
tion, bias, net-varian
e, biased

and unbiased varian
e and the error on ea
h example of the test set, and the 
orresponding

average quantities on the overall test set.

4.2.3 Software used in the experiments

In all our experiments we used the NEURObje
ts [185℄

1

C++ library and SVM-light [96℄

appli
ations. In parti
ular the syntheti
 data P2 and Waveform were generated respe
-

tively through our C++ appli
ation gensimple and waveform from the UCI repository.

The bootstrapped data for the real data sets were extra
ted using the C++ NEURObje
ts

appli
ation subsample. The data then were normalized using the NEURObje
ts appli
a-

tion 
onvert data format. For some data sets in order to extra
t randomly a separated

training and test set we used the NEURObje
ts appli
ation dofold. Training and testing

of the SVM were performed using Joa
him's SVM-light software, and in parti
ular the

appli
ations svm learn and svm 
lassify. We slightly modi�ed svm learn in order to

for
e 
onvergen
e of the SVM algorithm when the optimality 
onditions are not rea
hed in

a reasonable time. We developed and used the C++ appli
ation analyze BV, to perform

bias{varian
e de
omposition of the error

2

. This appli
ation analyzes the output of a generi


learning ma
hine model and 
omputes the main predi
tion, error, bias, net{varian
e, un-

biased and biased varian
e using the 0=1 loss fun
tion. Other C++ appli
ations have been

developed for the automati
 analysis of the results, using also Cshell s
ripts to train, test

and analyze bias{varian
e de
omposition of all the SVM models for a spe
i�
 data set,


onsidering respe
tively gaussian, polynomial and dot{produ
t kernels.

1

Download web site: http://www.disi.unige.it/person/ValentiniG/NEURObje
ts.

2

The sour
e 
ode is available at ftp://ftp.disi.unige.it/person/ValentiniG/BV. Moreover C++


lasses for bias{varian
e analysis have been developed as part of the NEURObje
ts library
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4.3 Results

In this se
tion we present the results of the experiments. We analyzed bias{varian
e de
om-

position with respe
t to the kernel parameters 
onsidering separately gaussian, polynomial

and dot produ
t SVMs, 
omparing also the results among di�erent kernels. Here we present

the main results. Full results, data and graphi
s are available by anonymous ftp at:

ftp://ftp.disi.unige.it/person/ValentiniG/papers/bv-svm.ps.gz.

4.3.1 Gaussian kernels

Fig. 4.5 depi
ts the average loss, bias net{varian
e, unbiased and biased varian
e varying

the values of � and the regularization parameter C in RBF-SVM on the Grey-Landsat data

set. We note that � is the most important parameter: although for very low values of C

the SVM 
annot learn, independently of the values of �, (Fig. 4.5 a), the error, the bias,

and the net{varian
e depend mostly on the � parameter. In parti
ular for low values of

�, bias is very high (Fig. 4.5 b) and net-varian
e is 0, as biased and unbiased varian
e are

about equal (Fig. 4.5d and 4.5e). Then the bias suddenly goes down (Fig. 4.5b), lowering

the average loss (Fig. 4.5a), and then stabilizes for higher values of �. Interestingly enough,

in this data set (but also in others, data not shown), we note an in
rement followed by

a de
rement of the net{varian
e, resulting in a sort of "wave shape" of the net varian
e

graph (Fig. 4.5
).

Fig. 4.6 shows the bias{varian
e de
omposition on di�erent data sets, varying �, and for

a �xed value of C, that is a sort of "sli
e" along the � axis of the Fig. 4.5. The plots

show that average loss, bias, and varian
e depend signi�
antly on � for all the 
onsidered

data sets, 
on�rming the existen
e of a \high biased region" for low values of �. In this

region, biased and unbiased varian
e are about equal (net{varian
e V

n

= V

u

� V

b

is low).

Then unbiased varian
e in
reases while biased varian
e de
reases (Fig. 4.6 a,b,
 and d),

and �nally both stabilize for relatively high values of �. Interestingly, the average loss and

the bias do not in
rease for high values of �, espe
ially if C is high.

Bias and average loss in
reases with � only for very small C values. Note that net-varian
e

and bias show opposite trends only for small values of C (Fig. 4.6 
). For larger C values

the symmetri
 trend is limited only to � � 1 (Fig. 4.6 d), otherwise bias stabilizes and

net-varian
e slowly de
reases.

Fig. 4.7 shows more in detail the e�e
t of the C parameter on bias-varian
e de
omposition.

For C � 1 there are no variations of the average error, bias and varian
e for a �xed value

of �. Note that for very low values of � (Fig. 4.7a and b) there is no learning. In the

Letter-Two data set, as in other data sets (�gures not shown), only for small C values we

have variations in bias and varian
e values (Fig. 4.7).
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Figure 4.5: Grey-Landsat data set. Error (a) and its de
omposition in bias (b), net varian
e

(
), unbiased varian
e (d), and biased varian
e (e) in SVM RBF, varying both C and �.
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Figure 4.6: Bias-varian
e de
omposition of the error in bias, net varian
e, unbiased and

biased varian
e in SVM RBF, varying � and for �xed C values: (a) Waveform, (b) Grey-

Landsat, (
) Letter-Two with C = 0:1, (
) Letter-Two with C = 1, (e) Letter-Two with

added noise and (f) Spam.
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Figure 4.7: Letter-Two data set. Bias-varian
e de
omposition of error in bias, net varian
e,

unbiased and biased varian
e in SVM RBF, while varying C and for some �xed values of

�: (a) � = 0:01, (b) � = 0:1, (
) � = 1, (d) � = 5, (e) � = 20, (f) � = 100.
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Figure 4.8: The dis
riminant fun
tion 
omputed by the SVM on the P2 data set with

� = 0:01, C = 1.

4.3.1.1 The dis
riminant fun
tion 
omputed by the SVM-RBF 
lassi�er

In order to get insights into the behaviour of SVM learning algorithm with gaussian kernels

we plotted the real-valued fun
tions 
omputed without 
onsidering the dis
retization step

performed through the sign fun
tion. The real valued fun
tion 
omputed by a gaussian

SVM is the following:

f(x; �; b) =

X

i2SV

y

i

�

i

exp(�kx

i

� xk

2

=�

2

) + b

where the �

i

are the Lagrange multipliers found by the solution of the dual optimization

problem, the x

i

2 SV are the support ve
tors, that is the points for whi
h �

i

> 0.

We plotted the surfa
e 
omputed by the gaussian SVM with the syntheti
 data set P2.

Indeed it is the only surfa
e that 
an be easily visualized, as the data are bidimensional

and the resulting real valued fun
tion 
an be easily represented through a wireframe three-

dimensional surfa
e. The SVMs are trained with exa
tly the same training set 
omposed

by 100 examples. The outputs are referred to a test set of 10000 examples, sele
ted in an

uniform way through all the data domain. In parti
ular we 
onsidered a grid of equi-spa
ed

59



       1
     0.5
       0

    −0.5
      −1

0
2

4
6

8
X

2
4

6
8

10

Y

−1.5

−1

−0.5

0

0.5

1

1.5

Z

Figure 4.9: The dis
riminant fun
tion 
omputed by the SVM on the P2 data set, with

� = 1, C = 1.

data at 0.1 interval in a two dimensional 10 � 10 input spa
e. If f(x; �; b) > 0 then the

SVM mat
hes up the example x with 
lass 1, otherwise with 
lass 2.

With small values of � we have "spiky" fun
tions: the response is high around the support

ve
tors, and is 
lose to 0 in all the other regions of the input domain (Fig. 4.8). In this


ase we have over�tting: a large error on the test set (about 46 % with � = 0:01 and 42:5

% with � = 0:02 ), and a training error near to 0. If we enlarge the values of � we obtain

a wider response on the input domain and the error de
reases (with � = 0:1 the error is

about 37 %). With � = 1 we have a smooth fun
tion that �ts quite well the data (Fig. 4.9).

In this 
ase the error drops down to about 13 %.

Enlarging too mu
h � we have a too smooth fun
tion (Fig. 4.10 (a)), and the error in
reases

to about 37 %: in this 
ase the high bias is due to an ex
essive smoothing of the fun
tion.

In
reasing the values of the regularization parameter C (in order to better �t the data),

we 
an diminish the error to about 15 %: the shape of the fun
tion now is less smooth

(Fig. 4.10 (b)).

Finally using very large values of sigma (e.g. � = 500), we have a very smooth (in pra
ti
e

a plan) and a very biased fun
tion (error about 45 %), and if we in
rement C, we obtain
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obtain better results, but always with a large error (about 35 %).

4.3.1.2 Behavior of SVMs with large � values

Fig 4.5 and 4.6 show that the � parameter plays a sort of smoothing e�e
t, when the value

of � in
reases. In parti
ular with large values of � we did not observe any in
rement of bias

nor de
rement of varian
e. In order to get insights into this 
ounter-intuitive behaviour we

tried to answer these two questions:

1. Does the bias in
rease while varian
e de
rease with large values of �, and what is the


ombined e�e
t of bias-varian
e on the error?

2. In this situation (large values for �), what is the e�e
t of the C parameter?

In Fig. 4.6 we do not observe an in
rement of bias with large values of �, but we limited

our experiments to values of � � 100. Here we investigate the e�e
t for larger values of �

(from 100 to 1000).

In most 
ases, also in
reasing the values of � right to 1000 we do not observe an in
rement

of the bias and a substantial de
rement of the varian
e. Only for low values of C, that is

C < 1 the bias and the error in
rease with large values of � (Fig. 4.11).

With the P2 data set the situation is di�erent: in this 
ase we observe an in
rement of the

bias and the error with large values of �, even if with large value of C the in
rement rate is

lower (Fig. 4.12 a and b). Also with the musk data set we note an in
rement of the error

with very large values of �, but surprisingly this is due to an in
rement of the unbiased

varian
e, while the bias is quite stable, at least for values of C > 1, (Fig. 4.12 
 and d).

Larger values of C 
ounter-balan
e the bias introdu
ed by large values of �. But with

some distributions of the data too large values of � produ
e too smooth fun
tions, and

also in
rementing C it is very diÆ
ult to �t the data. Indeed, the real-valued fun
tion


omputed by the RBF-SVM with the P2 data set (that is the fun
tion 
omputed without


onsidering the sign fun
tion) is too smooth for large values of �: for � = 20, the error is

about 37%, due almost entirely to the large bias, (Fig. 4.10 a), and for � = 500 the error

is about 45 % and also in
rementing the C value to 1000, we obtain a surfa
e that �ts the

data better, but with an error that remains large (about 35%).

Summarizing with large � values bias 
an in
rement, while net-varian
e tends to stabilize,

but this e�e
t 
an be 
ounter-balan
ed by larger C values.
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Figure 4.10: The dis
riminant fun
tion 
omputed by the SVM on the P2 data set. (a)

� = 20, C = 1, (b) � = 20 C = 1000.
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Figure 4.11: Grey-Landsat data set. Bias-varian
e de
omposition of error in bias, net

varian
e, unbiased and biased varian
e in SVM RBF, while varying � and for some �xed

values of C: (a) C = 0:1, (b) C = 1, (
) C = 10, (d) C = 100.
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Figure 4.12: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in SVM RBF, while varying � and for some �xed values of C: (a) P2, with C = 1,

(b) P2, with C = 1000, Musk, with C = 1, (d) Musk, with C = 1000.

4.3.1.3 Relationships between generalization error, training error, number of

support ve
tors and 
apa
ity

Looking at Fig. 4.5 and 4.6, we see that SVMs do not learn for small values of �. Moreover

the low error region is relatively large with respe
t to � and C.

In this se
tion we evaluate the relationships between the estimated generalization error,

the bias, the training error, the number of support ve
tors and the estimated Vapnik

Chervonenkis dimension [188℄, in order to answer the following questions:

1. Why SVMs do not learn for small values of �?
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2. Why we have a so large bias for small values of �?

3. Can we use the variation of the number of support ve
tors to predi
t the "low error"

region?

4. Is there any relationship between the bias, varian
e and VC dimension, and 
an we

use this last one to individuate the "low error" region?

The generalization error, bias, training error, number of support ve
tors and the Vapnik

Chervonenkis dimension are estimated averaging with respe
t to 400 SVMs (P2 data set)

or 200 SVMs (other data sets) trained with di�erent bootstrapped training sets 
omposed

by 100 examples ea
h one. The test error and the bias are estimated with respe
t to an

independent and suÆ
iently large data set.

The VC dimension is estimated using the Vapnik's bound based on the radius R of the

sphere that 
ontains all the data (in the feature spa
e), approximated through the sphere


entered in the origin, and on the norm of the weights in the feature spa
e [188℄. In this

way the VC dimension is overestimated but it is easy to 
ompute and we are interested

mainly in the 
omparison of the VC dim. of di�erent SVM models:

V C � R

2

� kwk

2

+ 1

where [37℄

kwk

2

=

X

i2SV

X

j2SV

�

i

�

j

K(x

i

;x

j

)y

i

y

j

and

R

2

= max

i

K(x

i

;x

i

)

The number of support ve
tors is expressed as the halved ratio of the number (% SV ) of

support ve
tors with respe
t to the total number of the training data:

%SV =

#SV

#trainingdata � 2

In the graphs shown in Fig. 4.13 and Fig. 4.14, on the left y axis is represented the error,

training error and bias, and the halved ratio of support ve
tors. On the right y axis is

reported the estimated Vapnik Chervonenkis dimension.

For very small values of � the training error is very small (about 0), while the number of

support ve
tors is very high, and high is also the error and the bias (Fig.4.13 and 4.14).

These fa
ts support the hypothesis of over�tting problems with small values of �. Indeed

the real-valued fun
tion 
omputed by the SVM (that is the fun
tion 
omputed without


onsidering the sign fun
tion, Se
t. 4.3.1.1) is very spiky with small values of � (Fig. 4.8).
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Figure 4.13: Letter-Two data set. Error, bias, training error, halved fra
tion of support

ve
tors, and estimated VC dimension while varying the � parameter and for some �xed

values of C: (a) C = 1, (b) C = 10, (
) C = 100, and C = 1000.
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The response of the SVM is high only in small areas around the support ve
tors, while

in all the other areas "non 
overed" by the gaussians 
entered to the support ve
tors the

response is very low (about 0), that is the SVM is not able to get a de
ision, with a


onsequently very high bias.

Anyway, note that the pattern of dependen
y between � and the bias{varian
e 
omponents

of the error might be di�erent if larger training sets were used. Indeed the high bias region

will be smaller (that is limited to lower values of �) if the number of the examples of the

training set is larger. With an in
reasing number of examples, the "non-
overed" regions

of the input spa
e will be redu
ed, and they might be only small ex
eptions if relatively

large training sets are used. This should be not so surprising, as it is well-known that

th error, as well as its bias varian
e 
omponents depend largely on the 
ardinality of the

available training set [12, 188℄.

In the same region (small values for �) the net varian
e is usually very small, for either one

of these reasons: 1) biased and unbiased varian
e are almost equal but both di�erent from

0 ; 2) biased and unbiased varian
e are about equal but both very near to 0 (Fig. 4.6 a,

b and f). In the �rst 
ase the SVM performs a sort of random guessing for the most part

of the unknown data, resulting in a very biased response, but with a 
ertain variability

due to the fa
t both in the biased and in the unbiased regions SVM trained on di�erent

training sets provide di�erent outputs, with a 
onsequent biased and unbiased varian
e.

In the se
ond 
ase the SVMs tend to answer in the same way independently of a parti
ular

instan
e of the test set: they 
lassify all the examples as positives or as negatives. As a


onsequen
e, both biased and unbiased varian
e are 0, and the error is equal to the bias.

For instan
e, if the number of the examples in the test set is equal for the positive and

the negative 
lass, then the bias (and the error) will be 0:5. If the number of positive

examples is n

+

and the number of negative examples is n

�

, and the SVMs 
lassi�y as

positive all the examples the bias and the error will be n

�

=(n

+

+ n

�

), and of 
ourse will

be n

+

=(n

+

+n

�

) if the SVM 
lassi�es all the examples as negative. Enlarging � we obtain

a wider response on the input domain: the real-valued fun
tion 
omputed by the SVM

be
omes smoother (Fig. 4.9), as the "bumps" around the support ve
tors be
ome wider

and the SVM 
an de
ide also on unknown examples. At the same time the number of

support ve
tors de
reases (Fig. 4.13 and 4.14).

Considering the variation of the ratio of the support ve
tors with �, in all data sets the

trend of the halved ratio of support ve
tors follows the error, with a sigmoid shape that

sometimes be
omes an U shape for small values of C (Fig.4.13 and 4.14). This is not

surprising be
ause it is known that the support ve
tor ratio o�ers an approximation of the

generalization error of the SVMs [188℄. Moreover, on all the data sets the halved ratio of

support ve
tors de
reases in the "stabilized" region, while in the transition region remains

high. As a 
onsequen
e the de
rement in the number of support ve
tors shows that we are

entering the "low error" region, and in prin
iple we 
an use this information to dete
t this
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Figure 4.14: Grey-Landsat data set. Error, bias, training error, halved fra
tion of support

ve
tors, and estimated VC dimension while varying the � parameter and for some �xed

values of C: (a) C = 1, (b) C = 10, (
) C = 100, and C = 1000.
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region.

In order to analyze the role of the VC dimension on the generalization ability of learning

ma
hines, we know from Statisti
al learning Theory that the form of the bounds of the

generalization error E of SVMs is the following:

E(f(�; C)

k

n

)) � E

emp

(f(�; C)

k

n

)) + �(

h

k

n

) (4.1)

where f(�; C)

k

n

represents the set of fun
tions 
omputed by an RBF-SVM trained with n ex-

amples and with parameters (�

k

; C

k

) taken from a set of parameters S = f(�

i

; C

i

); i 2 Ng,

E

emp

represents the empiri
al error and � the 
on�den
e interval that depends on the


ardinality n of the data set and on the VC dimension h

k

of the set of fun
tions identi�ed

by the a
tual sele
tion of the parameters (�

k

; C

k

). In order to obtain good generalization


apabilities we need to minimize both the empiri
al risk and the 
on�den
e interval. A
-


ording to Vapnik's bounds (eq. 4.1), in Fig. 4.13 and 4.14 the lowest generalization error

is obtained for a small empiri
al risk and a small estimated VC dimension.

But sometimes with relatively small values of V C we have a very large error, as the training

error and the number of support ve
tors in
rease with very large values of � (Fig. 4.13 a

and 4.14 a). Moreover with a very large estimate of the VC dimension and low empiri
al

error (Fig. 4.13 and 4.14) we have a relatively low generalization error.

In 
on
lusion it seems very diÆ
ult to use in pra
ti
e these estimates of the VC dimension

to infer the generalization abilities of the SVM. In parti
ular it seems unreliable to use the

VC dimension to infer the "low error" region of the RBF-SVM.

4.3.2 Polynomial and dot-produ
t kernels

In this se
tion we analyze the 
hara
teristi
s of bias{varian
e de
omposition of the error

in polynomial SVMs, varying the degree of the kernel and the regularization parameter C.

Error shows a U shape with respe
t to the degree. This shape depends on unbiased varian
e

(Fig. 4.15 a and b), or both by bias and unbiased varian
e (Fig. 4.15 
 and d). The U

shape of the error with respe
t to the degree tends to be more 
at for in
reasing values of

C, and net-varian
e and bias show often opposite trends (Fig. 4.16).

Average error and bias are higher for low C and degree values, but in
rementing the degree

the error is less sensitive to C values (Fig. 4.17). Bias is 
at (Fig. 4.18 a) or de
reasing

with respe
t to the degree (Fig. 4.16 b), or it 
an be 
onstant or de
reasing, depending on

C (Fig. 4.18 b). Unbiased varian
e shows an U shape (Fig. 4.15 a and b) or it in
reases

(Fig. 4.15 
) with respe
t to the degree, and the net{varian
e follows the shape of the

unbiased varian
e. Note that in the P2 data set (Fig. 4.16) bias and net{varian
e follow
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Figure 4.15: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in polynomial SVM, while varying the degree and for some �xed values of C: (a)

Waveform, C = 0:1, (b) Waveform, C = 50, (
) Letter-Two, C = 0:1, (d) Letter-Two,

C = 50.
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Figure 4.16: P2 data set. Error (a) and its de
omposition in bias (b) and net varian
e (
),

varying both C and the polynomial degree.

the 
lassi
al opposite trends with respe
t to the degree. This is not the 
ase with other

data sets (see, e.g. Fig. 4.15).

For large values of C bias and net{varian
e tend to 
onverge, as a result of the bias

redu
tion and net{varian
e in
rement (Fig. 4.19), or be
ause both stabilize at similar

values (Fig. 4.17).

In dot{produ
t SVMs bias and net{varian
e show opposite trends: bias de
reases, while

net{varian
e and unbiased varian
e tend to in
rease with C (Fig. 4.20). On the data set

P2 this trend is not observed, as in this task the bias is very high and the SVM does not

perform better than random guessing (Fig. 4.20a). The minimum of the average loss for

relatively low values of C is the result of the de
rement of the bias and the in
rement of the

71



-0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.1 1 2 5 10 20 50 100 200 500 1000
C

avg. error
bias

net variance
unbiased var.

biased var

degree=2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.1 1 2 5 10 20 50 100 200 500 1000
C

avg. error
bias

net variance
unbiased var.

biased var

degree=3

(a) (b)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.1 1 2 5 10 20 50 100 200 500 1000
C

avg. error
bias

net variance
unbiased var.

biased var

degree=5

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.1 1 2 5 10 20 50 100 200 500 1000
C

avg. error
bias

net variance
unbiased var.

biased var

degree=10

(
) (d)

Figure 4.17: Letter-Two data set. Bias-varian
e de
omposition of error in bias, net vari-

an
e, unbiased and biased varian
e in polynomial SVM, while varying C and for some

polynomial degrees: (a) degree = 2, (b) degree = 3, (
) degree = 5, (d) degree = 10
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Figure 4.18: Bias in polynomial SVMs with (a) Waveform and (b) Spam data sets, varying

both C and polynomial degree.
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Figure 4.19: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in polynomial SVM, varying C: (a) P2 data set with degree = 6, (b) Spam data

set with degree = 3.
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net{varian
e: it is a
hieved usually before the 
rossover of bias and net{varian
e 
urves

and before the stabilization of the bias and the net{varian
e for large values of C. The

biased varian
e remains small independently of C.

4.3.3 Comparing kernels

In this se
tion we 
ompare the bias{varian
e de
omposition of the error with respe
t to the

C parameter, 
onsidering gaussian, polynomial and dot{produ
t kernels. For ea
h kernel

and for ea
h data set the best results are sele
ted. Tab. 4.2 shows the best results a
hieved

by the SVM, 
onsidering ea
h kernel and ea
h data set used in the experiments. Interest-

ingly enough in 3 data sets there are not signi�
ant di�eren
es in the error (Waveform,

Letter-Two with added noise and Spam), but there are di�eren
es in bias, net{varian
e,

unbiased or biased varian
e. In the other data sets gaussian kernels outperform polynomial

and dot{produ
t kernels, as bias, net{varian
e or both are lower. Considering bias and

net{varian
e, in some 
ases they are lower for polynomial or dot{produ
t kernel, showing

that di�erent kernels learn in di�erent ways with di�erent data.

Considering the data set P2 (Fig. 4.21 a, 
, e), RBF-SVM a
hieves the best results, as

a 
onsequen
e of a lower bias. Unbiased varian
e is 
omparable between polynomial and

gaussian kernel, while net{varian
e is lower, as biased varian
e is higher for polynomial-

SVM. In this task the bias of dot{produ
t SVM is very high. Also in the data set Musk

(Fig. 4.21 b, d, f) RBF-SVM obtains the best results, but in this 
ase unbiased varian
e

is responsible for this fa
t, while bias is similar. With the other data sets the bias is

similar between RBF-SVM and polynomial-SVM, but for dot{produ
t SVM often the bias

is higher (Fig. 4.22 b, d, f).

Interestingly enough RBF-SVM seems to be more sensible to the C value with respe
t

to both polynomial and dot{produ
t SVM: for C < 0:1 in some data sets the bias is

mu
h higher (Fig. 4.22 a, 
, e). With respe
t to C bias and unbiased varian
e show

sometimes opposite trends, independently of the kernel: bias de
reases, while unbiased

varian
e in
reases, but this does not o

ur in some data sets. We outline also that the

shape of the error, bias and varian
e 
urves is similar between di�erent kernels in all the


onsidered data sets: that is, well-tuned SVM having di�erent kernels tend to show similar

trends of the bias and varian
e 
urves with respe
t to the C parameter.
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Figure 4.20: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in dot-produ
t SVM, varying C: (a) P2, (b) Grey-Landsat, (
) Letter-Two, (d)

Letter-Two with added noise, (e) Spam, (f) Musk.
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Figure 4.21: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e with respe
t to C, 
onsidering di�erent kernels. (a) P2, gaussian; (b)

Musk, gaussian (
) P2, polynomial; (d) Musk, polynomial; (e) P2, dot{produ
t; (f) Musk,

dot{produ
t.
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Figure 4.22: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and bi-

ased varian
e with respe
t to C, 
onsidering di�erent kernels. (a) Waveform, gaussian; (b)

Letter-Two, gaussian (
) Waveform, polynomial; (d) Letter-Two, polynomial; (e) Wave-

form, dot{produ
t; (f) Letter-Two, dot{produ
t.
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Table 4.2: Compared best results with di�erent kernels and data sets. RBF-SVM stands

for SVM with gaussian kernel; Poly-SVM for SVM with polynomial kernel and D-prod

SVM for SVM with dot-produ
t kernel. Var unb. and Var. bias. stand for unbiased and

biased varian
e.

Parameters Avg. Bias Var. Var. Net

Error unb. bias. Var.

Data set P2

RBF-SVM C = 20; � = 2 0.1516 0.0500 0.1221 0.0205 0.1016

Poly-SVM C = 10; degree = 5 0.2108 0.1309 0.1261 0.0461 0.0799

D-prod SVM C = 500 0.4711 0.4504 0.1317 0.1109 0.0207

Data set Waveform

RBF-SVM C = 1; � = 50 0.0706 0.0508 0.0356 0.0157 0.0198

Poly-SVM C = 1; degree = 1 0.0760 0.0509 0.0417 0.0165 0.0251

D-prod SVM C = 0:1 0.0746 0.0512 0.0397 0.0163 0.0234

Data set Grey-Landsat

RBF-SVM C = 2; � = 20 0.0382 0.0315 0.0137 0.0069 0.0068

Poly-SVM C = 0:1; degree = 5 0.0402 0.0355 0.0116 0.0069 0.0047

D-prod SVM C = 0:1 0.0450 0.0415 0.0113 0.0078 0.0035

Data set Letter-Two

RBF-SVM C = 5; � = 20 0.0743 0.0359 0.0483 0.0098 0.0384

Poly-SVM C = 2; degree = 2 0.0745 0.0391 0.0465 0.0111 0.0353

D-prod SVM C = 0:1 0.0908 0.0767 0.0347 0.0205 0.0142

Data set Letter-Two with added noise

RBF-SVM C = 10; � = 100 0.3362 0.2799 0.0988 0.0425 0.0563

Poly-SVM C = 1; degree = 2 0.3432 0.2799 0.1094 0.0461 0.0633

D-prod SVM C = 0:1 0.3410 0.3109 0.0828 0.0527 0.0301

Data set Spam

RBF-SVM C = 5; � = 100 0.1263 0.0987 0.0488 0.0213 0.0275

Poly-SVM C = 2; degree = 2 0.1292 0.0969 0.0510 0.0188 0.0323

D-prod SVM C = 0:1 0.1306 0.0965 0.0547 0.0205 0.0341

Data set Musk

RBF-SVM C = 2; � = 100 0.0884 0.0800 0.0217 0.0133 0.0084

Poly-SVM C = 2; degree = 2 0.1163 0.0785 0.0553 0.0175 0.0378

D-prod SVM C = 0:01 0.1229 0.1118 0.0264 0.0154 0.0110

4.4 Chara
terization of Bias{Varian
e De
omposition

of the Error

Despite the di�eren
es observed in di�erent data sets, 
ommon trends of bias and varian
e


an be individuated for ea
h of the kernels 
onsidered in this study. Ea
h kernel presents
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a spe
i�
 
hara
terization of bias and varian
e with respe
t to its spe
i�
 parameters, as

explained in the following se
tions.

4.4.1 Gaussian kernels

Error, bias, net{varian
e, unbiased and biased varian
e show a 
ommon trend in the 7 data

sets we used in the experiments. Some di�eren
es, of 
ourse, arise in the di�erent data

sets, but we 
an distinguish three di�erent regions in the error analysis of RBF-SVM, with

respe
t to in
reasing values of � (Fig. 4.23):

1. High bias region. For low values of �, error is high: it depends on a high bias.

Net{varian
e is about 0 as biased and unbiased varian
e are equivalent. In this region

there are no remarkable 
u
tuations of bias and varian
e: both remain 
onstant, with

high values of bias and 
omparable values of unbiased and biased varian
e, leading to

net{varian
e values near to 0. In some 
ases biased and unbiased varian
e are about

equal, but di�erent from 0, in other 
ases they are equal, but near to 0.

2. Transition region. Suddenly, for a 
riti
al value of �, the bias de
reases rapidly.

This 
riti
al value depends also on C: for very low values of C, we have no learning,

then for higher values the bias drops. Higher values of C 
ause the 
riti
al value of �

to de
rease (Fig. 4.5 (b) and 4.6). In this region the in
rease in net{varian
e is less

than the de
rease in bias: so the average error de
reases. The boundary of this region


an be determined at the point where the error stops de
rementing. This region is


hara
terized also by a parti
ular trend of the net{varian
e. We 
an distinguish two

main behaviours:

(a) Wave-shaped net{varian
e. Net{varian
e �rst in
reases and then de
reases,

produ
ing a wave-shaped 
urve with respe
t to �. The initial in
rement of

the net{varian
e is due to the simultaneous in
rement of the unbiased varian
e

and de
rement of the biased varian
e. In the se
ond part of the transition

region, biased varian
e stabilizes and unbiased varian
e de
reases, produ
ing a

parallel de
rement of the net{varian
e. The rapid de
rement of the error with

� is due to the rapid de
rement of the bias, after whi
h the bias stabilizes and

the further de
rement of the error with � is determined by the net{varian
e

redu
tion (Fig. 4.5
, 4.6).

(b) Semi-wave-shaped net{varian
e. In other 
ases the net{varian
e 
urve with

� is not so 
learly wave-shaped: the des
ending part is very redu
ed (Fig. 4.6

e, f). In parti
ular in the musk data set we have a 
ontinuous in
rement of the

net{varian
e (due to the 
ontinuous growing of the unbiased varian
e with �),

and no wave-shaped 
urve is observed (at least for C > 10, Fig. 4.12 d).
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In both 
ases the in
rement of the net{varian
e is slower than the in
rement in bias:

so the average error de
reases.

3. Stabilized region. This region is 
hara
terized by small or no variations in bias

and net{varian
e. For high values of � both bias and net{varian
e stabilize and the

average error is 
onstant (Fig. 4.5, 4.6). In other data sets the error in
reases

with �, be
ause of the in
rement of the bias (Fig. 4.12 a,b) or the unbiased varian
e

(Fig. 4.12 
,d).
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Wave-shaped net-variance

biased variance
Comparable unbiased

No bias-variance variations

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.01 0.02 0.1 0.2 0.5 1 2 5 10 20 50 100

avg. error
bias

net variance
unbiased var.

biased var

sigma

Figure 4.23: The 3 regions of error in RBF-SVM with respe
t to �.

In the �rst region, bias rules SVM behavior: in most 
ases the bias is 
onstant and 
lose to

0:5, showing that we have a sort of random guessing, without e�e
tive learning. It appears

that the area of in
uen
e of ea
h support ve
tor is too small (Fig. 4.8), and the learning

ma
hine over�ts the data. This is 
on�rmed by the fa
t that in this region the training

error is about 0 and almost all the training examples are support ve
tors.

In the transition region, the SVM starts to learn, adapting itself to the data 
hara
teristi
s.

Bias rapidly goes down (at the expenses of a growing net{varian
e), but for higher values

of � (in the se
ond part of the transition region), sometimes net{varian
e also goes down,

working to lower the error(Fig. 4.6).
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Figure 4.24: Behaviour of polynomial SVM with respe
t of the bias{varian
e de
omposition

of the error.

Even if the third region is 
hara
terized by no variations in bias and varian
e, sometimes

for low values of C, the error in
reases with � (Fig. 4.11 a, 4.13 a), as a result of the bias

in
rement; on the whole RBF-SVMs are sensitive to low values of C: if C is too low, then

bias 
an grow qui
kly. High values of C lower the bias (Fig. 4.13 
, d).

4.4.2 Polynomial and dot-produ
t kernels

For polynomial and dot{produ
t SVMs, we have also 
hara
terized the behavior of SVMs

in terms of average error, bias, net{varian
e, unbiased and biased varian
e, even if we


annot distinguish between di�erent regions 
learly de�ned.

However, 
ommon trends of the error 
urves with respe
t to the polynomial degree, 
on-

sidering bias, net{varian
e and unbiased and biased varian
e 
an be noti
ed.

The average loss 
urve shows in general a U shape with respe
t to the polynomial degree,

and this shape may depend on both bias and unbiased varian
e or in some 
ases mostly on

the unbiased varian
e a

ording to the 
hara
teristi
s of the data set. From these general

observations we 
an s
hemati
ally distinguish two main global pi
tures of the behaviour of

polynomial SVM with respe
t to the bias{varian
e de
omposition of the error:
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1. Error 
urve shape bias{varian
e dependent.

In this 
ase the shape of the error 
urve is dependent both on the unbiased varian
e

and the bias. The trend of bias and net{varian
e 
an be symmetri
 or they 
an also

have non 
oin
ident paraboloid shape, depending on C parameter values (Fig. 4.15 
,

d and 4.16). Note that bias and net varian
e show often opposite trends (Fig. 4.16).

2. Error 
urve shape unbiased varian
e dependent.

In this 
ase the shape of the error 
urve is mainly dependent on the unbiased varian
e.

The bias (and the biased varian
e) tend to be degree independent, espe
ially for high

values of C (Fig. 4.15 a, b) .

Fig. 4.24 s
hemati
ally summarizes the main 
hara
teristi
s of the bias{varian
e de
om-

position of error in polynomial SVM. Note however that the error 
urve depends for the

most part on both varian
e and bias: the prevalen
e of the unbiased varian
e (Fig. 4.15 a,

b) or the bias seems to depend mostly on the distribution of the data. The in
rement of
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Figure 4.25: Behaviour of the dot{produ
t SVM with respe
t of the bias{varian
e de
om-

position of the error.

the values of C tends to 
atten the U shape of the error 
urve: in parti
ular for large C

values bias be
omes independent with respe
t to the degree (Fig. 4.18). Moreover the C

parameter plays also a regularization role (Fig. 4.19)
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Dot{produ
t SVM are 
hara
terized by opposite trends of bias and net{varian
e: bias

de
rements, while net{varian
e grows with respe
t to C; then, for higher values of C both

stabilize. The 
ombined e�e
t of these symmetri
 
urves produ
es a minimum of the

error for low values of C, as the initial de
rement of bias with C is larger than the initial

in
rement of net{varian
e. Then the error slightly in
reases and stabilizes with C (Fig.

4.20). The shape of the net{varian
e 
urve is determined mainly by the unbiased varian
e:

it in
reases and then stabilizes with respe
t to C. On the other hand the biased varian
e


urve is 
at, remaining small for all values of C. A s
hemati
 pi
ture of this behaviour is

given in Fig. 4.25.
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Chapter 5

Bias{varian
e analysis in random

aggregated and bagged ensembles of

SVMs

Methods based on resampling te
hniques, and in parti
ular on bootstrap aggregating (bag-

ging) of sets of base learners trained on repeated bootstrap samples drawn from a given

learning set, have been introdu
ed in the nineties by Breiman [15, 16, 17℄.

The e�e
tiveness of this approa
h, that have been shown to improve the a

ura
y of a

single predi
tor [15, 63, 128, 44℄, is to be found in its property of redu
ing the varian
e


omponent of the error.

Bagging 
an be seen as an approximation of random aggregating, that is a pro
ess by

whi
h base learners, trained on samples drawn a

ordingly to an unknown probability

distribution from the entire universe population, are aggregated through majority voting

(
lassi�
ation) or averaging between them (regression).

Breiman showed that in regression problem, aggregation of predi
tors always improve the

performan
e of single predi
tors, while in 
lassi�
ation problems this is not always the


ase, if poor base predi
tors are used [15℄.

The improvement depends on the stability of the base learner: random aggregating and

bagging are e�e
tive with unstable learning algorithms, that is when small 
hanges in the

training set 
an result in large 
hanges in the predi
tions of the base learners.

Random aggregating always redu
e varian
e in regression and in 
lassi�
ation with reason-

ably good base 
lassi�ers, while bias remains substantially un
hanged. With bagging we


an have a varian
e redu
tion but bias 
an also slightly in
reases, as the average sample

size used by ea
h base learner is only about 2=3 of the training set from whi
h the samples
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are bootstrapped.

In general bagging unstable base learners is a good idea. As bagging is substantially a

varian
e redu
tion method, we 
ould also sele
t low bias base learner in order to redu
e

both the bias and varian
e 
omponents of the error.

Random aggregating is only a theoreti
al ensemble method, as we need the entire universe

of data from whi
h random samples are drawn a

ording to an usually unknown probability

distribution. But with very large data sets, using a uniform probability distribution and

undersampling te
hniques, we 
an simulate random aggregating (with the assumptions

that the very large available data set and the uniform probability distribution are good

approximations respe
tively of the "universe" population and the unknown probability

distribution).

In the next se
tions we dis
uss some theoreti
al issues about the relationships between

random aggregating and bagging. Then we verify the theoreti
al results of the expe
ted

varian
e redu
tion in bagging and random aggregating performing an extended experimen-

tal bias{varian
e de
omposition of the error in bagged and random aggregated ensembles

of SVMs. Finally, we 
onsider an approximation of random aggregated ensembles for very

large s
ale data mining problems.

5.1 Random aggregating and bagging

Let D be a set of m points drawn identi
ally and independently from U a

ording to P ,

where U is a population of labeled training data points (x

j

; t

j

), and P (x; t) is the joint

distribution of the data points in U , with x 2 R

d

.

Let L be a learning algorithm, and de�ne f

D

= L(D) as the predi
tor produ
ed by L

applied to a training set D. The model produ
es a predi
tion f

D

(x) = y. Suppose that a

sequen
e of learning sets fD

k

g is given, ea
h i.i.d. from the same underlying distribution P .

A

ording to [15℄ we 
an aggregate the f

D

trained with di�erent samples drawn from U to

get a better predi
tor f

A

(x; P ). For regression problems t

j

2 R and f

A

(x; P ) = E

D

[f

D

(x)℄,

where E

D

[�℄ indi
ates the expe
ted value with respe
t to the distribution of D, while in


lassi�
ation problems t

j

2 S � N and f

A

(x; P ) = argmax

j

jfkjf

D

k

(x) = jgj.

As the training sets D are randomly drawn from U , we name the pro
edure to build f

A

random aggregating. In order to simplify the notation, we denote f

A

(x; P ) as f

A

(x).
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5.1.1 Random aggregating in regression

If T and X are random variables having joint distribution P the expe
ted squared loss EL

for the single predi
tor f

D

(X) is:

EL = E

D

[E

T;X

[(T � f

D

(X))

2

℄℄ (5.1)

while the expe
ted squared loss EL

A

for the aggregated predi
tor is:

EL

A

= E

T;X

[(T � f

A

(X))

2

℄ (5.2)

Developing the square in eq. 5.1 we have:

EL = E

D

[E

T;X

[T

2

+ f

2

D

(X)� 2Tf

D

(X)℄℄

= E

T

[T

2

℄ + E

D

[E

X

[f

2

D

(X)℄℄� 2E

T

[T ℄E

D

[E

X

[f

D

(X)℄℄

= E

T

[T

2

℄ + E

X

[E

D

[f

2

D

(X)℄℄� 2E

T

[T ℄E

X

[f

A

(X)℄ (5.3)

In a similar way, developing the square in eq. 5.2 we have:

EL

A

= E

T;X

[T

2

+ f

2

A

(X)� 2Tf

A

(X)℄

= E

T

[T

2

℄ + E

X

[f

2

A

(X)℄� 2E

T

[T ℄E

X

[f

A

(X)℄

= E

T

[T

2

℄ + E

X

[E

D

[f

D

(X)℄

2

℄� 2E

T

[T ℄E

X

[f

A

(X)℄ (5.4)

Let be Z = E

D

[f

D

(X)℄. Using E[Z

2

℄ � E[Z℄

2

, 
onsidering eq. 5.3 and 5.4 we have that

E

D

[f

2

D

(X)℄ � E

D

[f

D

(X)℄

2

and hen
e EL � EL

A

.

The redu
tion of the error in random aggregated ensembles depends on how mu
h di�er the

two terms E

X

[E

D

[f

2

D

(X)℄℄ and E

X

[E

D

[f

D

(X)℄

2

℄ of eq. 5.3 and 5.4. As outlined by Breiman,

the e�e
t of instability is 
lear: if f

D

(X) does not 
hange too mu
h with repli
ate data sets

D, the two terms will be nearly equal and aggregation will not help. The more variable

the f

D

(X) are, the more improvement aggregation may produ
e.

In other words the redu
tion of the error depends on the instability of the predi
tion, that

is on how unequal the two sides of eq. 5.5 are:

E

D

[f

D

(X)℄

2

� E

D

[f

2

D

(X)℄ (5.5)

There is a stri
t relationship between the instability and the varian
e of the base predi
tor.

Indeed the varian
e V (X) of the base predi
tor is:

V (X) = E

D

[(f

D

(X)� E

D

[f

D

(X)℄)

2

℄

= E

D

[f

2

D

(X) + E

D

[f

D

(X)℄

2

� 2f

D

(X)E

D

[f

D

(X)℄℄

= E

D

[f

2

D

(X)℄� E

D

[f

D

(X)℄

2

(5.6)
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Comparing eq.5.5 and 5.6 we see that higher the instability of the base 
lassi�ers, higher

their varian
e is. The redu
tion of the error in random aggregation is due to the redu
tion

of the varian
e 
omponent (eq. 5.6) of the error, as V (X) will be small if and only if

E

D

[f

2

D

(X)℄ > E

D

[f

D

(X)℄

2

, that is if and only if the base predi
tor is unstable (eq. 5.5).

5.1.2 Random aggregating in 
lassi�
ation

With random aggregation of base 
lassi�ers, the same behaviour regarding stability holds,

but in this 
ase a more 
omplex situation arises.

Indeed let be f

D

(X) a base 
lassi�er that predi
ts a 
lass label t 2 C; C = f1; : : : ; Cg, and

let be X a random variable as in previous regression 
ase and T a random variable with

values in C.

Then the probability p(D) of 
orre
t 
lassi�
ation for a �xed data set D, 
onsidering a non

deterministi
 assignment for the labels of the 
lass, is:

p(D) = P (f

D

(X) = T ) =

C

X

j=1

P (f

D

(X) = jjT = j)P (T = j) (5.7)

In order to make independent the probability p of 
orre
t 
lassi�
ation from the 
hoi
e of

a spe
i�
 learning set we average over D:

p =

C

X

j=1

E

D

[P (f

D

(X) = jjT = j)℄P (T = j)

=

C

X

j=1

Z

P (f

D

(X) = jjX = x; T = j)P (T = jjX = x)P

X

(dx) (5.8)

Re
alling that f

A

(X) = argmax

i

P

D

(f

D

(x) = i), the probability p

A

of 
orre
t 
lassi�
ation

for random aggregation is:

p

A

=

C

X

j=1

P (f

A

(X) = jjT = j)P (T = j)

=

C

X

j=1

Z

P (f

A

(X) = jjT = j)P (T = jjX = x)P

X

(dx)

=

C

X

j=1

Z

P (argmax

i

[P

D

(f

D

(X) = i)℄ = jjT = j)P (T = jjX = x)P

X

(dx)
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=

C

X

j=1

Z

I(argmax

i

[P

D

(f

D

(X) = i℄ = j)P (T = jjX = x)P

X

(dx) (5.9)

where I is the indi
ator fun
tion.

The optimal predi
tion for a pattern x is the Bayesian predi
tion:

B

�

(x) = argmax

j

P (T = jjX = x) (5.10)

We split now the patterns in a set O 
orresponding to the optimal predi
tions performed

by the aggregated 
lassi�er and in a set O

0


orresponding to non-optimal predi
tions. The

set O of the optimally 
lassi�ed patterns is:

O = fxj argmax

j

P (T = jjX = x) = argmax

j

P

D

(f

D

(x) = j)g

A

ording to the proposed partition of the data we 
an split the probability p

A

of 
orre
t


lassi�
ation for random aggregation in two terms:

p

A

=

Z

x2O

max

j

P (T = jjX = x)P

X

(dx) +

Z

x2O

0

C

X

j=1

I(f

A

(x) = j)P (T = jjX = x)P

X

(dx)

(5.11)

If x 2 O we have:

argmax

j

P (T = jjX = x) = argmax

j

P

D

(f

D

(x) = j) (5.12)

In this 
ase, 
onsidering eq. 5.8 and 5.9:

C

X

j=1

P (f

D

(X) = jjT = j)P (T = jjX = x) � argmax

j

P

D

(f

D

(x) = j)

and hen
e p

A

(X) � p(X). On the 
ontrary, if x 2 O

0

eq. 5.12 does not hold, and it may

o

ur that:

C

X

j=1

I(f

A

(x) = j)P (T = jjX = x) <

C

X

j=1

P (f

D

(X) = jjT = j)P (T = jjX = x)

As a 
onsequen
e if the set O of the optimally predi
ted patterns is large, that is, if we

have relatively good predi
tors, aggregation improves performan
es. On the 
ontrary, if

the set O

0

is large, that is if we have poor predi
tors, aggregation 
an worsen performan
es.

Summarizing, unlike regression, aggregating poor predi
tors 
an lower performan
es, whereas,

as in regression, aggregating relatively good predi
tors 
an lead to better performan
es, as

long as the base predi
tor is unstable [15℄.
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5.1.3 Bagging

In most 
ases we dispose only of data sets of limited size, and moreover we do not know

the probability distribution underlying the data. In these 
ase we 
ould try to simulate

random aggregation by bootstrap repli
ates of the data [56℄ and su

essively aggregating

the predi
tors trained on the bootstrapped data.

The bootstrap aggregating method (bagging) [15℄ 
an be applied both to regression and


lassi�
ation problems: the only di�eren
e is in the aggregation phase.

Consider, for instan
e, a 
lassi�
ation problem. Let C be the set of 
lass labels. Let

fD

j

g

n

j=1

be the set of n bootstrapped samples drawn with repla
ement from the learning

set D a

ording to an uniform probability distribution. Let f

D

j

= L(D

j

) be the de
ision

fun
tion of the 
lassi�er trained by a learning algorithm L using the bootstrapped sample

D

j

.

Then the 
lassi
al de
ision fun
tion f

B

(x) applied for aggregating the base learners in

bagging is [15℄:

f

B

(x) = argmax


2C

n

X

j=1

I(f

D

j

(x) = 
) (5.13)

where I(z) = 1 if the boolean expression z is true, otherwise I(z) = 0. In words, the

bagged ensemble sele
ts the most voted 
lass.

In regression the aggregation is performed averaging between the real values 
omputed by

the real fun
tion valued base learners g

D

j

: R

d

! R:

f

B

(x) =

1

n

n

X

j=1

g

D

j

(x) (5.14)

Fig. 5.1 show the pseudo-
ode for bagging.

The learning algorithm L generates an hypothesis h

t

: X ! Y using a sample D

t

boot-

strapped from D, and h

fin

is the �nal hypothesis 
omputed by the bagged ensemble,

aggregating the base learners through majority voting (Fig. 5.1).

Bagging shows the same limits of random aggregating: only if the base learners are unstable

we 
an a
hieve redu
tion of the error with respe
t to the single base learners. Of 
ourse if

the base learner is near to the Bayes error we 
annot expe
t improvements by bagging.

Moreover bagging is an approximation of random aggregating, for at least two reasons.
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Algorithm Bagging

Input arguments:

- Data set D = fz

i

= (x

i

; y

i

)g

n

i=1

, x

i

2 X � R

d

; y

i

2 Y = f1; : : : ; kg

- A learning algorithm L

- Number of iterations (base learners) T

Output:

- Final hypothesis h

fin

: X ! Y 
omputed by the ensemble.

begin

for t = 1 to T

begin

D

t

= Bootstrap repli
ate(D)

h

t

= L(D

t

)

end

h

fin

(x) = argmax

y2Y

P

T

t=1

jjh

t

(x) = yjj

end.

Figure 5.1: Bagging for 
lassi�
ation problems.

First, bootstrap samples are not real data samples: they are drawn from a data set D that

is in turn a sample from the population U . On the 
ontrary f

A

uses samples drawn dire
tly

from U .

Se
ond, bootstrap samples are drawn from D through an uniform probability distribution

that is only an approximation of the unknown true distribution P .

For these reasons we 
an only hope that this is a good enough approximation to f

A

that


onsiderable varian
e redu
tion (eq. 5.2) will result [17℄.

Moreover with bagging ea
h base learner, on the average, uses only 63:2% of the available

data for training and so we 
an expe
t for ea
h base learner a larger bias, as the e�e
tive

size of the learning set is redu
ed. This 
an also a�e
t the bias of the bagged ensemble that


riti
ally depends on the bias of the 
omponent base learners: we 
ould expe
t sometimes

a slight in
rement of the bias of the bagged ensemble with respe
t to the unaggregated

predi
tor trained on the entire available training set.

Bagging is a varian
e redu
tion method, but we 
annot expe
t so large de
rements of

varian
e as in random aggregating. The intuitive reason 
onsists in the fa
t that in random

aggregating the base learners use more variable training sets drawn from U a

ording to

the distribution P . In this way random aggregating exploits more information from the

population U , while bagging 
an exploit only the information from a single data set D

drawn from U , through bootstrap repli
ates of the data from D.
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5.2 Bias{varian
e analysis in bagged SVM ensembles

In this se
tion we deal with the problem of understanding the e�e
t of bagging on bias

and varian
e 
omponents of the error in SVMs. Our aim 
onsists in getting insights into

the way bagged ensembles learn, in order to 
hara
terize learning in terms of bias{varian
e


omponents of the error.

In parti
ular we try to verify the theoreti
al property of the expe
ted varian
e redu
tion

in bagging, through an extended experimental bias{varian
e de
omposition of the error in

bagged SVM ensembles.

The plan of the experiments, whose results are summarized in the next se
tions, is the

following. We performed experiments with gaussian, polynomial and dot-produ
t kernels.

At �rst, for ea
h kernel, we evaluated the expe
ted error and its de
omposition in bias, net-

varian
e, unbiased and biased varian
e with respe
t to the learning parameters of the base

learners. Then we analyzed the bias{varian
e de
omposition as a fun
tion of the number

of the base learners employed. Finally we 
ompared bias and varian
e with respe
t to the

learning parameters in bagged SVM ensembles and in the 
orresponding single SVMs, in

order to study the e�e
t of bootstrap aggregation on the bias and varian
e 
omponents of

the error.

The next se
tions reported only some examples and a summary of the results of bias{

varian
e analysis in bagged SVM ensembles. Full data, results and graphi
s of the experi-

mentation on bias{varian
e analysis in bagged ensembles of SVMs are reported in [180℄.

5.2.1 Experimental setup

To estimate the de
omposition of the error in bias, net-varian
e, unbiased and biased

varian
e with bagged ensembles of SVMs, we performed a bias-varian
e de
omposition of

the error on the data sets des
ribed in Chap. 4. At �rst we split the data in a separated

learning set D and testing set T . Then we drew with repla
ement from D n samples S

i

of size s, a

ording to a uniform probability distribution. From ea
h D

i

; 1 � i � n we

generated by bootstrap m repli
ates D

ij

, 
olle
ting them in n di�erent sets

�

D

i

= fD

ij

g

m

j=1

.

We used the n sets

�

D

i

to train n bagged ensembles, ea
h 
omposed by m SVMs, ea
h

one trained with di�erent bootstrapped data, repeating this pro
ess for all the 
onsidered

SVM models. In order to properly 
ompare the e�e
t of di�erent 
hoi
es of the learning

parameters on bias{varian
e de
omposition of the error, ea
h SVM model is represented

by a di�erent 
hoi
e of the kernel type and parameters and is trained with the same sets

�

D

i

; 1 � i � n of bootstrapped samples.

For ea
h SVM model, bias{varian
e de
omposition of the error is evaluated on a separated
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test set T , signi�
antly larger than the training sets, using the bagged ensembles trained

on the n sets

�

D

i

.

The experimental pro
edure we adopted to generate the data and to manage bias{varian
e

analysis are summarized in Fig. 5.2 and 5.3. For more detailed information on how to


ompute bias{varian
e de
omposition of the error see Chap. 3.2.

Pro
edure Generate samples

Input arguments:

- Data set S

- Number of samples n

- Size of samples s

- Number of bootstrap repli
ate m

Output:

- Sets

�

D

i

= fD

ij

g

m

j=1

; 1 � i � n of bootstrapped samples

begin pro
edure

[D; T ℄ = Split(S)

for i = 1 to n

begin

D

i

= Draw with repla
ement(D; s)

�

D

i

= ;

for j = 1 to m

begin

D

ij

= Bootstrap repli
ate(D

i

)

�

D

i

=

�

D

i

+D

ij

end

end

end pro
edure.

Figure 5.2: Pro
edure to generate samples to be used for bias{varian
e analysis in bagging

The pro
edure Generate samples (Fig. 5.2) generates sets

�

D

i

of bootstrapped samples,

drawing at �rst a sample D

i

from the training set D a

ording to an uniform probability

distribution (pro
edure Draw with repla
ement) and then drawing from D

i

m bootstrap

repli
ates (pro
edure Bootstrap repli
ate). Note that

�

D

i

is a set of sets, and the plus

sign in Fig. 5.2 indi
ates that the entire set D

ij

is added as a new element of the set of

sets

�

D

i

.
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Pro
edure Bias{Varian
e analysis

Input arguments:

- Test set T

- Number of bagged ensembles n

- Number of bootstrap repli
ate m

- Set of learning parameters A

Output:

- Error, bias, net-varian
e, unbiased and biased varian
e BV = fbv(�)g

�2A

of the bagged ensemble having base learners with learning parameters � 2 A.

begin pro
edure

For ea
h � 2 A

begin

Ensemble Set(�) = ;

for i = 1 to n

begin

bag(�;

�

D

i

) = Ensemble train (�;

�

D

i

)

Ensemble Set(�) = Ensemble Set(�) [ bag(�;

�

D

i

)

end

bv(�) = Perform BV analysis(Ensemble Set (�), T )

BV = BV [ bv(�)

end

end pro
edure.

Figure 5.3: Pro
edure to perform bias{varian
e analysis on bagged SVM ensembles

The pro
edure Bias-Varian
e analysis (Fig. 5.3) trains di�erent ensembles of bagged

SVMs (pro
edure Ensemble train) using the same sets of bootstrap samples generated

through the pro
edure Generate samples. Then bias{varian
e de
omposition of the er-

ror is performed on the separated test set T using the previously trained bagged SVM

ensembles (pro
edure Perform BV analysis).

In our experiments we employed gaussian, polynomial and dot-produ
t kernels evaluating

110 di�erent SVM models, 
onsidering di�erent 
ombinations of the type of the kernel and

learning parameters for ea
h data set. For ea
h model we set s = 100; n = 100; m = 60,

training for ea
h data set 110�100 = 11000 bagged ensembles and a total of 110�100�60 =

660000 di�erent SVMs. Considering all the data sets we trained and tested about 80000

di�erent bagged SVM ensembles and a total of about 5 millions of single SVMs.
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5.2.2 Bagged RBF-SVM ensembles

In this se
tion are reported the results of bias{varian
e analysis in bagged SVMs, using

base learners with gaussian kernels.

5.2.2.1 Bias{varian
e de
omposition of the error

The de
omposition of the error is represented with respe
t to di�erent values of � and

for �xed values of C. The error follows and "U" (Fig. 5.4 a and b) or a "sigmoid" trend

(Fig. 5.4 
 and d). This trend is visible also in other data sets (data not shown). In the P2

data set we 
an observe opposite trends of bias and net-varian
e varying the � parameter,

while in Letter-Two for large values of � both bias and net-varian
e remain 
onstant. The

net{varian
e, for small � values is about 0, as unbiased and biased varian
e are about

equal, then rapidly in
reases, as at the same time unbiased varian
e in
reases and biased

varian
e de
reases. Anyway, when net{varian
e in
reases the error goes down as the bias

de
reases more qui
kly. Then, for slightly larger values of � the error diminishes, mainly

for the redu
tion of the net-varian
e. For large values of � (espe
ially if C also is relatively

large) both bias and net-varian
e stabilizes at low level and the error tends to be low, but

in another data sets (e.g. P2) the bias in
reases indu
ing a larger error rate.

5.2.2.2 De
omposition with respe
t to the number of base learners

Considering the bias{varian
e de
omposition of the error with respe
t to the number of

base learners, we 
an observe that the error redu
tion arises in the �rst 10 iterations,

espe
ially for the redu
tion of the unbiased varian
e. The bias and the biased varian
e

remain substantially un
hanged for all the iterations (Fig. 5.5)

5.2.2.3 Comparison of bias{varian
e de
omposition in single and bagged RBF-

SVMs

Here are reported the graphi
s 
omparing bias{varian
e de
omposition in single SVMs and

bagged ensembles of SVMs. In all graphi
s of this se
tion the data referred to single SVMs

are labeled with 
rosses, while bagged SVMs are labeled with triangles. The 
orresponding

quantities (e.g. bias, net-varian
e, et
.) are represented with the same type of line both in

single and bagged SVMs.

We analyze the relationships between bias-varian
e de
omposition of the error in single

and bagged RBF-SVMs for ea
h di�erent region that 
hara
terizes the bias-varian
e de-


omposition itself. In bagged SVM ensembles are also visible the three di�erent regions
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Figure 5.4: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in bagged RBF-SVMs, while varying � and for some �xed values of C. P2 data

set: (a) C = 1, (b) C = 100. Letter-Two data set: (
) C = 1, (d) C = 100

that 
hara
terize bias{varian
e de
omposition in single SVMs (Se
t. 4.4.1).

High bias region. In this region the error of single and bagged SVMs is about equal,

and it is 
hara
terized by a very high bias. The net-varian
e is 
lose to 0, be
ause biased

varian
e is about equal to the unbiased varian
e. In some 
ases they are both 
lose to 0.

In other 
ases they are equal but greater than 0 with slightly larger values in single that

in in bagged SVMs (Fig. 5.6).

Transition region. In this region the bias goes down very qui
kly both in single and

bagged SVMs. The net-varian
e maintains the wave-shape also in bagged SVMs, but it is

slightly lower. The error drops down at about the same rate in single and bagged SVMs

(Fig. 5.6 a and b).
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Figure 5.5: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in bagged SVM RBF, with respe
t to the number of iterations. (a) Grey-Landsat

data set (b) Spam data set.

Stabilized region. For relatively large values of � the net-varian
e tends to stabilize

(Fig. 5.6). In this region the net-varian
e of the bagged SVMs is equal or less than the

net-varian
e of the single SVMs, while bias remains substantially un
hanged in both. With

some data sets (Fig. 5.4 a and b) the bias tends to in
rease with �, espe
ially with low

values of C. As a result, bagged SVMs show equal or lower average error with respe
t to

single SVMs (Fig. 5.6)

5.2.3 Bagged polynomial SVM ensembles

In this se
tion are reported the results of the experiments to evaluate the de
omposition

of the error in bagged ensembles of polynomial SVMs.

5.2.3.1 Bias{varian
e de
omposition of the error

The de
omposition of the error is represented with respe
t to di�erent values of the poly-

nomial degree and for �xed values of C. Also in bagged polynomial ensembles the error

shows an "U" shape w.r.t. to the degree (Fig. 5.7), su
h as in single polynomial SVM (see

Se
t. 4.3.2). This shape depends both on bias and net-varian
e. The 
lassi
al trade-o�

between bias and varian
e is sometimes noti
eable (Fig. 5.7 b), but in other 
ases both

bias and net-varian
e in
rease with the degree (Fig. 5.7 
 and d ). As a general rule for low
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Figure 5.6: Comparison between bias-varian
e de
omposition between single RBF-SVMs

(lines labeled with 
rosses) and bagged SVM RBF ensembles (lines labeled with triangles),

while varying � and for some �xed values of C. Letter-Two data set: (a) C = 1, (b)

C = 100. Waveform data set: (
) C = 1, (d) C = 100.

degree polynomial kernel the bias is relatively large and the net varian
e is low, while the

opposite o

urs with high degree polynomials (Fig. 5.7 a). The regularization parameter

C plays also an important role: large C values tends to de
rease the bias also for relatively

low degree (Fig. 5.7 d). Of 
ourse these results depend also on the spe
i�
 
hara
teristi
s

of the data sets.
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Figure 5.7: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in bagged polynomial SVM, while varying the degree and for some �xed values of

C. P2 data set: (a) C = 0:1, (b) C = 100. Letter-Two data set: (
) C = 0:1, (d) C = 100

5.2.3.2 De
omposition with respe
t to the number of base learners

This se
tion reports data and graphs about the de
omposition of bias{varian
e in bagged

SVMs with respe
t to the number of iterations of bagging, that is the number of base

learners used. The error de
reases in �rst 10 iterations, for the redu
tion of the unbiased

varian
e, while bias and net-varian
e remain substantially un
hanged (Fig. 5.8). This

behavior is similar to that shown by bagged ensembles of gaussian SVMs (Fig. 5.5).
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Figure 5.8: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in bagged polynomial SVMs, with respe
t to the number of iterations. (a) P2

data set (b)Letter-Two data set.

5.2.3.3 Comparison of bias{varian
e de
omposition in single and bagged poly-

nomial SVMs

In bagged SVMs, the trend of the error with respe
t to the degree shows an "U" shape

similar to that of single polynomial SVMs(Fig. 5.9). It depends both on bias and unbiased

varian
e. Bias and biased varian
e are un
hanged with respe
t to single SVMs, while net-

varian
e is slightly redu
ed (for the redu
tion of the unbiased varian
e). As a result we

have a slight redu
tion of the overall error.

5.2.4 Bagged dot-produ
t SVM ensembles

In this se
tion are reported the results of bias{varian
e analysis in bagged SVMs, using

base learners with dot-produ
t kernels.

5.2.4.1 Bias{varian
e de
omposition of the error

The de
omposition of the error is represented with respe
t to di�erent values of C. The

error seems to be relatively independent of C (Fig. 5.10), and no 
hanges are observed

both for bias and varian
e 
omponents of the error. In some data sets the bias slightly

de
reases with C while unbiased varian
e slightly in
reases.
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Figure 5.9: Comparison between bias-varian
e de
omposition between single polynomial

SVMs (lines labeled with 
rosses) and bagged polynomial SVM ensembles (lines labeled

with triangles), while varying the degree and for some �xed values of C. P2 data set: (a)

C = 1, (b) C = 100. Grey-Landsat data set: (
) C = 1, (d) C = 100.

5.2.4.2 De
omposition with respe
t to the number of base learners

Considering the bias{varian
e de
omposition of the error with respe
t to the number of

base learners, we 
an observe that the error redu
tion arises in the �rst 10-20 iterations,

espe
ially for the redu
tion of the unbiased varian
e. The bias and the biased varian
e

remain substantially un
hanged for all the iterations (Fig. 5.11)
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Figure 5.10: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in bagged dot-produ
t SVM, while varying C. (a) Waveform data set (b) Grey-

Landsat (
) Letter-Two with noise (d) Spam

5.2.4.3 Comparison of bias{varian
e de
omposition in single and bagged dot-

produ
t SVMs

Fig. 5.12 shows the 
omparison between bias-varian
e de
omposition between single dot-

produ
t SVMs. The redu
tion of the error in bagged ensembles is due to the redu
tion on

the unbiased varian
e, while bias is un
hanged or slightly in
reases in bagged dot-produ
t

SVMs. The biased varian
e also remains substantially un
hanged. The shape of the error


urve is quite independent of the C values, at least for C � 1.
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Figure 5.11: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in bagged dot-produ
t SVMs, with respe
t to the number of iterations. (a) Grey-

Landsat data set (b) Letter-Two data set.

5.2.5 Bias{varian
e 
hara
teristi
s of bagged SVM ensembles

In Tab. 5.1 are summarized the 
ompared results of bias{varian
e de
omposition between

single SVMs and bagged SVM ensembles. E

SVM

stands for the estimated error of single

SVMs, E

bag

for the estimated error of bagged ensembles of SVMs, % Error redu
tion

stands for the per
ent error redu
tion of the error between single and bagged ensembles,

that is:

%Error redu
tion =

E

SVM

� E

bag

E

SVM

% Bias redu
tion, % NetV ar redu
tion and % UnbV ar redu
tion 
orresponds respe
-

tively to the per
ent bias, net{varian
e and unbiased varian
e redu
tion between single and

bagged ensemble of SVMs. The negative signs means that we have a larger error in the

bagged ensemble. Note that sometimes the de
rement of the net{varian
e 
an be larger

than 100 %: the net{varian
e 
an be negative, when the biased varian
e is larger than the

unbiased varian
e.

As expe
ted, bagging does not redu
e the bias (on the 
ontrary, sometimes bias slightly

in
reases). The net-varian
e is not eliminated but only partially redu
ed, and its de
rement

ranges from 0 to about 40 % with respe
t to single SVMs. Its redu
tion is due to the

unbiased varian
e redu
tion, while biased varian
e is un
hanged. As a result the error

de
reases, but its de
rement it is not so noti
eable, as it ranges from 0 to about 15 % with

respe
t to single SVMs, depending on the kernel and the data set. The overall shape of
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Figure 5.12: Comparison between bias-varian
e de
omposition between single dot-produ
t

SVMs (lines labeled with 
rosses) and bagged dot-produ
t SVM ensembles (lines labeled

with triangles), while varying the values of C. (a) Waveform (b) Grey-Landsat (
) Spam

(d) Musk.

the 
urves of the error, bias and varian
e are very 
lose to that of single SVMs.

5.3 Bias{varian
e analysis in random aggregated en-

sembles of SVMs

This se
tion investigates the e�e
t of random aggregation of SVMs on bias and varian
e


omponents of the error.
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Table 5.1: Comparison of the results between single and bagged SVMs.

E

SVM

E

bag

% Error % Bias % NetVar % UnbVar

redu
tion redu
tion redu
tion redu
tion

Data set P2

RBF-SVM 0.1517 0.1500 1.14 -2.64 3.18 2.19

Poly-SVM 0.2088 0.1985 4.95 4.85 5.08 5.91

D-prod SVM 0.4715 0.4590 2.65 1.11 34.09 15.28

Data set Waveform

RBF-SVM 0.0707 0.0662 6.30 -1.41 26.03 17.82

Poly-SVM 0.0761 0.0699 8.11 0.36 23.78 17.94

D-prod SVM 0.0886 0.0750 15.37 -0.22 37.00 28.20

Data set Grey-Landsat

RBF-SVM 0.0384 0.0378 1.74 2.94 -7.46 3.94

Poly-SVM 0.0392 0.0388 1.05 -4.76 24.80 12.06

D-prod SVM 0.0450 0.0439 2.58 16.87 -165.72 -62.21

Data set Letter-Two

RBF-SVM 0.0745 0.0736 1.20 -25.00 21.63 12.29

Poly-SVM 0.0745 0.0733 1.55 -15.79 13.92 10.41

D-prod SVM 0.0955 0.0878 8.09 2.22 27.55 23.06

Data set Letter-Two with added noise

RBF-SVM 0.3362 0.3345 0.49 1.75 -5.78 0.40

Poly-SVM 0.3432 0.3429 0.09 -0.58 3.06 0.91

D-prod SVM 0.3486 0.3444 1.21 -0.56 10.23 6.09

Data set Spam

RBF-SVM 0.1292 0.1290 0.14 -0.48 1.57 2.22

Poly-SVM 0.1323 0.1318 0.35 2.11 -5.83 -1.19

D-prod SVM 0.1495 0.1389 7.15 -3.16 19.87 16.38

Data set Musk

RBF-SVM 0.0898 0.0920 -2.36 -6.72 22.91 13.67

Poly-SVM 0.1225 0.1128 7.92 -10.49 38.17 37.26

D-prod SVM 0.1501 0.1261 15.97 -2.41 34.56 29.38

Our aim 
onsists in getting insights into the way random aggregated ensembles learn, in

order to 
hara
terize learning in terms of the bias{varian
e 
omponents of the error.

In parti
ular, an extended experimental bias{varian
e de
omposition of the error in random

aggregated SVM ensembles is performed in order to verify the theoreti
al property of


an
eled varian
e in random aggregation.

The plan of the experiments repli
ates the previous one we followed for bagged SVM
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ensembles, using dot-produ
t, polynomial and gaussian kernels.

We evaluated for ea
h kernel the expe
ted error and its de
omposition in bias, net-varian
e,

unbiased and biased varian
e with respe
t to the learning parameters of the base learners.

Then we analyzed the bias{varian
e de
omposition as a fun
tion of the number of the base

learners employed. Finally we 
ompared bias and varian
e with respe
t to the learning

parameters in random aggregated SVM ensembles and in the 
orresponding single SVMs,

in order to study the e�e
t of random aggregation on the bias and varian
e 
omponents of

the error.

Here are reported only some examples and a summary of the results of bias{varian
e anal-

ysis in random aggregated SVM ensembles. The experiments we performed with random

aggregated ensembles of SVMs are detailed in [181℄.

5.3.1 Experimental setup

In order to estimate the de
omposition of the error in bias, unbiased and biased varian
e

with random aggregated ensembles of SVMs, we used a bootstrap approximation of the

unknown distribution P , that is, we drew samples of relatively small size from a relatively

large training set, a

ording to an uniform probability distribution. From this standpoint

we approximated random aggregation by a sort of undersampled bagging, drawing data

from the universe population U represented by a 
omfortable large training set. The

bias-varian
e de
omposition of the error is 
omputed with respe
t to a separate test set

signi�
antly larger than the undersampled training sets.

To estimate the de
omposition of the error in bias, net-varian
e, unbiased and biased

varian
e with random aggregated ensembles of SVMs, we performed a bias-varian
e de-


omposition of the error on the data sets des
ribed in Chap. 4.

We split the data in a separated learning set D and testing set T . Then we drew with

repla
ement from D n set of samples

�

D

i

, a

ording to a uniform probability distribution.

Ea
h set of samples

�

D

i

is 
omposed by m samples D

ij

drawn with repla
ement from D,

using an uniform probability distribution. Ea
h sample D

ij

is 
omposed by s samples. The

D

ij

samples are in turn 
olle
ted in n sets

�

D

i

= fD

ij

g

m

j=1

.

We used the n sets

�

D

i

to train n random aggregated ensembles, repeating this pro
ess for

all the 
onsidered SVM models. In order to properly 
ompare the e�e
t of di�erent 
hoi
es

of the learning parameters on bias{varian
e de
omposition of the error, ea
h SVM model

is represented by a di�erent 
hoi
e of the kernel type and parameters and it is trained with

the same sets

�

D

i

; 1 � i � n of samples.

Fig. 5.13 summarizes the experimental pro
edure we adopted to generate the data and

Fig. 5.14 the experimental pro
edure to evaluate bias{varian
e de
omposition of the error.
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Pro
edure Generate samples

Input arguments:

- Data set S

- Number n of set of samples

- Size of samples s

- Number m of samples 
olle
ted in ea
h set

Output:

- Sets

�

D

i

= fD

ij

g

m

j=1

; 1 � i � n of samples

begin pro
edure

[D; T ℄ = Split(S)

for i = 1 to n

begin

�

D

i

= ;

for j = 1 to m

begin

D

ij

= Draw with repla
ement(D; s)

�

D

i

=

�

D

i

+D

ij

end

end

end pro
edure.

Figure 5.13: Pro
edure to generate samples to be used for bias{varian
e analysis in random

aggregation

Sets

�

D

i

of samples are drawn with repla
ement a

ording to an uniform probability dis-

tribution from the training set D by the pro
edure Draw with repla
ement. This pro-


ess is repeated n times (pro
edure Generate samples, Fig. 5.13). Then the pro
edure

Bias-Varian
e analysis (Fig. 5.14) trains di�erent ensembles of random aggregated

SVMs (pro
edure Ensemble train) using the sets of samples generated by the pro
e-

dure Generate samples. The bias{varian
e de
omposition of the error is performed on

the separated test set T using the previously trained bagged SVM ensembles (pro
edure

Perform BV analysis).

We employed gaussian, polynomial and dot-produ
t kernels evaluating 110 di�erent SVM

models, 
onsidering di�erent 
ombinations of the type of the kernel and learning parameters

for ea
h data set. For ea
h model we set s = 100; n = 100; m = 60, training for ea
h data

set 110�100 = 11000 random aggregated ensembles and a total of 110�100�60 = 660000
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Pro
edure Bias{Varian
e analysis

Input arguments:

- Test set T

- Number of random aggregated ensembles n

- Number of bootstrap repli
ate m

- Set of learning parameters A

Output:

- Error, bias, net-varian
e, unbiased and biased varian
e BV = fbv(�)g

�2A

of the random aggregated ensemble having base learners with learning parameters � 2

A.

begin pro
edure

For ea
h � 2 A

begin

Ensemble Set(�) = ;

for i = 1 to n

begin

rand aggr(�;

�

D

i

) = Ensemble train (�;

�

D

i

)

Ensemble Set(�) = Ensemble Set(�) [ rand aggr(�;

�

D

i

)

end

bv(�) = Perform BV analysis(Ensemble Set (�), T )

BV = BV [ bv(�)

end

end pro
edure.

Figure 5.14: Pro
edure to perform bias{varian
e analysis on random aggregated SVM

ensembles

di�erent SVMs. Considering all the data sets we trained and tested about 80000 di�erent

random aggregated SVM ensembles and a total of about 5 millions of single SVMs.

5.3.2 Random aggregated RBF-SVM ensembles

In this se
tion are reported the results of bias{varian
e analysis in random aggregated

RBF-SVMs.

5.3.2.1 Bias{varian
e de
omposition of the error

The de
omposition of the error is represented with respe
t to di�erent values of � and for

�xed values of C.
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S
hemati
ally we 
an observe the following fa
ts:

� The shape of the error is mostly determined by the bias and it is in general sigmoid

with respe
t to �, but sometimes an "U" shape is observed, as the error 
an in
rease

with � (Fig. 5.15).

� In all the data sets the net-varian
e is about 0 for all the values of �, and the wave-

shape of the net-varian
e is very redu
ed or 
ompletely absent.

� The net-varian
e is 0 as both biased and unbiased varian
e are very low, with values


lose to 0. Only in the Waveform data set unbiased and biased varian
e are both

quite large in the "high bias" region (and partially also in Letter-Two).

� The net-varian
e is always 0 in the "stabilized region" in all the 
onsidered data sets.

� The error is determined almost entirely by the bias: in Fig. 5.15 it is diÆ
ult to the

distinguish the error and bias 
urves.

5.3.2.2 De
omposition with respe
t to the number of base learners

Fig. 5.16 a, b and d refer to bias{varian
e de
omposition of the error with respe
t to the

number of base learners for random aggregated SVMs of the "stabilized region". In these


ases we 
an observe the following fa
ts:

� Most of the de
rement of the error o

urs within the �rst iterations (from 10 to 30,

depending on the data set).

� The bias remains un
hanged during all the iterations

� The de
rement of the error is almost entirely due to the de
rement of the unbiased

varian
e, and it is larger than in bagged ensembles of SVMs.

On the 
ontrary Fig. 5.16 
 refers to � values in the the "transition region". Also in

this 
ase the bias remains un
hanged in average (higher than the bias of SVMs of the

"stabilized region"), but os
illates largely, espe
ially during the �rst 20 iterations. The

unbiased varian
e also os
illates, but tends to de
rement with the iterations, lowering

the error. The biased varian
e os
illates in the same way (that is with the same phase)

with respe
t to the bias, but with a lower amplitude, while the unbiased varian
e and in

parti
ular the net-varian
e os
illates in a spe
ular way (opposite phase) with respe
t to

the bias. This is observed also in the other data sets (ex
ept in Letter-Two with noise). I

have no explanations for this behaviour.
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Figure 5.15: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in random aggregated gaussian SVMs, while varying � and for some �xed values

of C. P2 data set: (a) C = 1, (b) C = 100. Letter-Two data set: (
) C = 1, (d) C = 100

5.3.2.3 Comparison of bias{varian
e de
omposition in single and random ag-

gregated RBF-SVMs

In all the graphi
s of this se
tion the data referred to single SVMs are labeled with 
rosses,

while random aggregated SVMs are labeled with triangles. The 
orresponding quantities

(e.g. bias, net-varian
e, et
.) are represented with the same type of line both in single and

random aggregated SVMs.

In random aggregated ensembles net-varian
e is very 
lose to 0. As a 
onsequen
e, the

error is in pra
ti
e redu
ed to the bias. As in single SVMs, we 
an distinguish three main

regions with respe
t to �:
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Figure 5.16: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and

biased varian
e in random aggregated SVM RBF, with respe
t to the number of iterations.

P2 dataset: (a) C = 1; � = 0:2, (b) C = 100; � = 0:5. Letter-Two data set: (
)

C = 100; � = 1, (d) C = 100; � = 2

High bias region. In this region the the error of single and random aggregated SVMs

is about equal, and it is 
hara
terized by a very high bias. The net-varian
e is 
lose to 0,

be
ause biased varian
e is about equal to the unbiased varian
e. In most 
ases they are

both 
lose to 0 (Fig. 5.17 a and b). In some 
ases they are equal but greater than 0 with

signi�
antly larger values in single that in random aggragated SVMs (Fig. 5.17 
 and d).

Transition region. The bias de
reases in the transition region at about the same rate in

single and random aggregated SVM ensembles. The net-varian
e maintains the wave-shape
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also in random aggregated SVMs, but it is lower. In some data sets (Fig. 5.17 a and b),

the net-varian
e remains low with no signi�
ant variations also for small values of �. For

these reasons the error de
reases more qui
kly in random aggregated SVMs, and the error

of the ensemble is about equal to the bias.

Stabilized region. The net-varian
e stabilizes, but at lower values (very 
lose to 0)


ompared with net-varian
e of single SVMs. Hen
e we have a redu
tion of the error for

random aggregated SVM ensembles in this region. Note that the redu
tion of the error

depends heavily on the level of the unbiased varian
e of dingle SVMs in the stabilized

region. If it is suÆ
iently high, we 
an a
hieve substantial redu
tion of the error in random

aggregated SVM ensembles. With some data sets the error in
reases for large values of �,

mainly for the in
rement of the bias (Fig. 5.15 a and b).

5.3.3 Random aggregated polynomial SVM ensembles

5.3.3.1 Bias{varian
e de
omposition of the error

The de
omposition of the error is represented with respe
t to di�erent values of the poly-

nomial degree and for �xed values of C.

S
hemati
ally we 
an observe the following fa
ts:

� In all the data sets the net-varian
e is about 0 for all the values of polynomial degree,

as both biased and unbiased varian
e are very low 
lose to 0. Only in some data sets

(e.g. P2), with low values of C we 
an observe a 
ertain level on unbiased varian
e,

espe
ially with low degree polynomials (Fig. 5.18 a).

� In almost all the 
onsidered data sets the error shows an "U" shape with respe
t to

the degree. This shape tends to a 
at line if C is relatively large. With the P2 data

set the error de
reases with the degree (Fig. 5.18).

� The error is determined almost entirely by the bias: its minimum is rea
hed for

spe
i�
 values of the degree of the polynomial and depends on the 
hara
teristi
s of

the data set.

5.3.3.2 De
omposition with respe
t to the number of base learners

This se
tion reports data and graphs about the de
omposition of bias{varian
e in random

aggregated SVMs with respe
t to the number of iterations, that is the number of base

learners used.
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Figure 5.17: Comparison of bias-varian
e de
omposition between single RBF-SVMs (lines

labeled with 
rosses) and random aggregated ensembles of RBF-SVMs (lines labeled with

triangles), while varying � and for some �xed values of C. Letter-Two data set: (a) C = 1,

(b) C = 100. Waveform data set: (
) C = 1, (d) C = 100.

Fig. 5.19 shows that the bias remains 
onstant throughout the iterations. Most of the error

de
rement is a
hieved within the �rst 10-20 iterations, and it is almost entirely due to the

de
rement of the unbiased varian
e. The error is redu
ed to the bias, when the number

of iterations is suÆ
iently large. The biased varian
e is low and slowly de
reases at ea
h

iteration, while the unbiased varian
e 
ontinues to de
rease at ea
h iteration, but most of

its de
rement o

urs within the �rst 20 iterations (Fig. 5.19).
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Figure 5.18: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in random aggregated polynomial SVM, while varying the degree and for some

�xed values of C. P2 data set: (a) C = 1, (b) C = 100. Letter-Two data set: (
) C = 1,

(d) C = 100

5.3.3.3 Comparison of bias{varian
e de
omposition in single and random ag-

gregated polynomial SVMs

In random aggregated polynomial SVMs the error is due almost entirely to the bias. The

bias 
omponent is about equal in random aggregated and single SVMs.

In single SVMs sometimes are observed opposite trends between bias and unbiased varian
e:

the bias de
reases, while the unbiased varian
e in
reases with the degree (Fig. 5.20 a and

b). On the 
ontrary in random aggregated ensembles the net-varian
e is very 
lose to 0

and the error is due almost entirely to the bias (Fig. 5.20).
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Figure 5.19: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in random aggregated polynomial SVMs, with respe
t to the number of iterations.

P2 dataset: (a) C = 1, degree = 6 (b) C = 100, degree = 9. Letter-Two data set: (
)

C = 1, degree = 3, (d) C = 100, degree = 9.

Hen
e in random aggregated SVMs, the shape of the error with respe
t to the degree

depends on the shape of the bias, and 
onsequently the error 
urve shape is bias-dependent,

while in single SVMs it is varian
e or bias-varian
e dependent.

The general shape of the error with respe
t to the degree resembles an "U" 
urve, or 
an

be 
atted in dependen
e of the bias trend, espe
ially with relatively large C values.
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Figure 5.20: Comparison of bias-varian
e de
omposition between single polynomial SVMs

(lines labeled with 
rosses) and random aggregated polynomial SVM ensembles (lines la-

beled with triangles), while varying the degree and for some �xed values of C. P2 data

set: (a) C = 1, (b) C = 100. Grey-Landsat data set: (
) C = 1, (d) C = 100.

5.3.4 Random aggregated dot-produ
t SVM ensembles

5.3.4.1 Bias{varian
e de
omposition of the error

The de
omposition of the error is represented with respe
t to di�erent values of C.

S
hemati
ally we 
an observe the following fa
ts (Fig. 5.21):
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� Net-varian
e is about 0 for all the values of C, as both biased and unbiased varian
e

are very low 
lose to 0.

� The error, bias and varian
e seem to be independent of the values of C. Anyway,

note that in the experiments we used only values of C � 1.

� The error is determined almost totally by the bias.
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Figure 5.21: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in random aggregated dot-produ
t SVM, while varying C. (a) Grey-Landsat data

set (b) Letter-Two (
) Letter-Two with noise (d) Spam
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5.3.4.2 De
omposition with respe
t to the number of base learners

Considering the number of iterations, the most important fa
ts with dot-produ
t random

aggregated SVM ensembles are the following (Fig. 5.22):

� The bias remains 
onstant

� Most of the error de
rement is a
hieved within the �rst 10-20 iterations

� Error de
rement is due to the de
rement of the unbiased varian
e

� The error is determined almost totally by the bias.

� The biased varian
e slowly de
reases at ea
h iteration

5.3.4.3 Comparison of bias{varian
e de
omposition in single and random ag-

gregated dot-produ
t SVMs

In all 
ases the error is about equal to the bias, that remains un
hanged with respe
t to

the single SVMs. As a 
onsequen
e the error shape is equal to the shape of the bias and

it is independent of the C values, at least for C � 1. As a result we a have a signi�
ant

redu
tion of the error due to de
rement of the unbiased varian
e (Fig. 5.23).

5.3.5 Bias{varian
e 
hara
teristi
s of random aggregated SVM

ensembles

In the following tables are summarized the 
ompared results of bias{varian
e de
ompo-

sition between single SVMs and random aggregated SVM ensembles. E

SVM

stands for

the estimated error of single SVMs, E

agg

for the estimated error of random aggregated

ensembles of SVMs, % Error redu
tion stands for the per
ent error redu
tion of the error

between single and random aggregated ensembles, that is:

%Error redu
tion =

E

SVM

� E

agg

E

SVM

% Bias redu
tion, % NetV ar redu
tion and % UnbV ar redu
tion 
orresponds respe
-

tively to the per
ent bias, net{varian
e and unbiased varian
e redu
tion between single

and random aggregated ensemble of SVMs. The negative signs means that we have a

larger error in the random aggregated ensemble. Note that sometimes the de
rement of
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Figure 5.22: Bias-varian
e de
omposition of error in bias, net varian
e, unbiased and biased

varian
e in random aggregated dot-produ
t SVM, with respe
t to the number of iterations.

(a) Waveform (b) Letter-Two (
) Spam (d) Musk.

the net{varian
e 
an be larger than 100 %: re
all that net{varian
e 
an be negative (when

the biased varian
e is larger than the unbiased varian
e).

Random aggregated ensembles of SVMs strongly redu
e net-varian
e. Indeed in all data

sets the net-varian
e is near to 0, with a redu
tion 
lose to 100 % with respe
t to single

SVMs, 
on�rming the ideal behavior of random aggregating (Se
t. 5.1). Unbiased varian
e

redu
tion is responsible for this fa
t, as in all data sets its de
rement amounts to about

90 % with respe
t to single SVMs (Tab. 5.2). As expe
ted bias remains substantially

un
hanged, but with the P2 data set with polynomial and gaussian kernels we register a
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Figure 5.23: Comparison of bias-varian
e de
omposition between single dot-produ
t SVMs

(lines labeled with 
rosses) and random aggregated dot-produ
t SVM ensembles (lines

labeled with triangles), while varying the values of C. (a) Waveform (b) Grey-Landsat (
)

Spam (d) Musk.

not negligible de
rement of the bias. As a result the error de
reases from 15 to about 70

% with respe
t to single SVMs, depending on the kernel and on the 
hara
teristi
s of the

data set. The overall shape of the 
urves of the error resembles that of the bias of single

SVMs, with a 
hara
teristi
s sigmoid shape for gaussian kernels (that 
an also be
ome an

"U" shape for 
ertain data sets) with respe
t to the � width values (Fig. 5.15 and 5.16),

an "U" shape with respe
t to the degree for polynomial kernels (Fig. 5.18 and 5.19), while

it is relatively independent of the C values (at least for suÆ
iently large values of C) for

random aggregated linear SVMs (Fig. 5.21).
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Table 5.2: Comparison of the results between single and random aggregated SVMs.

E

SVM

E

agg

% Error % Bias % NetVar % UnbVar

redu
tion redu
tion redu
tion redu
tion

Data set P2

RBF-SVM 0.1517 0.0495 67.37 24.52 99.04 85.26

Poly-SVM 0.2088 0.1030 50.65 19.56 92.26 83.93

D-prod SVM 0.4715 0.4611 2.21 0.89 142.65 91.08

Data set Waveform

RBF-SVM 0.0707 0.0501 29.08 1.14 100.58 89.63

Poly-SVM 0.0761 0.0497 34.59 3.68 97.12 89.44

D-prod SVM 0.0886 0.0498 43.74 3.84 99.12 90.69

Data set Grey-Landsat

RBF-SVM 0.0384 0.0300 21.87 3.22 99.95 85.42

Poly-SVM 0.0392 0.0317 19.13 3.17 83.79 80.95

D-prod SVM 0.0450 0.0345 23.33 19.27 69.88 72.57

Data set Letter-Two

RBF-SVM 0.0745 0.0345 53.69 0.00 95.32 92.48

Poly-SVM 0.0745 0.0346 53.54 -5.26 95.46 92.71

D-prod SVM 0.0955 0.0696 27.11 2.22 109.73 92.31

Data set Letter-Two with added noise

RBF-SVM 0.3362 0.2770 17.55 2.92 90.26 87.04

Poly-SVM 0.3432 0.2775 19.13 1.75 95.96 89.42

D-prod SVM 0.3486 0.2925 16.07 -1.68 106.4 89.97

Data set Spam

RBF-SVM 0.1292 0.0844 34.67 6.75 99.74 90.05

Poly-SVM 0.1323 0.0814 38.47 22.33 95.22 86.03

D-prod SVM 0.1495 0.0804 46.22 6.90 94.91 90.24

Data set Musk

RBF-SVM 0.0898 0.0754 16.02 0.39 106.70 93.85

Poly-SVM 0.1225 0.0758 38.12 1.53 97.52 94.02

D-prod SVM 0.1501 0.0761 49.28 0.80 98.30 93.03

5.4 Undersampled bagging

While bagging had been su

essfully applied to di�erent 
lassi�
ation and regression prob-

lems [8, 44, 5, 102, 186℄, random aggregating is almost ideal, be
ause in most 
ases the true

distribution P is unknown and we 
an a

ess only a limited and often small sized data set.

From a theoreti
al standpoint we need to know the usually unknown true distribution of

the data, and we should be able to a

ess the (possibly in�nite) universe U of the data
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From a di�erent standpoint random aggregating (using a bootstrap approximation of P )


an be viewed as a form of undersampled bagging if we 
onsider the universe U as a data

set from whi
h undersampled data, that is data sets whose 
ardinality is mu
h less than

the 
ardinality of U , are randomly drawn with repla
ement. For instan
e this is the way

by whi
h we approximated random aggregating in our experiments des
ribed in Se
t. 5.3.

In real problems, if we have very large learning sets, or on-line available learning data,

we 
ould use undersampled bagging in order to over
ome the spa
e 
omplexity problem

raising from learning too large data sets, or to allow on-line learning [34℄.

Indeed in most data mining problems we have very large data sets, and ordinary learning

algorithms 
annot dire
tly pro
ess the data set as a whole. For instan
e most of the

implementations of the SVM learning algorithm have a O(n

2

) spa
e 
omplexity, where n

is the number of examples. If n is relatively large (e.g. n = 100000) we need room for 10

10

elements, a too 
ostly memory requirement for most 
urrent 
omputers. In these 
ases

we 
ould use relatively small data sets randomly drawn form the large available data set,

using undersampled bagging methods to improve performan
es.

This situation is very similar to the ideal random aggregation setting: the only di�eren
e

is that we use only limited data and an uniform probability distribution to draw the data.

In these 
ases we 
ould expe
t a strong de
rement of the varian
e, while bias should remain

substantially un
hanged. Indeed our experiments (Se
t. 5.3) reported a redu
tion of the

net-varian
e over 90 %, as well as no substantial 
hanges in bias.

Moreover the inherent parallelism of this pro
ess should permit to obtain a signi�
ant speed

up using, for instan
e, simple 
luster of workstations using message passing interfa
e [140℄.

On the other hand we 
ould use this approa
h for in
remental learning strategies, 
olle
ting

on-line samples in small data sets and aggregating the resulting 
lassi�ers. Of 
ourse this

approa
h holds if the on-line samples are distributed a

ording to an uniform probability

distribution along time.

5.5 Summary of bias{varian
e analysis results in ran-

dom aggregated and bagged ensembles of SVMs

We 
ondu
ted an extensive experimental analysis of bias{varian
e de
omposition of the

error in random aggregated and bagged ensembles of SVMs, involving training an testing

of more than 10 millions of SVMs. In both 
ases we used relatively small data sets (100

examples) bootstrapped from a relatively large data set and reasonably large test sets to

perform a reliable evaluation of bias and varian
e.
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Figure 5.24: Comparison of the error between single SVMs, bagged and random aggregated

ensembles of SVMs. Results refers to 7 di�erent data sets. (a) Gaussian kernels (b)

Polynomial kernels (
) Dot-produ
t kernels.
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Figure 5.25: Comparison of the relative error, bias and unbiased varian
e redu
tion between

bagged and single SVMs (lines labeled with triangles), and between random aggregated

and single SVMs (lines labeled with squares). B/S stands for Bagged versus Single SVMs,

and R/S for random aggregated versus Single SVMs. Results refers to 7 di�erent data sets.

(a) Gaussian kernels (b) Polynomial kernels (
) Dot-produ
t kernels.
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Considering random aggregated ensembles, the most important fa
t we 
an observe 
onsists

in a very large redu
tion of the net-varian
e. It is always redu
ed 
lose to 0, independently

of the type of kernel used (Fig. 5.15, 5.18, 5.21). This behaviour is due primarily to the

unbiased varian
e redu
tion, while the bias remains un
hanged with respe
t to the single

SVMs (Fig. 5.17, 5.20, 5.23).

Comparing bias{varian
e de
omposition of the error between single and random aggregated

ensembles of SVMs, we note that the relative error redu
tion varies from 10 to about 70

%, depending on the data set (Tab. 5.2). This redu
tion is slightly larger for high values

of the C parameter (that redu
es the bias of the base learners) and is due primarily to the

redu
tion of the unbiased varian
e. Indeed in all data sets the relative redu
tion of the

unbiased varian
e amounts to about 90 %, while bias remains substantially un
hanged.

The error of the ensemble is redu
ed to the bias of the single SVMs, be
ause net and

unbiased varian
e are largely redu
ed and 
lose to 0.

Considering the bias-varian
e de
omposition with respe
t to the number of base learners,

we 
an observe that most of the de
rement of the error o

urs within the �rst iterations

(from 10 to 30, depending on the data set), while the bias and the biased varian
e remains

un
hanged during all the iterations. The de
rement of the error is almost entirely due to

the de
rement of the net and unbiased varian
e (Fig. 5.16, 5.19, 5.22).

With bagging also we have a redu
tion of the error, but not so large as with random

aggregated ensembles (Fig. 5.24).

Indeed, unlike random aggregating, net and unbiased varian
e, although redu
ed, are not

a
tually dropped to 0 (Fig. 5.4, 5.7, 5.10).

In parti
ular, in our experiments, we obtained a smaller redu
tion of the average error

(from 0 to 20 %) due to a lower de
rement of the net-varian
e (about 35% against a

redu
tion over 90 % with random aggregated ensembles), while bias remains un
hanged or

slightly in
reases (Fig. 5.25).

Random aggregating, approximated through undersampled bagging of suÆ
iently large

training sets, shows a behavior very 
lose to that predi
ted by theory (Se
t. 5.1.1 and

5.1.2): eliminated varian
e and bias un
hanged with respe
t to single base SVMs.

On the other hand experimental results 
on�rm that bagging 
an be interpreted as an

approximation of random aggregating (Se
t. 5.1.3), as net-varian
e is redu
ed, but not


an
eled by bootstrap aggregating te
hniques, while bias remains un
hanged or slightly

in
reases.

The generalization error redu
tion provided by bootstrap aggregating te
hniques depends


riti
ally on the varian
e 
omponent of the error and on the bias proper of the base learner

used. Using base learners with low bias and aggregating them through bootstrap repli
ates

of the data 
an potentially redu
e both the bias and varian
e 
omponents of the error.
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Undersampled bagging, as an approximation of random aggregating 
an also provide very

signi�
ant redu
tion of the varian
e and 
an be in pra
ti
e applied to data mining problems

when learning algorithms 
annot 
omfortably manage very large data sets.
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Chapter 6

SVM ensemble methods based on

bias{varian
e analysis

Bias{varian
e theory provides a way to analyze the behavior of learning algorithms and

to explain the properties of ensembles of 
lassi�ers [66, 48, 94℄. Some ensemble methods

in
rease expressive power of learning algorithms, thereby redu
ing bias [63, 33℄. Other

ensemble methods, su
h as methods based on random sele
tion of input examples and

input features [19, 24℄ redu
e mainly the varian
e 
omponent of the error. In addition

to providing insights into the behavior of learning algorithms, the analysis of the bias{

varian
e de
omposition of the error 
an identify the situations in whi
h ensemble methods

might improve base learner performan
es. Indeed the de
omposition of the error into bias

and varian
e 
an guide the design of ensemble methods by relating measurable properties

of algorithms to the expe
ted performan
e of ensembles [182℄. In parti
ular, bias{varian
e

theory 
an tell us how to tune the individual base 
lassi�ers so as to optimize the overall

performan
e of the ensemble.

The experiments on bias{varian
e de
omposition of the error in SVMs gave us interestingly

insights into the way SVMs learn (Chap. 4). Indeed, with single SVMs, we provided

a bias{varian
e 
hara
terization of their learning properties, showing and explaining the

relationships between kernel and SVMs parameters and their bias{varian
e 
hara
teristi
s

(Se
t. 4.4). Moreover bias{varian
e analysis in random aggregated and bagged ensembles

(Chap. 5) showed how ensemble methods based on resampling te
hniques in
uen
e learning


hara
teristi
s and generalization 
apabilities of single SVMs.

From a general standpoint, 
onsidering di�erent kernels and di�erent parameters of the

kernel, we 
an observe that the minimum of the error, bias and net{varian
e (and in

parti
ular unbiased varian
e) do not mat
h. For instan
e, 
onsidering RBF-SVM we see

that we a
hieve the minimum of the error, bias and net{varian
e for di�erent values of �
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(see, for instan
e, Fig. 4.6). Similar 
onsiderations 
an also be applied to polynomial and

dot{produ
t SVMs. Often, modifying parameters of the kernel, if we gain in bias we lose

in varian
e and vi
e versa, even if this is not a rule.

Moreover, in our experiments, 
omparing bias{varian
e de
omposition of the error be-

tween single and random aggregated ensembles of SVMs, we showed that the relative error

redu
tion varies from 10 to about 70 %, depending on the data set. This redu
tion is

due primarily to the redu
tion of the unbiased varian
e( about 90 %), while bias remains

substantially un
hanged.

With bagging also we have a redu
tion of the error, but not so large as with random

aggregated ensembles. In parti
ular the error with bagged ensembles of SVMs depends

mainly on the bias 
omponent, but, unlike random aggregating, net and unbiased varian
e,

although redu
ed, are not a
tually redu
ed to 0. In parti
ular, in our experiments, we

obtained a smaller redu
tion of the average error (from 0 to 20 %) due to a lower de
rement

of the net-varian
e (about 35% on the average against a redu
tion over 90 % with random

aggregated ensembles), while bias remains un
hanged or slightly in
reases.

Hen
e in both 
ases we have signi�
ant net-varian
e redu
tion (due to the unbiased varian
e

de
rement), while bias remains substantially un
hanged.

In the light of the results of our extensive analysis for single SVMs and ensembles of SVMs,

we propose two possible ways of applying bias{varian
e analysis to develop SVM-based

ensemble methods.

The �rst approa
h tries to apply bias{varian
e analysis to enhan
e both a

ura
y and

diversity of the base learners. The se
ond resear
h dire
tion 
onsists in bootstrap aggre-

gating low bias base learners in order to lower both bias and varian
e. Regarding the �rst

approa
h, only some very general resear
h lines are depi
ted. About the se
ond dire
tion,

a spe
i�
 new method that we named Lobag, that is Low bias bagged SVMs, is intro-

du
ed, 
onsidering also di�erent variants. Lobag applies bias{varian
e analysis to dire
t

the tuning of Support Ve
tor Ma
hines to optimize the performan
es of bagged ensembles.

Spe
i�
ally, sin
e bagging is primarily a varian
e-redu
tion method, and sin
e the overall

error is (to a �rst approximation) the sum of bias and varian
e, this suggests that SVMs

should be tuned to minimize bias before being 
ombined by bagging.

Numeri
al experiments show that Lobag 
ompares favorably with bagging, and some pre-

liminary results show that Lobag 
an be su

essfully applied to gene expression data anal-

ysis.
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6.1 Heterogeneous Ensembles of SVMs

The analysis of bias{varian
e de
omposition of the error in SVMs shows that the mini-

mum of the overall error, bias, net{varian
e, unbiased and biased varian
e o

urs often

in di�erent SVM models. These di�erent behaviors of di�erent SVM models 
ould be in

prin
iple exploited to produ
e diversity in ensembles of SVMs. Although the diversity

of base learner itself does not assure the error of the ensemble will be redu
ed [121℄, the


ombination of a

ura
y and diversity in most 
ases does [43℄. As a 
onsequen
e, we 
ould

sele
t di�erent SVM models as base learners by evaluating their a

ura
y and diversity

through the bias-varian
e de
omposition of the error.

For instan
e, our results show that the \optimal region" (low average loss region) is quite

large in RBF-SVMs (Fig. 4.5). This means that C and � do not need to be tuned ex-

tremely 
arefully. From this point of view, we 
an avoid time-
onsuming model sele
tion

by 
ombining RBF-SVMs trained with di�erent � values all 
hosen from within the \op-

timal region." For instan
e, if we know that the error 
urve looks like the one depi
ted in

Fig. 4.23, we 
ould try to �t a sigmoid-like 
urve using only few values to estimate where

the stabilized region is lo
ated. Then we 
ould train an heterogeneous ensemble of SVMs

with di�erent � parameters (lo
ated in the low bias region) and average them a

ording

to their estimated a

ura
y.

A high-level algorithm for Heterogeneous Ensembles of SVMs 
ould in
lude the following

steps:

1. Individuate the "optimal region" through bias{varian
e analysis of the error

2. Sele
t the SVMs with parameters 
hosen from within the optimal region de�ned by

bias-varian
e analysis.

3. Combine the sele
ted SVMs by majority or weighted voting a

ording to their esti-

mated a

ura
y.

We 
ould use di�erent methods or heuristi
s to �nd the "optimal region" (see Se
t. 4.3.1.3)

and we have to de�ne also the 
riterion used to sele
t the SVM models inside the "optimal

region". The 
ombination 
ould be performed using also other approa
hes, su
h as min-

imum, maximum, average and OWA aggregating operators [105℄ or Behavior-Knowledge

spa
e method [87℄, Fuzzy aggregation rules [190℄, De
ision templates [118℄ or Meta-learning

te
hniques [150℄. Bagging and boosting [63℄ methods 
an also be 
ombined with this ap-

proa
h to further improve diversity and a

ura
y of the base learners.

If we apply bootstrap aggregating methods to the previous approa
h, exploiting also the

fa
t that the most important learning parameter in gaussian kernels is represented by the

spread � (Se
t. 4.3.1), we obtain the following �-Heterogeneous Ensembles of bagged SVMs:
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1. Apply bias-varian
e analysis to SVMs, in order to individuate the low bias region

with respe
t to kernel parameter �

2. Sele
t a subset of values for �, 
hosen from within the optimal region de�ned by

bias-varian
e analysis (for instan
e n values).

3. For ea
h � value, sele
ted in the previous step, train a bagged ensembles, for a total

of n bagged ensembles

4. Combine the n ensembles by majority or weighted voting a

ording to their estimated

a

ura
y.

In Se
t. 4.3.1 we showed that with gaussian kernels the optimal region with respe
t to � is

quite large, and also that � is the most relevant parameter a�e
ting the performan
es of

gaussian SVMs. Hen
e we 
ould sele
t di�erent � values in order to improve diversity in

the ensemble, while maintaining a high a

ura
y. We 
ould also apply expli
it measures of

diversity [121℄ to sele
t appropriate subsets of � values. Then the varian
e of the set of �-

heterogeneous SVMs is lowered using bagging. Training multiple bagged SVM ensembles is


omputationally feasible, as in our experiments we showed that usually the error stabilizes

within the �rst 20� 30 iterations (Se
t. 5.2.2). These results were 
on�rmed also in other

experimental appli
ations of bagged SVMs, for instan
e in bioinformati
s [186℄.

This approa
h presents several open problems. Even if we dis
uss this point in Chapter 4,

we need to 
hoose an appropriate 
riterion to de�ne the "optimal region": for instan
e,

optimal in the sense of minimum overall error or minimum bias? Moreover, we the need to

de�ne the relationships between diversity and a

ura
y in sele
ting the "optimal" subset of

� values. Other questions are whi
h diversity measure should be more appropriate in this


ontext and whether the 
ombination in the last step has to be performed at base learner

or ensemble level.

Another more general approa
h, Breiman's random forests [19℄ "inspired", 
ould use ran-

domness at di�erent levels to improve performan
es of ensemble methods. For instan
e,

besides random sele
tion of input samples, we 
ould 
onsider random sele
tion of features,

or also other types of randomness. In this 
ontext bias{varian
e analysis 
ould sele
t "ap-

propriate" subsets of learning parameters, while randomness at di�erent levels 
ould be

used to redu
e the varian
e and/or the bias 
omponents of the error.
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6.2 Bagged Ensemble of Sele
ted Low-Bias SVMs

In 
hapter 5 we showed that random aggregating removes all varian
e, leaving only bias

and noise. Hen
e, if bagging is a good approximation to random aggregating, it will also

remove most of the varian
e. As a 
onsequen
e, to minimize the overall error, bagging

should be applied to base learners with minimum bias.

6.2.1 Parameters 
ontrolling bias in SVMs

We propose to tune SVMs to minimize the bias and then apply bagging to redu
e (if not

eliminate) varian
e, resulting in an ensemble with very low error. The key 
hallenge, then,

is to �nd a reasonable way of tuning SVMs to minimize their bias. The bias of SVMs is

typi
ally 
ontrolled by two parameters. First, re
all that the obje
tive fun
tion for (soft

margin) SVMs has the form: kwk

2

+ C

P

i

�

i

, where w is the ve
tor of weights 
omputed

by the SVM and the �

i

are the margin sla
ks, whi
h are non-zero for data points that are

not suÆ
iently separated by the de
ision boundary. The parameter C 
ontrols the tradeo�

between �tting the data (a
hieved by driving the �

i

's to zero) and maximizing the margin

(a
hieved by driving kwk to zero). Setting C large should tend to minimize bias.

The se
ond parameter that 
ontrols bias arises only in SVMs that employ parameterized

kernels su
h as the polynomial kernel (where the parameter is the degree d of the polyno-

mial) and RBF kernels (where the parameter is the width � of the gaussian kernel). In

Chap. 4 we showed that in gaussian and polynomial SVMs bias depends 
riti
ally on these

parameters.

6.2.2 Aggregating low bias base learners by bootstrap repli
ates

Bagging is an ensemble method e�e
tive for unstable learners. Under the bootstrap as-

sumption, it redu
es only varian
e. From bias-varian
e de
omposition we know that unbi-

ased varian
e redu
es the error, while biased varian
e in
reases the error.

In theory, the bagged ensemble having a base learner with the minimum estimated bias will

be the one with the minimum estimated generalization error, as the varian
e of the single

base learner will be eliminated by the bagged ensemble, and the estimated generalization

error will be redu
ed to the estimated bias of the single base learner. Indeed the bias

(without noise) is B(x) = L(t; y

m

), where L is the loss fun
tion, t is the target and the

main predi
tion y

m

= argmin

y

E

D

[L(y

D

; y)℄, for a 
lassi�
ation problem is the most voted


lass, that is the 
lass sele
ted by the bagged ensemble.

Hen
e bagging should be applied to low-bias 
lassi�ers, be
ause the biased varian
e will
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be small, while bagging is essentially a varian
e redu
tion method, espe
ially if well-tuned

low bias base 
lassi�ers are used.

Summarizing, we 
an s
hemati
ally 
onsider the following observations:

� We know that bagging lowers net{varian
e (in parti
ular unbiased varian
e) but not

bias.

� From Domingos bias-varian
e de
omposition we know that unbiased varian
e redu
es

the error, while biased varian
e in
reases the error. Hen
e bagging should be applied

to low-bias 
lassi�ers, be
ause the biased varian
e will be small.

� For single SVMs, the minimum of the error and the minimum of the bias are often

a
hieved for di�erent values of the tuning parameters C, d, and �.

� SVMs are strong, low-biased learners, but this property depends on the proper se-

le
tion of the kernel and its parameters.

� If we 
an identify low-biased base learners with no negligible unbiased varian
e,

bagging 
an lower the error.

� Bias{varian
e analysis 
an identify SVMs with low bias.

We 
ould try to exploit the low bias of a base learner to build a bagged ensemble that


ombines the redu
ed varian
e pe
uliar to bagging with low bias in order to redu
e the

generalization error. This is the key idea of Lobag, Low bias bagged ensembles, that is

bagged ensembles of low bias learning ma
hines:

1. Estimate bias-varian
e de
omposition of the error for di�erent SVM models

2. Sele
t the SVM model with the lowest bias

3. Perform bagging using as base learner the SVM with the estimated lowest bias.

From this algorithmi
 s
heme, a major problem is the sele
tion of a base learner with min-

imum estimated bias for a given data set. That is, given a learning set D and a parametri


learning algorithm L(�; �) that generates a model f

�

= L(�; �), with � representing the

parameters of the learning algorithm L, we need to �nd:

f

�

B

= argmin

�

B(f

�

;D) (6.1)

where B() represents the bias of the model f

�

estimated using the learning data set D.

This in turn requires an eÆ
ient way to estimate the bias{varian
e de
omposition of the

error.
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6.2.3 Measuring Bias and Varian
e

To estimate bias and varian
e, we 
ould use 
ross-validation in 
onjun
tion with bootstrap,

or out-of-bag estimates (espe
ially if we have small training sets), or hold-out te
hniques

in 
onjun
tion with bootstrap te
hniques if we have suÆ
iently large training sets.

We propose to apply out-of-bag pro
edures [19℄ to estimate the bias and varian
e of SVMs

trained with various parameter settings (see also Se
t. 3.2.2). The pro
edure works as

follows. First, we 
onstru
t B bootstrap repli
ates of the available training data set D

(e. g., B = 200): D

1

; : : : ; D

B

. Then we apply a learning algorithm L to ea
h repli
ate S

b

to obtain an hypothesis f

b

= L(D

b

). For ea
h bootstrap repli
ate D

b

, let T

b

= DnD

b

be

the (\out-of-bag") data points that do not appear in D

b

. We apply hypothesis f

b

to the

examples in T

b

and 
olle
t the results.

Consider a parti
ular training example (x; t). On the average, this point will be in 63.2%

of the bootstrap repli
ates D

b

and hen
e in about 36.8% of the out-of-bag sets T

b

. Let

K be the number of times that (x; t) was out-of-bag; K will be approximately 0:368B.

The optimal predi
tion at x is just t. The main predi
tion y

m

is the 
lass that is most

frequently predi
ted among the K predi
tions for x. Hen
e, the bias is 0 if y

m

= t and 1

otherwise. The varian
e V (x) is the fra
tion of times that f

b

(x) 6= y

m

. On
e the bias and

varian
e have been 
omputed for ea
h individual point x, they 
an be aggregated to give

B, V

u

, V

b

, and V

n

for the entire data set D.

6.2.4 Sele
ting low-bias base learners.

Considering the se
ond step of the Lobag algorithm (Se
t. 6.2.2), that is the sele
tion of

the low bias SVM model, depending on the type of kernel and parameters 
onsidered, and

on the way the bias is estimated for the di�erent SVM models, di�erent variants 
an be

provided:

1. Sele
ting the RBF-SVM with the lowest bias with respe
t to the C and � parameters.

2. Sele
ting the polynomial-SVM with the lowest bias with respe
t to the C and degree

parameters.

3. Sele
ting the dot{prod-SVM with the lowest bias with respe
t to the C parameter.

4. Sele
ting the SVM with the lowest bias with respe
t both to the kernel and kernel

parameters.

Note that here we propose SVMs as base learners, but other low bias base learners 
ould

in prin
iple be used (for instan
e MLPs), as long as an analysis of their bias-varian
e
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hara
teristi
s suggests to apply them with bootstrap aggregating te
hniques. Of 
ourse,

we 
annot expe
t a high error redu
tion if the bias{varian
e analysis shows that the base

learner has a high bias and a low unbiased varian
e.

A problem un
overed in this work is the estimate of the noise in real data sets. A straight-

forward approa
h simply 
onsists in disregarding it, but in this way we 
ould overestimate

the bias. Some heuristi
 are proposed in [94℄, but the problem remains substantially unre-

solved.

6.2.5 Previous related work

Lobag 
an be interpreted as a variant of bagging: it estimates the bias of the SVM 
lassi�ers,

sele
ts low-bias 
lassi�ers, and then 
ombines them by bootstrap aggregating.

Previous work with other 
lassi�ers is 
onsistent with this approa
h. For example, several

studies have reported that bagged ensembles of de
ision trees often give better results

when the trees are not pruned [8, 41℄. Unpruned trees have low bias and high varian
e.

Similarly, studies with neural networks have found that they should be trained with lower

weight de
ay and/or larger numbers of epo
hs before bagging to maximize a

ura
y of the

bagged ensemble [5℄.

Unlike most learning algorithms, support ve
tor ma
hines have a built-in me
hanism for

varian
e redu
tion: from among all possible linear separators, they seek the maximum

margin 
lassi�er. Hen
e, one might expe
t that bagging would not be very e�e
tive with

SVMs. Previous work has produ
ed varying results. On several real-world problems,

bagged SVM ensembles are reported to give improvements over single SVMs [102, 186℄.

But for fa
e dete
tion, Bu
iu et al. [23℄ report negative results for bagged SVMs.

A few other authors have explored methods for tuning SVMs in ensembles. Collobert et

al. [34℄ proposed solving very large s
ale 
lassi�
ation problems by using meta-learning

te
hniques 
ombined with bagging. Derbeko et al. [40℄ applied an optimization te
hnique

from mathemati
al �nan
e to redu
e the varian
e of SVMs.

6.3 The lobag algorithm

The Lobag algorithm [183℄ a

epts the following inputs: (a) a data set D = f(x

i

; y

i

)g

n

i=1

,

with x

i

2 R and y

i

2 f�1; 1g, (b) a learning algorithm L(�; �), with tuning parameters �,

and (
) a set A of possible settings of the � parameters to try. Lobag estimates the bias of

ea
h parameter setting � 2 A, 
hooses the setting that minimizes the estimated bias, and

applies the standard bagging algorithm to 
onstru
t a bag of 
lassi�ers using L(�; �) with
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the 
hosen � value.

Unlike bagging, lobag sele
ts the hypothesis with the estimated lowest bias to build the

bootstrap aggregated 
lassi�er. As a 
onsequen
e the 
ore of the algorithm 
onsists in

evaluating bias{varian
e de
omposition of the error varying the learning parameters �.

The remainder of this se
tion provides the pseudo-
ode for Lobag.

6.3.1 The Bias{varian
e de
omposition pro
edure

This pro
edure estimates the bias{varian
e de
omposition of the error for a given learning

algorithm L and learning parameters �.

The learning algorithm L returns a hypothesis f

�

= L(D; �) using a learning set D, and it

is applied to multiple bootstrap repli
ates D

b

of the learning set D in order to generate a

set F

�

= ff

b

�

g

B

b=1

of hypotheses f

b

�

. The pro
edure returns the models F

�

and the estimate

of their loss and bias. For ea
h learning parameter it 
alls Evaluate BV, a pro
edure that

provides an out-of-bag estimate of the bias{varian
e de
omposition.

Pro
edure [V;F ℄ BV de
omposition (L;A;D; B)

Input:

- Learning algorithm L

- Set of algorithm parameters A

- Data set D

- Number of bootstrap samples B

Output:

- Set V of triplets (�; loss; bias), where loss and bias are the estimated loss and bias of

the model trained through the learning algorithm L with algorithm parameters �.

- Set of ensembles F = fF

�

g

�2A

with F

�

= ff

b

�

g

B

b=1

begin pro
edure

V = ;

F = ;

for ea
h � 2 A

begin

F

�

= ;

T

�

= ;

for ea
h b from 1 to B

begin

D

b

= Bootstrap repli
ate(D)

f

b

�

= L(D

b

; �)

T

b

= DnD

b

F

�

= F

�

[ f

b

�
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T

�

= T

�

[ T

b

end

F = F [ F

�

[loss, bias, varian
e℄ = Evaluate BV (F

�

; T

�

)

V = V [ (�; loss; bias)

end

end pro
edure.

The following pro
edure Evaluate BV provides an out-of-bag estimate of the bias{varian
e

de
omposition of the error for a given model. The fun
tion jjzjj is equal to 1 if z is true, and

0 otherwise. E

x

[Q(x)℄ represents the expe
ted value of Q(x) with respe
t to the random

variable x.

Pro
edure [ls; bs; var℄ Evaluate BV (F; T )

Input:

- Set F = ff

b

g

B

b=1

of models trained on bootstrapped data

- Set T = fT

b

g

B

b=1

of out-of-bag data sets

Output:

- Out-of-bag estimate of the loss ls of model F

- Out-of-bag estimate of the bias bs of model F

- Out-of-bag estimate of the net varian
e var

of model F

begin pro
edure

for ea
h x 2 [

b

T

b

begin

K = jfT

b

jx 2 T

b

; 1 � b � Bgj

p

1

(x) =

1

K

P

B

b=1

jj(x 2 T

b

) and (f

b

(x) = 1)jj

p

�1

(x) =

1

K

P

B

b=1

jj(x 2 T

b

) and (f

b

(x) = �1)jj

y

m

= argmax(p

1

; p

�1

)

B(x) =

�

�

y

m

�t

2

�

�

V

u

(x) =

1

K

P

B

b=1

jj(x 2 T

b

) and (B(x) = 0)

and (y

m

6= f

b

(x))jj

V

b

(x) =

1

K

P

B

b=1

jj(x 2 T

b

) and (B(x) = 1)

and (y

m

6= f

b

(x))jj

V

n

(x) = V

u

(x)� V

b

(x)

Err(x) = B(x) + V

n

(x)

end

ls = E

x

[Err(x)℄

bs = E

x

[B(x)℄

var = E

x

[V

n

(x)℄

end pro
edure.
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Even if the bias{varian
e de
omposition of the error error 
ould be, in prin
iple, evaluated

using other methods, su
h as multiple hold-out sets or 
ross-validation, the out-of-bag

estimation is 
heaper and allows us to exploit all the available data without separating

the learning set in a training and a validation data set. Moreover the bias estimated for a

single learning ma
hine 
orresponds to the estimated error of the bagged ensemble having

the same learning ma
hine as base learner.

6.3.2 The Model sele
tion pro
edure

After the estimate of the bias{varian
e de
omposition of the error for di�erent models, we

need to sele
t the model with the lowest bias. This pro
edure 
hooses in a straightforward

way the learning parameters 
orresponding to the model with the lowest estimated bias

and loss.

Pro
edure [�

B

; �

L

; B

min

; L

min

; B

L

min

℄ Sele
t model (V )

Input:

- Set V of triplets (�; loss; bias), where loss and bias are the estimated loss and bias of

the model trained through the learning algorithm L with algorithm parameters �.

Output:

- Learning parameter �

B


orresponding to the model with the estimated minimum bias

- Learning parameter �

L


orresponding to the model with the estimated minimum loss

- Minimum B

min

of the bias values 
olle
ted in V

- Minimum L

min

of the loss values 
olle
ted in V

- Bias B

L

min


orresponding to the minimum loss L

min

begin pro
edure

L

min

= min

v2V

v:loss

B

min

= min

v2V

v:bias

�

L

= v:� s.t. v:loss = L

min

�

B

= v:� s.t. v:bias = B

min

B

L

min

= v:bias s.t. v:loss = L

min

end pro
edure.

6.3.3 The overall Lobag algorithm

Using the pro
edure BV de
omposition we 
an implement a version of the Lobag algorithm

that exhaustively explores a given set of learning parameters in order to build a low bias

bagged ensemble.

Using out-of-bag estimate of the bias{varian
e de
omposition of the error, the pro
edure

Sele
t model sele
ts the model with the minimum bias and/or minimum loss and returns
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the parameter values �

B

and �

L

that 
orrespond respe
tively to the model with minimum

bias and minimum loss. Then the Lobag and bagged ensembles are 
hosen through the

pro
edure Sele
t ensemble: the Lobag ensemble has base learners with the minimum

estimated bias, while the bagged ensemble has base learners with the minimum estimated

loss.

Algorithm Lobag exhaustive

Input:

- Learning algorithm L

- Set of algorithm parameters A

- Data set D

- Number of bootstrap samples B

Output:

- Sele
ted Lobag ensemble : F

Lob

= ff

b

�

B

g

B

b=1

- Sele
ted bagged ensemble : F

Bag

= ff

b

�

L

g

B

b=1

- Oob error of the Lobag ensemble : B

min

- Oob error of the bagged ensemble : B

L

min

- Oob error of the single model : L

min

begin algorithm

V = ;

F = ;

[V;F ℄ = BV de
omposition (L;A;D; B)

[�

B

; �

L

; B

min

; L

min

; B

L

min

℄ = Sele
t model (V )

F

Lob

= ff

b

�

B

g

B

b=1

= Sele
t ensemble (F , �

B

)

F

Bag

= ff

b

�

L

g

B

b=1

= Sele
t ensemble (F , �

L

)

end algorithm.

In order to speed up the 
omputation, we 
ould design variants of the exhaustive Lobag

algorithm. For example, we 
ould apply multidimensional sear
h methods, su
h as the

Powell's method [149℄, to sele
t the tuning values that minimize bias.

Lobag presents several limitations. Su
h as 
lassi
al bagging it is only an approximation of

random aggregating: there is no guarantee of 
an
eled net-varian
e. Moreover if varian
e

is small, we 
annot expe
t a signi�
ant de
rement of the error. For data sets where the

minimum of the bias and loss are a
hieved for the same learning parameters, lobag 
annot

improve bagging.

6.3.4 Multiple hold-out Lobag algorithm

This pro
edure shows how to apply lobag in a multiple-hold-out experimental setting,

that is when multiple random splits of the data in a separated training and test set are
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provided, in order to redu
e the e�e
t of a parti
ular split of the data on the evaluation of

the generalization performan
e of learning ma
hines.

Algorithm Multiple hold-out Lobag

Input:

- Learning algorithm L

- Set of algorithm parameters A

- Data set S

- Number of bootstrap samples B

- Number of splits n

Output:

- Oob estimate of the error of the Lobag ensemble : B

min

- Oob estimate of the error of the bagged ensemble : B

L

min

- Oob estimate of the error of the single model : L

min

- Hold-out estimate of the error of the Lobag ensemble : L

lobag

- Hold-out estimate of the error of the bagged ensemble : L

bag

- Hold-out estimate of the error of the single model : L

single

begin algorithm

for ea
h i from 1 to n

begin

V

i

= ;

F

i

= ;

[D

i

; T

i

℄ = Split(S)

[V

i

;F

i

℄ = BV de
omposition (L;A; D

i

; B)

end

for ea
h � 2 A

begin

loss =

1

n

P

n

i=1

(v:lossjv 2 V

i

, v:� = �)

bias =

1

n

P

n

i=1

(v:biasjv 2 V

i

, v:� = �)

V = V [ (�; loss; bias)

end

[�

B

; �

L

; B

min

; L

min

; B

L

min

℄ = Sele
t model (V )

for ea
h i from 1 to n

begin

F

i

Lob

= ff

i;b

�

B

g

B

b=1

= Sele
t ensemble (F

i

, �

B

)

F

i

Bag

= ff

i;b

�

L

g

B

b=1

= Sele
t ensemble (F

i

, �

L

)

end

L

single

= Cal
 avg loss(ff

i

�

L

g

n

i=1

; fT

i

g

n

i=1

)

L

bag

= Cal
 avg loss(fF

i

Bag

g

n

i=1

; fT

i

g

n

i=1

)

L

lobag

= Cal
 avg loss(fF

i

Lob

g

n

i=1

; fT

i

g

n

i=1

)

end algorithm
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The algorithm generates the lobag ensemble using multiple splits of a given data set S

(pro
edure Split) in a separated learning D

i

and test T

i

sets. On ea
h learning set D

i

it is performed an out-of-bag estimate of the bias{varian
e de
omposition of the error

(pro
edure BV de
omposition, Se
t. 6.3.1). The bias and the loss for ea
h model are

evaluated averaging the estimated bias and loss over ea
h training set D

i

. Then the

SVMs with parameter �

B

that 
orresponds to the minimum estimated bias are sele
ted

as base learners for the Lobag ensemble (pro
edure Sele
t model). Lobag and bagged

ensembles are built through the pro
edure Sele
t ensemble, and the loss L

lobag

of the

Lobag ensemble is estimated averaging the error of the n ensembles fF

i

Lob

g

n

i=1

over the

test sets fT

i

g

n

i=1

, where F

i

Lob

= ff

i;b

�

B

g

B

b=1

, and the f

i;b

�

B

is the SVM trained on the b

th

bootstrap sample obtained from the i

th

training set D

i

using the learning parameter �

B

.

The algorithm provides an hold-out estimate of the generalization error of the lobag and

bagged ensembles, averaging between the resulting loss on the di�erent test sets T

i

. The

pro
edure Cal
 avg loss simply returns the average of the loss of the ensemble tested on

di�erent test sets:

Pro
edure [Err℄ Cal
 avg loss (ff

i

g

n

i=1

; fT

i

g

n

i=1

)

Input arguments:

- Set (ff

i

g

n

i=1

of the models trained on the di�erent SnT

i

learning sets

- Set fT

i

g

n

i=1

of the multiple hold-out test sets T

i

Output:

- Estimated average loss Err

begin pro
edure

Err = 0

for ea
h i from 1 to n

begin

e = f

i

(T

i

)

Err = Err + e

end

Err = Err=n

end pro
edure.

6.3.5 Cross-validated Lobag algorithm

This pro
edure applies the lobag algorithm in the experimental framework of 
ross-validation.

Algorithm Cross-validated Lobag

Input:
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- Learning algorithm L

- Set of algorithm parameters A

- Data set D

- Number of bootstrap samples B

- Number of folds n

Output:

- Oob estimate of the error of the Lobag ensemble : B

min

- Oob estimate of the error of the bagged ensemble : B

L

min

- Oob estimate of the error of the single model : L

min

- Cross-validated estimate of the error of the Lobag ensemble : L

lobag

- Cross-validated estimate of the error of the bagged ensemble : L

bag

- Cross-validated estimate of the error of the single model : L

single

begin algorithm

fD

i

g

k

i=1

= Generate folds (D; k)

for ea
h i from 1 to n

begin

V

i

= ;

F

i

= ;

[V

i

;F

i

℄ = BV de
omposition (L;A;DnD

i

; B)

end

for ea
h � 2 A

begin

loss =

1

n

P

n

i=1

(loss of the element v 2 V

i

s.t. v:� = �)

bias =

1

n

P

n

i=1

(bias of the element v 2 V

i

s.t. v:� = �)

V = V [ (�; loss; bias)

end

[�

B

; �

L

; B

min

; L

min

; B

L

min

℄ = Sele
t model (V )

for ea
h i from 1 to n

begin

F

i

Lob

= ff

i;b

�

B

g

B

b=1

= Sele
t ensemble (F

i

, �

B

)

F

i

Bag

= ff

i;b

�

L

g

B

b=1

= Sele
t ensemble (F

i

, �

L

)

end

L

single

= Cal
 avg loss(ff

i

�

L

g

n

i=1

; fD

i

g

n

i=1

)

L

bag

= Cal
 avg loss(fF

i

Bag

g

n

i=1

; fD

i

g

n

i=1

)

L

lobag

= Cal
 avg loss(fF

i

Lob

g

n

i=1

; fD

i

g

n

i=1

)

end algorithm

The sele
tion of the lobag ensemble is performed through a 
ross-validated out-of-bag

estimate of the bias{varian
e de
omposition of the error. The data set is divided in k

separated folds through the pro
edure Generate folds. The oob estimate of the bias{
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varian
e de
omposition of the error is performed on ea
h fold, and the overall estimate

of bias and loss are 
omputed averaging over the di�erent folds. The algorithm provides

also a 
ross-validated estimate of the generalization error of the resulting lobag and bagged

ensembles (pro
edure Cal
 avg loss).

6.3.6 A heterogeneous Lobag approa
h

Using 
ross-validation or multiple hold-out te
hniques to evaluate the error, instead of

using the "best" low bias model, obtained averaging the bias over all the folds or the

di�erent splits of the data, we 
ould sele
t ea
h time the model with the lowest bias for

ea
h fold/split. In this way we 
ould in prin
iple to obtain di�erent models, ea
h one

well-tuned for a spe
i�
 fold/split.

Then we 
ould 
ombine them by majority or weighted voting, or we 
ould 
ombine them

by multiple bootstrap aggregating in order to lower the varian
e. A

ording to this se
ond

approa
h, we 
ould bag ea
h model sele
ted on ea
h di�erent fold/split 
ombining the

di�erent ensembles by majority or weighted voting. We 
ould also introdu
e a se
ond-

level meta-learner in order to 
ombine the base learners and the ensembles. This general

approa
h 
ould introdu
e diversity in the ensemble, while preserving at the same time the

a

ura
y of the di�erent "heterogeneous" base learners.

6.4 Experiments with lobag

We performed numeri
al experiments on di�erent data sets to test the Lobag ensemble

method using SVMs as base learners. We 
ompared the results with single SVMs and


lassi
al bagged SVM ensembles.

6.4.1 Experimental setup

We employed 7 di�erent two-
lass data sets, both syntheti
 and \real". We sele
ted two

syntheti
 data sets (P2 and a two-
lass version ofWaveform) and 5 \real" data sets (Grey-

Landsat, Letter, redu
ed to the two-
lass problem of dis
riminating between the letters B

and R, Letter with added 20% noise, Spam, and Musk). Most of them are from the UCI

repository [135℄.

We applied two di�erent experimental settings, using the same data sets, in order to


ompare lobag, 
lassi
al bagging and single SVMs.

At �rst, we employed smallD training sets and large test T sets in order to obtain a reliable
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Table 6.1: Results of the experiments using pairs of train D and test T sets. E

lobag

, E

bag

and E

SVM

stand respe
tively for estimated error of lobag, bagged and single SVMs on

the test set T . The three last 
olumns show the 
on�den
e level a

ording to the M


Nemar test. L=B, L=S and B=S stand respe
tively for the 
omparison Lobag/Bagging,

Lobag/Single SVM and Bagging/Single SVM. If the 
on�den
e level is equal to 1, no

signi�
ant di�eren
e is registered.

Kernel E

lobag

E

bag

E

single

Con�den
e level

type L=B L=S B=S

Data set P2

Polyn. 0.1735 0.2008 0.2097 0.001 0.001 0.001

Gauss. 0.1375 0.1530 0.1703 0.001 0.001 0.001

Data set Waveform

Linear 0.0740 0.0726 0.0939 1 0.001 0.001

Polyn. 0.0693 0.0707 0.0724 1 0.1 0.1

Gauss. 0.0601 0.0652 0.0692 0.001 0.001 0.001

Data set Grey-Landsat

Linear 0.0540 0.0540 0.0650 1 0.001 0.001

Polyn. 0.0400 0.0440 0.0480 1 0.1 1

Gauss. 0.0435 0.0470 0.0475 0.1 0.1 1

Data set Letter-Two

Linear 0.0881 0.0929 0.1011 1 0.025 0.05

Polyn. 0.0701 0.0717 0.0831 1 0.05 0.1

Gauss. 0.0668 0.0717 0.0799 1 1 1

Data set Letter-Two with added noise

Linear 0.3535 0.3518 0.3747 1 1 0.1

Polyn. 0.3404 0.3715 0.3993 1 0.05 0.1

Gauss. 0.3338 0.3764 0.3829 0.05 0.025 1

Data set Spam

Linear 0.1408 0.1352 0.1760 0.05 0.001 0.001

Polyn. 0.0960 0.1034 0.1069 0.1 0.025 1

Gauss. 0.1130 0.1256 0.1282 0.005 0.001 1

Data set Musk

Linear 0.1291 0.1291 0.1458 1 0.001 0.001

Polyn. 0.1018 0.1157 0.1154 0.001 0.001 1

Gauss. 0.0985 0.1036 0.0936 0.05 1 0.05

estimate of the generalization error: the number of examples for D was set to 100, while

the size of T ranged from a few thousands for the \real" data sets to ten thousands for

syntheti
 data sets. Then we applied the Lobag algorithm des
ribed in Se
t. 6.3, setting the
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number of samples bootstrapped from D to 100, and performing an out-of-bag estimate of

the bias{varian
e de
omposition of the error. The sele
ted lobag, bagged and single SVMs

were �nally tested on the separated test set T .

Then, using a di�erent experimental set-up, we divided the data into a separated training

D and test T sets. We then drew 30 data sets D

i

from D, ea
h 
onsisting of 100 examples

drawn uniformly with repla
ement. Then we applied the lobag algorithm des
ribed in

Se
t. 6.3 to ea
h of the D

i

, setting the number of examples bootstrapped from ea
h D

i

to

100, and averaging both the out-of-bag estimation of the error and the error estimated on

the separated test sets T .

We developed new C++ 
lasses and appli
ations using the NEURObje
ts library [185℄ to

implement the lobag algorithm and to analyze the results.

6.4.2 Results

Table 6.1 shows the results of the experiments with small D training sets and large T test

sets. We measured 20 out
omes for ea
h method: 7 data sets, and 3 kernels (gaussian,

polynomial, and dot-produ
t) applied to ea
h data set ex
ept P2 for whi
h we did not apply

the dot-produ
t kernel (be
ause it was obviously inappropriate). For ea
h pair of methods,

we applied M
Nemar test [42℄ to determine whether there was a signi�
ant di�eren
e in

predi
tive a

ura
y on the test set.

On nearly all the data sets, both bagging and Lobag outperform the single SVMs inde-

pendently of the kernel used. The null hypothesis that Lobag has the same error rate as a

single SVM is reje
ted at or below the 0.1 signi�
an
e level in 17 of the 20 
ases. Similarly,

the null hypothesis that bagging has the same error rate as a single SVM is reje
ted at or

below the 0.1 level in 13 of the 20 
ases.

Most importantly, Lobag generally outperforms standard bagging. Lobag is statisti
ally

signi�
antly better than bagging in 9 of the 20 
ases, and signi�
antly inferior only on
e.

These experiments are also shown graphi
ally in Fig. 6.1. In this �gure, ea
h pair of points

(joined by a line) 
orresponds to one of the 20 
ases. The x 
oordinate of the point is the

error rate of Lobag, the y 
oordinate is the error rate of either a single SVM (for the \star"

shapes) or of standard bagging (for the \+" shapes). The line y = x is plotted as well.

Points above the line 
orrespond to 
ases where Lobag had a smaller error rate. In most


ases, the \star" is above the \+", whi
h indi
ates that bagging had lower error than a

single SVM.

Tab 6.2 summarizes the results of the 
omparison between bagging, lobag and single SVMs,

a

ording to the se
ond experimental set-up (Se
t. 6.4.1), using dire
tly the out-of-bag

estimate of the generalization error, averaged over the 30 di�erent splits of the data. On
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Figure 6.1: Graphi
al 
omparison of Lobag, bagging, and single SVM.

all the data sets both bagging and lobag outperform the single SVM, independently of

the kernel used. The null hypothesis (no di�eren
e between the 
onsidered 
lassi�ers), is

reje
ted at a 0:01 
on�den
e level a

ording to the resampled paired t test.

Moreover Lobag 
ompares favorably to bagging. The average relative error redu
tion

with respe
t to single SVMs is about 23 % for lobag and 18 % for bagged ensembles

of SVMs. Using SVMs with gaussian kernels as base learners the di�eren
e of a

ura
y

between lobag and bagging is signi�
ant at 0:01 
on�den
e level on all the 7 data sets.

We a
hieve the same results with polynomial kernels, ex
ept for the Grey-Landsat data

set, where the di�eren
e is signi�
ant only at 0:05 level. With linear kernels there is no

signi�
ant statisti
al di�eren
e in the data sets Waveform, Grey-Landsat and Musk. Using

the separated test sets to evaluate the generalization error, the di�eren
es between bagging,

lobag and also single SVMs be
ome less signi�
ant, but also in this 
ase lobag slightly tends

to outperform bagging.

The out
omes of the se
ond experimental approa
h 
on�rm the results of the �rst one,

even if they must be 
onsidered with 
aution, as the resampled t test su�ers of a relatively

large type I error, and 
onsequently it 
an in
orre
tly dete
t a di�eren
e when no di�eren
e

exists [42℄.

The results show that despite the ability of SVMs to manage the bias{varian
e tradeo�,
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Table 6.2: Comparison of the results between lobag, bagging and single SVMs. E

lobag

, E

bag

and E

SVM

stand respe
tively for average error of lobag, bagging and single SVMs. r.e.r.

stands for relative error redu
tion between lobag and single SVMs and between bagging

and single SVMs.

Kernel E

lobag

E

bag

E

SVM

r:e:r r:e:r

type L=S B=S

Data set P2

Polynomial 0.1593 � 0.0293 0.1753 � 0.0323 0.2161 � 0.0321 26.28 18.88

Gaussian 0.1313 � 0.0337 0.1400 � 0.0367 0.1887 � 0.0282 30.41 25.80

Data set Waveform

Linear 0.0713 � 0.0312 0.0716 � 0.0318 0.0956 � 0.0307 25.41 25.10

Polynomial 0.0520 � 0.0210 0.0597 � 0.0214 0.0695 � 0.0200 25.17 14.10

Gaussian 0.0496 � 0.0193 0.0553 � 0.0204 0.0668 � 0.0198 25.74 17.21

Data set Grey-Landsat

Linear 0.0483 � 0.0252 0.0487 � 0.0252 0.0570 � 0.0261 15.26 14.56

Polynomial 0.0413 � 0.0252 0.0430 � 0.0257 0.0472 � 0.0257 12.50 8.89

Gaussian 0.0360 � 0.0209 0.0390 � 0.0229 0.0449 � 0.0221 19.82 13.14

Data set Letter-Two

Linear 0.0890 � 0.0302 0.0930 � 0.0310 0.1183 � 0.0281 24.76 21.38

Polynomial 0.0616 � 0.0221 0.0656 � 0.0247 0.0914 � 0.0233 32.60 28.22

Gaussian 0.0553 � 0.0213 0.0597 � 0.0238 0.0875 � 0.0244 36.80 31.77

Data set Letter-Two with added noise

Linear 0.2880 � 0.0586 0.2993 � 0.0604 0.3362 � 0.0519 14.34 10.97

Polynomial 0.2576 � 0.0549 0.2756 � 0.0633 0.3122 � 0.0502 17.49 11.72

Gaussian 0.2580 � 0.0560 0.2706 � 0.0607 0.3064 � 0.0512 15.79 11.68

Data set Spam

Linear 0.1273 � 0.0374 0.1353 � 0.0400 0.1704 � 0.0423 25.29 20.59

Polynomial 0.1073 � 0.0379 0.1163 � 0.0400 0.1407 � 0.0369 23.74 17.34

Gaussian 0.1120 � 0.0352 0.1190 � 0.0380 0.1392 � 0.0375 19.54 14.51

Data set Musk

Linear 0.1250 � 0.0447 0.1250 � 0.0447 0.1612 � 0.0446 22.45 22.45

Polynomial 0.0960 � 0.0331 0.1070 � 0.0364 0.1295 � 0.0357 25.87 17.37

Gaussian 0.0756 � 0.0252 0.0793 � 0.0253 0.0948 � 0.0247 20.25 16.35

SVM performan
e 
an generally be improved by bagging, at least for small training sets.

Furthermore, the best way to tune the SVM parameters is to adjust them to minimize bias

and then allow bagging to redu
e varian
e.
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6.5 Appli
ation of lobag to DNAmi
roarray data anal-

ysis

As an appli
ation of Lobag to "real world" problems, we 
onsider a 
hallenging 
lassi�
ation

problem in fun
tional bioinformati
s. In parti
ular we applied Lobag to the analysis of

DNA mi
roarray data, in order to preliminary evaluate the e�e
tiveness of the proposed

ensemble method to small-sized and high-dimensional data, 
hara
terized also by a large

biologi
al variability.

DNA hybridization mi
roarrays [57, 127℄ supply information about gene expression through

measurements of mRNA levels of a large amount of genes in a 
ell. After extra
ting mRNA

samples from the 
ells, preparing and marking the targets with 
uores
ent dyes, hybridizing

with the probes printed on the mi
roarrays and s
anning the mi
roarrays with a laser

beam, the obtained TIFF images are pro
essed with image analysis 
omputer programs to

translate the images into sets of 
uores
ent intensities proportional to the mRNA levels of

the analyzed samples. After prepro
essing and normalization stages, gene expression data

of di�erent 
ells or di�erent experimental/fun
tional 
onditions are 
olle
ted in matri
es

for numeri
al pro
essing: ea
h row 
orresponds to the gene expression levels of a spe
i�


gene relative to all the examples, and ea
h 
olumn 
orresponds to the expression data of

all the 
onsidered genes relative to a spe
i�
 
ell example. Typi
ally thousands of genes

are used and analyzed for ea
h mi
roarray experiment.

Several supervised methods have been applied to the analysis of 
DNA mi
roarrays and

high density oligonu
leotide 
hips. These methods in
lude de
ision trees, Fisher linear

dis
riminant, multi-layer per
eptrons (MLP), nearest-neighbors 
lassi�ers, linear dis
rim-

inant analysis, Parzen windows and others [22, 53, 75, 101, 146℄. In parti
ular Support

Ve
tor Ma
hines are well suited to manage and 
lassify high dimensional data [188℄, as

mi
roarray data usually are, and have been re
ently applied to the 
lassi�
ation of normal

and malignant tissues using dot-produ
t (linear) kernels [67℄, or polynomial and gaussian

kernels in order to 
lassify normal and tumoural tissues [179℄. These types of kernels have

also been su

essfully applied to the separation of fun
tional 
lasses of yeast genes using

mi
roarray expression data [22℄.

Furthermore, ensembles of learning ma
hines are well-suited for gene expression data anal-

ysis, as they 
an redu
e the varian
e due to the low 
ardinality of the available training

sets, and the bias due to spe
i�
 
hara
teristi
s of the learning algorithm [43℄. Indeed,

in re
ent works, 
ombinations of binary 
lassi�ers (one-versus-all and all-pairs) and Error

Corre
ting Output Coding (ECOC) ensembles of MLP, as well as ensemble methods based

on resampling te
hniques, su
h as bagging and boosting, have been applied to the analysis

of DNA mi
roarray data [194, 158, 54, 178, 186℄.
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6.5.1 Data set and experimental set-up.

We used DNA mi
roarray data available on-line. In parti
ular we used the GCM data set

obtained from the Whitehead Institute, Massa
husetts Institute of Te
hnology Center for

Genome Resear
h [158℄. It is 
onstituted of 300 human normal and tumor tissue spe
imens

spanning 14 di�erent malignant 
lasses. In parti
ular it 
ontains 190 tumoral samples

pertaining to 14 di�erent 
lasses, plus other 20 poorly di�erentiated tumor samples and 90

normal samples.

We grouped together the 14 di�erent tumor 
lasses and the poorly di�erentiated tumor

samples to redu
e the multi-
lass 
lassi�
ation problem to a di
hotomy in order to separate

normal from malignant tissues. The 300 samples sequentially hybridized to oligonu
leotide

mi
roarrays 
ontain a total of 16063 probe sets (genes or ESTs) and we performed a

strati�ed random splitting of these data in a training and test set of equal size. We

prepro
essed raw data using thresholding, �ltering and normalizationmethods as suggested

in [158℄. Performan
es of Lobag ensembles of SVMs were 
ompared with a standard bagging

approa
h and with single SVMs, using subsets of genes sele
ted through a simple feature-

�ltering method.

6.5.2 Gene sele
tion.

We used a simple �lter method, that is a gene sele
tion method applied before and indepen-

dently of the indu
tion algorithm, originally proposed in [75℄. The mean gene expression

value a
ross all the positive (�

+

) and negative (�

�

) examples are 
omputed separately for

ea
h gene, together with their 
orresponding standard deviations (�

+

and �

�

). Then the

following statisti
 (a sort of signal-to-noise ratio) 


i

is 
omputed:




i

=

�

+

� �

�

�

+

+ �

�

(6.2)

The larger is the distan
e between the mean values with respe
t to the sum of the spread of

the 
orresponding values, more related is the gene to the dis
rimination of the positive and

negative 
lasses. Then the genes are ranked a

ording to their 


i

value, and the �rst and last

m genes are sele
ted. The main problem of this approa
h is the underlying independen
e

assumption of the expression patterns of ea
h gene: indeed it fails in dete
ting the role of


oordinately expressed genes in 
ar
inogeni
 pro
esses. Eq. 6.2 
an also be used to 
ompute

the weights for weighted gene voting [75℄, a minor variant of diagonal linear dis
riminant

analysis [54℄.

With the GCM data set we applied a permutation test to automati
ally sele
t a set of

marker genes. It is a gene-spe
i�
 variant of the neighborhood analysis proposed in [75℄:
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1. Cal
ulate for ea
h gene the signal-to-noise ratio (eq. 6.2)

2. Perform a gene-spe
i�
 random permutation test:

(a) Generate n random permutations of the 
lass labels 
omputing ea
h time the

signal-to-noise ratio for ea
h gene.

(b) Sele
t a p signi�
an
e level (e.g. 0 < p < 0:1)

(
) If the randomized signal-to-noise ratio is larger than the a
tual one in less than

p � n random permutations, sele
t that gene as signi�
ant for dis
rimination at

p signi�
an
e level.

This is a simple method to estimate the signi�
an
e of the mat
hing of a given phenotype

to a parti
ular set of marker genes: its time 
omplexity is O(nd), where n is the number

of examples and d the number of features (genes). Moreover the permutation test is dis-

tribution independent: no assumptions about the fun
tional form of the gene distribution

are supposed.

6.5.3 Results.

Using the above gene-spe
i�
 neighborhood analysis, we sele
ted 592 genes 
orrelated with

tumoral examples (p = 0:01) (set A) and about 3000 genes 
orrelated with normal examples

(p = 0:01) (set B). Then we used the genes of set A and the 592 genes with highest signal-

to-noise ratio values of set B to assemble a sele
ted set 
omposed by 1184 genes. The results

of the 
lassi�
ations with single SVMs, with and without gene sele
tion are summarized

in Tab. 6.3.

Table 6.3: GCM data set: results with single SVMs

Kernel type Err:all Err:sel: Relative

and parameters genes genes err:red:

Dot-produ
t, C=20 0.2600 0.2279 12.31 %

Polynomial, deg=6 C=5 0.7000 0.2275 |-

Polynomial, deg=2 C=10 0.6900 0.2282 |-

Gaussian, �=2 C=50 0.3000 0.2185 27.33 %

There is a signi�
ant in
rement in a

ura
y using only a sele
ted subset of genes for 
las-

si�
ation. A

ording to the M
Nemar test [44℄, in all 
ases there is a statisti
al signi�
ant
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di�eren
e at 0:05 
on�den
e level between SVMs trained with and without feature sele
-

tion. Polynomial kernels without feature sele
tion fail to 
lassify normal from malignant

tissues.

Tab. 6.4 summarizes the results of bagged SVMs on the GCM data set. Even if not always

Table 6.4: GCM data set: 
ompared results of single and bagged SVMs

Kernel type Error Error Relative

and parameters SVMs bagged err:red:

Dot-produ
t, C=10 0.2293 0.2200 4.06 %

Dot-produ
t, C=20 0.2279 0.2133 6.41 %

Polynomial, degree=6 C=5 0.2275 0.2000 12.09 %

Polynomial, degree=2 C=10 0.2282 0.2133 6.53 %

Gaussian, sigma=2 C=50 0.2185 0.2067 5.40 %

Gaussian, sigma=10 C=200 0.2233 0.2067 7.44 %

there is a statisti
al signi�
ant di�eren
e (a

ording to M
 Nemar test) between single and

bagged SVMs, in all 
ases bagged ensembles of SVMs outperform single SVMs. The degree

of enhan
ement depends heavily on the possibility to redu
e the varian
e 
omponent of

the error, as bagging is mainly a varian
e-redu
tion ensemble method.

Indeed, performing a bias{varian
e analysis of the error of single SVMs on the GCM

data set, we note that bias largely overrides the varian
e 
omponents of the error, and

in this 
ase we 
annot expe
t a very large redu
tion of the error with bagging (Fig. 6.2).

Nonetheless we 
an see that both with linear SVMs (Fig. 6.2 a), polynomial (Fig. 6.2 b),

and gaussian (Fig. 6.2 
) SVMs, the minimum of the estimated error and the estimated

bias are a
hieved for di�erent learning parameters, showing that in this 
ase Lobag 
ould

improve the performan
e, even if we 
annot expe
t a large redu
tion of the overall error,

as the bias largely dominates the varian
e 
omponent of the error (Fig. 6.2).

Indeed with Lobag the error is lowered, both with respe
t to single and bagged SVMs

(Tab. 6.5). As expe
ted, both bagged and lobag ensembles of SVMs outperform single

SVMs, but with lobag the redu
tion of the error is signi�
ant at 0:05 
on�den
e level,

a

ording to M
 Nemar's test, for all the applied kernels, while for bagging it is signi�
ant

only for the polynomial kernel. Moreover Lobag always outperforms bagging, even if the

error redu
tion is signi�
ant only if linear or polynomial kernels are used. Summarizing,

Lobag a
hieves signi�
ant enhan
ements with respe
t to single SVMs in analyzing DNA

mi
roarray data, and also lowers the error with respe
t to 
lassi
al bagging.

Even if these results seem quite en
ouraging, they must be 
onsidered only as preliminary,

and we need more experiments, using di�erent data sets and using more reliable 
ross-
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Figure 6.2: GCM data set: bias-varian
e de
omposition of the error in bias, net-varian
e,

unbiased and biased varian
e, while varying the regularization parameter with linear SVMs

(a), the degree with polynomial kernels (b), and the kernel parameter � with gaussian SVMs

(
).
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validated estimates of the error, in order to evaluate more 
arefully the appli
ability of

the lobag method to DNA mi
roarray data analysis. Moreover we need also to assess the

quality of the 
lassi�ers using for instan
e ROC 
urves or appropriate quality measures as

shown, for instan
e, in [76℄.

Table 6.5: GCM data set: 
ompared results of single, bagged and Lobag SVMs on gene ex-

pression data. An asterisk in the last three 
olumns points out that a statisti
al signi�
ant

di�eren
e is registered (p = 0:05) a

ording to the M
 Nemar test.

Kernel type Error Error Error Err:red: Err:red: Err:red:

SVMs bagged Lobag SVM� > bag SVM� > Lobag bag� > Lobag

Dot-produ
t 0.2279 0.2133 0.1933 6.41 % 15.18 % � 9.38 % �

Polynomial 0.2275 0.2000 0.1867 12.09 % � 17.93 % � 6.65 % �

Gaussian 0.2185 0.2067 0.1933 5.40 % 11.53 % � 6.48 %
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Con
lusions

Cosa volevo dire, non lo so,

per�o ho ragione, e i fatti,

mi 
osano.

Palmiro Cangini

Resear
h on ensemble methods fo
used on the 
ombination/aggregation of learning ma-


hines, while the spe
i�
 
hara
teristi
s of the base learners that build them up have been

only partially 
onsidered. On the 
ontrary we started from the learning properties and the

behavior of the learning algorithms used to generate the base predi
tors, in order to build

around them ensemble methods well-tuned to their learning 
hara
teristi
s.

To this purpose we showed that bias{varian
e theory provides a way to analyze the behavior

of learning algorithms and to explain the properties of ensembles of 
lassi�ers. Moreover

we showed that the analysis of the bias{varian
e de
omposition of the error 
an identify

the situations in whi
h ensemble methods might improve base learner performan
es.

We 
ondu
ted an extended bias{varian
e analysis of the error in single SVMs (Chap. 4),

bagged and random aggregated ensembles of SVMs (Chap. 5), involving training and test-

ing of over 10 million of SVMs, in order to gain insights into the way single and ensembles

of SVMs learn. To this purpose we developed pro
edures to measure bias and varian
e in


lassi�
ation problems a

ording to Domingos bias{varian
e theory.

In parti
ular we performed an analysis of bias and varian
e in single SVMs, 
onsidering

gaussian, polynomial, and dot{produ
t kernels. The relationships between parameters of

the kernel and bias, net{varian
e, unbiased and biased varian
e were studied, dis
overing

regular patterns and spe
i�
 trends. We provided a 
hara
terization of bias{varian
e de-


omposition of the error, showing that in gaussian kernels we 
an individuate at least three

di�erent regions with respe
t to the � (spread) parameter, while in polynomial kernels the

U shape of the error 
an be determined by the 
ombined e�e
ts of bias and unbiased vari-

an
e. The analysis also revealed that the expe
ted trade-o� between bias and varian
e

holds only for dot produ
t kernels, while other kernels showed more 
omplex relationships.

We dis
overed that the minimum of bias, varian
e and overall error are often a
hieved

152



for di�erent values of the regularization and kernel parameters, as a result of a di�erent

learning behavior of the trained SVM.

A

ording to Breiman's theoreti
al results, we showed that bagging 
an be interpreted as

an approximation of random aggregating, that is a pro
ess by whi
h base learners, trained

on samples drawn a

ordingly to an unknown probability distribution from the entire

universe population, are aggregated through majority voting or averaging their outputs.

These experiments showed that the theoreti
al property of a very large varian
e redu
tion

holds for random aggregating, while for bagging we registered a smaller redu
tion, but not

a total elimination as in random aggregating.

Bias{varian
e analysis in random aggregated SVM ensembles suggested also to aggregate

ensembles of SVMs for very large s
ale data mining problems using undersampled bagging.

Unfortunately, time was not suÆ
ient to follow this promising resear
h line.

On the basis of the information supplied by bias-varian
e analysis we proposed two resear
h

lines for designing ensembles of SVMs. The �rst one applies bias-varian
e analysis to 
on-

stru
t a heterogeneous, diverse set of low-bias 
lassi�ers. The se
ond presents an ensemble

method, that is Lobag, that sele
ts low bias base learners (well tuned - low bias SVMs)

and then 
ombines them through bagging. The key issue of the bias{varian
e evaluation is

performed through an eÆ
ient out-of-bag estimate of the bias{varian
e de
omposition of

the error. This approa
h a�e
ts both bias, through the sele
tion of low bias base learners,

and varian
e, through bootstrap aggregation of the sele
ted low bias base learners. Numer-

i
al experiments showed that low bias bagged ensembles of SVMs 
ompare favorably both

to single and bagged SVM ensembles, and preliminary experiments with DNA mi
roarray

data suggested that this approa
h might be e�e
tive with high-dimensional low sized data,

as gene expression data usually are.

Open questions, related to some topi
s only partially developed in this thesis, delineate

possible future works and developments.

In our resear
h planning, we pursued to exe
ute a bias{varian
e analysis for ensemble

methods based on resampling te
hniques. However we performed only a bias{varian
e

analysis in bagged SVMs, but we plan to perform the same analysis in boosted ensembles

of SVMs, in order to gain insights into the behavior of boosted SVMs with "strong" well-

tuned SVMs, 
omparing them with "weak" not-optimally-tuned SVMs.

We showed that bias{varian
e analysis is an e�e
tive tool to design new ensemble methods

tuned to spe
i�
 bias-varian
e 
hara
teristi
s of base learners. In parti
ular "strong" base

learners su
h as SVMs work well with lobag. We expe
t that this will be true for base

learners that exhibit relatively large varian
e and low bias, espe
ially with relatively small

data sets. Hen
e we plan to experiment with other low bias base learners (e.g. Multi Layer

Per
eptrons) in order to gain insights into their learning behavior and to evaluate if we 
an

apply them with Lobag or to evaluate if we 
an design other base learner spe
i�
 ensemble
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methods.

In order to speed-up the 
omputation, we plan to implement variants of the basi
 Lobag

algorithm. For instan
e we 
ould apply multidimensional sear
h methods, su
h as the

Powell method, to sele
t the tuning values that minimize bias.

In our experiments we did not 
onsider noise, but it is present in most real data sets. As a

result noise is embodied into bias, and bias itself is overestimated. Even if the evaluation of

noise in real data sets is an open problem, we plan to evaluate the role of noise in syntheti


and real data sets, in order to develop variants of lobag spe
i�
 for noisy data.

The pe
uliar 
hara
teristi
s of Lobag and the preliminary results relative to its appli
ation

to DNA mi
roarray data, en
ourage us to 
ontinue along this resear
h line (Se
t. 6.5). In

parti
ular we plan to perform an extended experimental analysis with high-dimensional

low-sized gene expression data, evaluating Lobag with respe
t to single SVMs (largely

applied in bioinformati
s) and to other ensemble methods (bagging and boosting, for in-

stan
e), assessing 
arefully the quality and the reliability of the 
lassi�ers

We provided only high-level algorithmi
 s
hemes for heterogeneous ensembles of SVMs

(Se
t. 6.1). We plan to design and implement these algorithms, possibly integrating this

approa
h with an expli
it evaluation of the diversity of the base learners, using measures

and approa
hes similar to those proposed by Kun
heva [121℄.

In our experiments with bagged and random aggregated ensembles of SVMs we used rela-

tively small and �xed sized bootstrap samples. A natural development of these experiments


ould be to expli
itly 
onsider the 
ardinality of the data, setting-up a series of experiments

with in
reasing number of examples for ea
h randomly drawn data set, in order to evaluate

the e�e
t of the sample size on bias, varian
e and instability of base learners.

Experiments with random aggregated ensembles of SVMs showed that we 
ould use un-

dersampled bagging with large data sets in order to obtain large redu
tion of the unbiased

varian
e, without signi�
ant in
rement in bias (Se
t. 5.4). We plan to develop this ap-

proa
h, also in relation with the above resear
h on the e�e
t of the 
ardinality of the data

in random aggregating. The main goal of this resear
h line is the development of ensemble

methods for very large data mining problems.

In our experiments we did not expli
itly 
onsider the 
hara
teristi
s of the data. Nonethe-

less, as we expe
ted and our experiments suggested, di�erent data 
hara
teristi
s in
uen
e

bias{varian
e patterns in learning ma
hines. To this purpose we plan to expli
itly analyze

the relationships between bias{varian
e de
omposition of the error and data 
hara
teris-

ti
s, using data 
omplexity measures based on geometri
al and topologi
al 
hara
teristi
s

of the data [126, 84℄.
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