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Relevant problems in molecular biology and 
medicine can be modeled through graphs

The node labeling and ranking problem in 
complex biological networks

Merging local and global learning strategies: the 
kernelized score functions algorithmic scheme

Analysis of huge biological networks with off-the-
shelf machines: results and perspectives
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Drug repositioning

Given a collection of molecules

Find a meaningful way to express a similarity between them (i.e. binary 

profiles indicating the presence/absence of substructures used as proxy for 

the computation of a global similarity score between each pair of 

molecules). 

 

(A) (B) (C)

-

-

Seed node, a marketed 
drug (i.e. anticonvulsant)

The most similar nodes 
(drugs) are candidates for 
the development of novel 
anticonvulsant drugs

Nodes: drugs
Edges: similarity bet-
            ween drugs
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Automated Function Prediction (AFP)

Given a collection of proteins. 

Find a meaningful way to express a similarity 

between them (i.e. binary profiles indicating the 

presence/absence of protein domains, 3D  

structure signatures, presence/absence of   

catalytic groups  used as proxy for the   

computation of a global similarity score between 

each pair of ptoreins). 

 

-

-

Seed node, associated to 
a functional vocabulary 
term (i.e. Gene Ontology)

The most similar nodes 
(proteins) are candidates 
for the association to the 
functional term associated 
to the seeds
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Disease gene networks

Given a collection of genes.  Build a network whose nodes (genes) are 

connected only if they are involved into disorders of the same class.

Goh K et al. PNAS 2007;104:8685-8690



Node labeling and ranking MLDM.it – AI*IA 2014, Pisa

Analysis of bio-molecular networks through semi-supervised graph-based learning methods                                G. Valentini

Graph Semi-Supervised Learning (GSSL) problem

     

?

?

?

?

G = <V,E >

S

U

w
ij

V : proteins,genes,drugs,...

E : functional 

similarities/relationships

W : similarity matrix

S :  labeled nodes

U :  unlabeled nodes

GOAL: predict labels for unlabeled nodes (labeling problem) or rank nodes 
with respect to the class to be predicted (ranking problem)
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State-of-the-art node labeling/ranking methods in 

computational biology

-  Guilt by association (Marcotte et al., 1999, Oliver et al. 2000)
-  Evaluation of functional flow in graphs (Vazquez et al. 2003)
-  Hopfield network-based methods (Karaoz et al. 2004, Bertoni et al. 
2011)
-  Local learning and weighed integration (Chua et al 2007)
-  Label propagation based on Markov fields (Deng et al. 2004)
-  Kernel methods for semi-supervised learning and integration of 
networks (Tsuda et al. 2005, Borgwardt et al. 2011)
-  Label propagation based on Gaussian random fields and ridge 
regression  (Mostafavi et al. 2008)
-  Random walk-based algorithms (Kohler et al., 2008, Bogdanov 
and Singh, 2010) 
- ... 
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Local learning strategy:

Guilt-by-association (Marcotte et al., 1999, Oliver et al. 2000) 
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Global learning strategy:

Exploitation of the overall network topology 

(Karaoz et al. 2004, Bengio et al. 2008, Borgwardt et al. 2011) 
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S AV (v,V C )=
1

∣V C∣
∑

x∈V C

K (v,x )

SkNN (v,V C )= ∑
x∈kNN (v )

K (v,x )

SNN (v,V C )=max x∈V C
K (v,x )

Average score :

kNN score :

NN score :

Kernel

Score function
Node

ranking

Global 
learning

Local 
learning

Any kernel. E.g.:
- Linear kernel
- Gaussian kernel
- Graph kernels

Kernelized score functions: putting together local 

and global learning strategies (Re et al. 2012)  
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Example of a kernel well-suited to capture the topology 

of the graph: the Random Walk Kernel (Smola and Kondor, 2003) 

1 - step RW kernel

q - step RW kernel

Normalized 
graph Laplacian
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Derivation of kernelized score functions

Score functions are used to rank  nodes in a undirected graph

A modular approach:
1. Select a distance - score function

2. Select a suitable kernel 
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Kernelized score functions: a picture of the ranking method

     
A positive
node

Augmented
connectivity
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Rank  drugs           w.r.t. to a given therapeutic category C

       Nodes → drugs
       Edges → similarities

V C⊂V

v∈V

● A network G=(V,E)  connecting a large set of drugs: 

● A subset                of drugs belonging to a given 
therapeutic category C

V C⊂V

Many strategies for drugs networks construction: pairwise 
chemical similarity, bipartite network projection (projection in 
drug space of drug-target networks : drugs connected if they 
target the same protein/s).  

M. Re, and G. Valentini, Network-based Drug Ranking and Repositioning with 
respect to DrugBank Therapeutic Categories, IEEE ACM Transactions on 
Computational Biology and Bioinformatics 10(6), pp. 1359-1371, Nov-Dec 2013 

Kernelized score functions : a drug repositioning case study



Our contribution MLDM.it – AI*IA 2014, Pisa

Analysis of bio-molecular networks through semi-supervised graph-based learning methods                                G. Valentini

Kernelized score functions: experiments

     
 1253 FDA approved drugs

 51 DrugBank therapeutic classes

 3 pharmacological networks:
- N

structSim 
: pairwise chemical similarity (Tanimoto 

coefficients)

- N
drugTarget

: projection from drug-target interactions 

(from DrugBank 3.0)

- N
drugChem

: projection from chemical interactions 

(from STITCH 2.0)

Problem: inhomogeneous coverage in the 3 
networks. Solution: networks integration.
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Kernelized score functions 

Network construction by bipartite network projection

 

Bipartite network 
(e.g. drug-target,

drug-drug interaction)

One-mode drug network

Drugs Targets



Our contribution MLDM.it – AI*IA 2014, Pisa

Analysis of bio-molecular networks through semi-supervised graph-based learning methods                                G. Valentini

Kernelized score functions: experiments

     High coverage                                         Low coverage   
100%        ........................................................       50%  

          N
structSim                                                    

N
drugTarget                                                       

N
drugChem

N
structSim    

→   W
1  

(1253 nodes, 13010 edges)

N
structSim   

+   N
drugTarget  

→   W
2  

(1253, 43827)

N
structSim   

+   N
drugTarget 

+  N
drugChem

 → W
3   

(1253, 96711)

NB: networks integration increase the connectivity!
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A view of the integrated pharmacological network
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Kernelized score functions: results (AUC)

     

Kernelized score functions with random walk kernels compared with Random Walk (RW) 
and Random Walk with Restart (RWR) algorithms:

 5-fold CV 
 Results averaged across 51 DrugBank therapeutic classes having more than 15 drugs:

 W
1
 → W

2
 → W

3
 : AUC increments are statistically significant (Wilcoxon rank 

sum test, α=0.01)
 S

AV
 and S

kNN
 significantly better than the other methods (Wilcoxon rank sum 

test, α=0.01)



Our contribution MLDM.it – AI*IA 2014, Pisa

Analysis of bio-molecular networks through semi-supervised graph-based learning methods                                G. Valentini

Kernelized score functions: Exploring deeply the integrated 
pharmacological space yields better results

     

     

Counts of the ”wins” across the 1254 therapeutic classes for the average score 
with 1, 2, 3, 5 and 10 steps random walk kernels
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Kern. score functions : a gene function prediction case study 

M. Re, M. Mesiti, and G. Valentini, “A Fast Ranking Algorithm for Predicting Gene Functions in 
Biomolecular Networks,” IEEE ACM Transactions on Computational Biology and Bioinformatics,
vol. 9, no. 6, pp. 1812–1818, 2012. 
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Kern. score functions : a gene disease prioritization case 
study 

G. Valentini, A. Paccanaro, H. Caniza, A. Romero, M. Re, An extensive analysis of disease-
gene associations using network integration and fast kernel-based gene prioritization methods, 
Artificial Intelligence in Medicine 61 (2) (2014)

Goals:

 An extensive analysis of gene-disease associations, 
considering a large set of diseases (708 MeSH diseases)

 Finding novel gene-disease associations for unannotated 
genes

 Analysis of the impact of network integration on gene 
prioritization 
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Analysis of the impact of network integration on gene prioritization 

.

.

.

Network
integration

Network
filtering

Integrated and 
filtered network

But also proper pre-processing and normalization 
of the networks is fundamental ...
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Analysis of the impact of network integration on gene prioritization 
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A relevant computational biology problem:
Multi-species protein function prediction

Can we predict the functions of proteins belonging to different 
species, by using graph based learning methods?

~520.000 species 
~90 millions of sequences 

UniprotKB/TrEMBL
(November 2014)

Can exisiting network-based 
learning algorithms scale 
with big protein networks?

How to construct multi-species 
functional networks?
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Possible approaches to the scalability problem

     

1) Parallel distributed 
computation

2) Secondary 
memory-based 
computation

- MapReduce framework (Dean 
and  Ghemawat, 2004)

- Distributed graph parallel learning 
(Gonzalez et al. 2012) 

Problems: 

- Partitioning graphs across cluster nodes is hard 
(Leskovec et al 2009)
-  Debugging and optimization is difficult
-  Requires cluster / cloud systems

-  Graph Database technologies 
     (Webber et al. 2012) 
-  Secondary memory-based systems for 
the analysis of big graphs (Kyrola et al. 
2014) 

Problems: 
- Design of novel data structures to store graphs on disks
- Efficient I/O operations and graph processing on disk
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Our approach to big biological network analysis

     

“Local” implementation

“disk-based” computation

analysis of big 
biological graphs  

on single PCs 
++ =

M. Mesiti, M. Re, G. Valentini Think globally and solve locally: secondary 
memory-based network learning for automated multi-species function 
prediction, GigaScience, 3:5, 2014
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“local” implementation of network-based algorithms

     

Disk DRAM

● We need DRAM to store only the neighborhood of a single node
● Vertex centric computational model: 
translate “global” network-based methods to “local” implementation

The problem is: can we express a global GSSL algorithm as an iterative 
computation involving each time only a single vertex and its neighborhood?
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An example: the classical random walk algorithm

     

pt+1=QT pt

Q=D−1W
W : weighted adjacency matrix of the graph
D : diagonal matrix with d ii=∑

j

w ij : the stochastic matrix

Probability update :

pi
t+1=Q i p

t=D−1W i p
t=∑

j

d jjw ji p j
t

Random walk: the classical algorithm in “global” version:

Random walk: the “local” vertex-centric implementation:

For each vertex i we need only its neighbours (at worst the ith column of W, 
the diagonal of D-1 and the probabilities computed at the previous iteration) 

But we need fast disk access ...
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GraphChi (Kyrola et al. 2012)

     GraphChi:
a disk-based system for the analysis 
of big graphs on a single PC

Methods for efficiently 
breaking large graphs 
into small parts

Efficient disk I/O. Small 
number of non sequential 
accesses to disk: 
PSW system

Efficient management 
of evolving graphs

Asynchronous model 
of computation
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Vertices split in P intervals.
For each interval: in-edges 
stored in a shard, sorted by out-
edges

To read each interval at most P 
non sequential reads (PSW 
method)

Multi-thread asynchronous 
computation in main mem.

Blocks written back to disk At most P2 non sequential 
reads/writes on disk/full pass 
on the graph

Parallel update of vertices and 
edges in the memory shards

R
E
A
D

E
X
E
C
W
R
I
T
E

GraphChi: Parallel Sliding Windows (PSW)  
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Experiments:
                                                             

- 13 organisms

- 202,442 proteins

- 25,132,538 edges 
- 50 classes

5 folds CV. Learning method: classical random walk. Implementations: GraphChi, 
Neo4j (a graph database)

Empirical time complexity :

server notebook

M. Mesiti, M. Re, G. Valentini Think 
globally and solve locally: secondary 
memory-based network learning for 
automated multi-species function 
prediction, GigaScience, 3:5, 2014
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Experiments: Comparison of multi-species and single 
species approaches
                                                              

-
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On going work on multi-species protein function 
prediction (MAFP) with kernelized score function
                                                             

Main goals:
Showing that MAFP can be exploited on off-the-shelf computers
Showing that multi-species functional prediction significantly 
improves on single species functional prediction.

1. GraphChi vertex-centric implementation of the 
kernelized score functions

2. Construction of a big network including all the 
core proteins of the STRING database:
- more than 400 organisms
- 1.5 millions of proteins
- hundreds of millions of edges 
- thousands of GO functional classes to be predicted
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Conclusions:

Semi-supervised graph-based methods are widely applied in several 
relevant problems in computational biology and  medicine

Kernelized score functions is a flexible algorithmic framework that can be 
applied in a broad range of interesting bioinformatics problems

Kernelized score functions and the others state-of-the-art semi-
supervised learning methods for biological network analysis are affected 
by serious scalability problems on big networks

Local implementation of  GSSL methods coupled with the usage of recent 
secondary memory technologies can make feasible GSSL tasks on very 
large (and dense) graphs, allowing novel biological insights from the 
analysis of bio-medical networks.
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Thank you for your attention!

And thanks also from Anacleto !
http://anacletolab.di.unimi.it
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