next up previous
Up: The clusterv R package: Previous: Download software and documentation


D. Achlioptas.
Database-friendly random projections.
In P. Buneman, editor, Proc. ACM Symp. on the Principles of Database Systems, Contemporary Mathematics, pages 274-281, New York, NY, USA, 2001. ACM Press.

A. Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, A. Rosenwald, J.C. Boldrick, H. Sabet, T. Tran, X. Yu, J.I. Powell, L. Yang, G.E. Marti, T. Moore, J. Hudson, L. Lu, D.B. Lewis, R. Tibshirani, G. Sherlock, W.C. Chan, T.C. Greiner, D.D. Weisenburger, J.O. Armitage, R. Warnke, R. Levy, W. Wilson, M.R. Grever, J.C. Byrd, D. Botstein, P.O. Brown, and L.M. Staudt.
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature, 403:503-511, 2000.

A. Ben-Hur, A. Ellisseeff, and I. Guyon.
A stability based method for discovering structure in clustered data.
In R.B. Altman, A.K. Dunker, L. Hunter, T. Klein, and K. Lauderdale, editors, Pacific Symposium on Biocomputing, volume 7, pages 6-17, Lihue, Hawaii, USA, 2002. World Scientific.

A. Bertoni and G. Valentini.
Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses.
Artificial Intelligence in Medicine, 37(2):85-109, 2006.

J.C. Bezdek.
Pattern recognition with fuzzy objective function algorithms.
New York, 1981.

A. Bhattacharjee, W.G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti, R. Bueno, M. Gillette, M. Loda, G. Weber, E.J. Mark, E.S. Lander, W. Wong, B.E. Johnson, T.R. Golub, D.J. Sugarbaker, and M. Meyerson.
Classification of human lung carcinoma by mRNA expression profiling reveals distinct adenocarcinoma subclasses.
PNAS, 98(24):13790-13795, 2001.

M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix, M. Radmacher, R. Simon, Z. Yakhini, A. Ben-Dor, N. Sampas, E. Dougherty, E. Wang, F. Marincola, C. Gooden, J. Lueders, A. Glatfelter, P. Pollock, J. Carpten, E. Gillanders, D. Leja, K. Dietrich, C. Beaudry, M. Berens, D. Alberts, and V. Sondak.
Molecular classification of malignant melanoma by gene expression profiling.
Nature, 406:536-540, 2000.

S. Dudoit and J. Fridlyand.
A prediction-based resampling method for estimating the number of clusters in a dataset.
Genome Biology, 3(7):1-21, 2002.

L. Dyrskjøt, T. Thykjaer, M. Kruhøffer, J. Jensen, N. Marcussen, S. Hamilton-Dutoit, H. Wolf, and T. Ørntoft.
Identifying distinct classes of bladder carcinoma using microarrays.
Nature Genetics, 33(jan.):90-96, 2003.

J.A. Hartigan and M.A. Wong.
A k-means clustering algorithm.
Applied Statistics, 28:100-108, 1979.

T.K. Ho.
The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832-844, 1998.

P. Indyk.
Algorithmic Applications of Low-Distortion Geometric Embeddings.
In Proceedings of the 42nd IEEE symposium on Foundations of Computer Science, pages 10-33, Washington DC, USA, 2001. IEEE Computer Society.

W.B. Johnson and J. Lindenstrauss.
Extensions of Lipshitz mapping into Hilbert space.
In Conference in modern analysis and probability, volume 26 of Contemporary Mathematics, pages 189-206. Amer. Math. Soc., 1984.

L. Kaufman and P.J. Rousseeuw.
Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley, New York, 1990.

B. King.
Step-wise clustering procedures.
J. Am. Stat. Assoc., 69:86-101, 1967.

J. Lapointe, C. Li, J.P. Higgins, M. van de Rijn, E. Bair, K. Montgomery, M. Ferrari, L. Egevad, W. Rayford, U. Bergerheim, P. Ekman, A.M. DeMarzo, R. Tibshirani, D. Botstein, P.O. Brown, J.D. Brooks, and J.R. Pollack.
Gene expression profiling identifies clinically relevant subtypes of prostate cancer.
PNAS, 101(3):811-816, 2004.

M. Shipp, K. Ross, P. Tamayo, A. Weng, J. Kutok, R. Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G. Pinkus, T. Ray, M. Koval, K. Last, A. Norton, T. Lister, J. Mesirov, D. Neuberg, E. Lander, J. Aster, and T. Golub.
Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning.
Nature Medicine, 8(1):68-74, 2002.

M. Smolkin and D. Gosh.
Cluster stability scores for microarray data in cancer studies.
BMC Bioinformatics, 36(4), 2003.

G. Valentini.
Clusterv: a tool for assessing the reliability of clusters discovered in DNA microarray data.
Bioinformatics, 22(3):369-370, 2006.

Giorgio 2006-08-16