next up previous
Up: The mosclust R package: Previous: Software download and documentation

Bibliography

1
D. Achlioptas.
Database-friendly random projections.
In P. Buneman, editor, Proc. ACM Symp. on the Principles of Database Systems, Contemporary Mathematics, pages 274-281, New York, NY, USA, 2001. ACM Press.

2
A. Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, A. Rosenwald, J.C. Boldrick, H. Sabet, T. Tran, X. Yu, J.I. Powell, L. Yang, G.E. Marti, T. Moore, J. Hudson, L. Lu, D.B. Lewis, R. Tibshirani, G. Sherlock, W.C. Chan, T.C. Greiner, D.D. Weisenburger, J.O. Armitage, R. Warnke, R. Levy, W. Wilson, M.R. Grever, J.C. Byrd, D. Botstein, P.O. Brown, and L.M. Staudt.
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature, 403:503-511, 2000.

3
A. Alizadeh et al.
The lymphochip: a specialized cDNA microarray for genomic-scale analysis of gene expression in normal and malignant lymphocytes.
In Cold Spring Harbor Symp. Quant. Biol., 2001.

4
A. Ben-Hur, A. Ellisseeff, and I. Guyon.
A stability based method for discovering structure in clustered data.
In R.B. Altman, A.K. Dunker, L. Hunter, T. Klein, and K. Lauderdale, editors, Pacific Symposium on Biocomputing, volume 7, pages 6-17, Lihue, Hawaii, USA, 2002. World Scientific.

5
A. Bertoni and G. Valentini.
Discovering significant structures in clustered data through bernstein inequality.
In CISI '06, Conferenza Italiana Sistemi Intelligenti, Ancona, Italy, 2006.
available at http://homes.dsi.unimi.it/ valenti/papers/bertoni-vale-cisi06.pdf.

6
A. Bertoni and G. Valentini.
Model order selection for clustered bio-molecular data.
In J. Rousu, S. Kaski, and E. Ukkonen, editors, Probabilistic Modeling and Machine Learning in Structural and Systems Biology, pages 85-90, Tuusula, Finland, 2006. Helsinki University Printing House.

7
A. Bertoni and G. Valentini.
Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses.
Artificial Intelligence in Medicine, 37(2):85-109, 2006.

8
M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix, M. Radmacher, R. Simon, Z. Yakhini, A. Ben-Dor, N. Sampas, E. Dougherty, E. Wang, F. Marincola, C. Gooden, J. Lueders, A. Glatfelter, P. Pollock, J. Carpten, E. Gillanders, D. Leja, K. Dietrich, C. Beaudry, M. Berens, D. Alberts, and V. Sondak.
Molecular classification of malignant melanoma by gene expression profiling.
Nature, 406:536-540, 2000.

9
S. Dudoit and J. Fridlyand.
A prediction-based resampling method for estimating the number of clusters in a dataset.
Genome Biology, 3(7):1-21, 2002.

10
T.R. Golub et al.
Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring.
Science, 286:531-537, 1999.

11
J. Handl, J. Knowles, and D. Kell.
Computational cluster validation in post-genomic data analysis.
Bioinformatics, 21(15):3201-3215, 2005.

12
W. Hoeffding.
Probability inequalities for sums of independent random variables.
J. Amer. Statist. Assoc., 58:13-30, 1963.

13
A.K. Jain and R.C. Dubes.
Algorithms for clustering data.
Prentice Hall, Englewood Cliffs, NJ, 1988.

14
A.K. Jain, M.N. Murty, and P.J. Flynn.
Data Clustering: a Review.
ACM Computing Surveys, 31(3):264-323, 1999.

15
M.K. Kerr and G.A. Curchill.
Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments.
PNAS, 98:8961-8965, 2001.

16
T. Lange, V. Roth, M. Braun, and J. Buhmann.
Stability-based validation of clustering solutions.
Neural Computation, 16:1299-1323, 2004.

17
L.M. McShane, D. Radmacher, B. Freidlin, R. Yu, M.C. Li, and R. Simon.
Method for assessing reproducibility of clustering patterns observed in analyses of microarray data.
Bioinformatics, 18(11):1462-1469, 2002.

18
S. Monti, P. Tamayo, J. Mesirov, and T. Golub.
Consensus Clustering: A Resampling-based Method for Class Discovery and Visualization of Gene Expression Microarray Data.
Machine Learning, 52:91-118, 2003.

19
W. Rand.
Objective criteria for the evaluation of clustering methods.
J. Am. Stat. Assoc., 66:846-850, 1971.

20
M. Smolkin and D. Gosh.
Cluster stability scores for microarray data in cancer studies.
BMC Bioinformatics, 36(4), 2003.

21
G. Valentini.
Clusterv: a tool for assessing the reliability of clusters discovered in DNA microarray data.
Bioinformatics, 22(3):369-370, 2006.