|
International
Journals
-
E Cavalleri, A Cabri, M Soto-Gomez, S Bonfitto, P Perlasca, J Gliozzo, TJ Callahan, J Reese, PN Robinson, E Casiraghi, G Valentini, M Mesit
An ontology-based knowledge graph for representing interactions involving RNA molecules,
Scientific Data, Nature Publishing, 11, 906, 2024
-
B Coleman, E Casiraghi, TJ Callahan, H Blau, L Chan, B Laraway, K Clark, Y Re’em, K Gersing, KJ Wilkins, N Harris, G Valentini, M Haendel, J Reese, PN Robinson
Association of post-COVID phenotypic manifestations with new-onset psychiatric disease,
Transl Psychiatry, Nature Publishing, 14, 246, 2024
-
E. Esenkova, T. Koeck, G. Valentini, P. Wild, E. Casiraghi, E. Araldi.
Unbiased clustering and molecular characterisation of novel metabolic phenotypes in a heart failure cohort,
Cardiovascular Research, 120:Suppl.1, 2024
-
TJ Callahan, IJ Tripodi, AL Stefanski, L Cappelletti, SB Taneja, JM Wyrwa, E Casiraghi, NA Matentzoglu, J Reese, JC Silverstein, CT Hoyt, RD Boyce, SA Malec, DR Unni, MP Joachimiak, PN Robinson, CJ Mungall, E Cavalleri, T Fontana, G Valentini, M Mesiti, LA Gillenwater, B Santangelo, NA Vasilevsky, R Hoehndorf, TD Bennett, PB Ryan, G Hripcsak, MG Kahn, M Bada, WA Baumgartner Jr
An open source knowledge graph ecosystem for the life sciences,
Scientific Data, Nature Publishing, 11, 363, 2024
-
L Chan, E Casiraghi, J Reese, Q Harmon, K Schaper, H Hegde, G Valentini, C Schmitt, A Motsinger-Reif, J Hall, C Mungall, P Robinson, M Haendel
Predicting nutrition and environmental factors associated with female reproductive disorders using a knowledge graph and random forests,
International Journal of Medical Informatics, 187, 105461, 2024
-
L Cappelletti, L Rekerle, To Fontana, Pr Hansen, E Casiraghi, V Ravanmehr, CJ Mungall, JJ Yang, L Spranger, G Karlebach, JH Caufield, L Carmody, B Coleman, TI Oprea, J Reese, G Valentini, PN Robinson
Node-degree aware edge sampling mitigates inflated classification performance in biomedical random walk-based graph representation learning,
Bioinformatics Advances, Volume 4, Issue 1, Oxford University Press, 2024
-
G. Valentini
Exploring the similarity between genetic diseases improves their differential diagnosis and the understanding of their etiology,
Eur J Hum Genet, 2024
-
G. Valentini, D. Malchiodi, J. Gliozzo, M. Mesiti, M. Soto-Gomez, A. Cabri, J. Reese, E. Casiraghi, P. Robinson
The promises of large language models for protein design and modeling,
Frontiers in Bioinformatics, vol. 3, 2023
-
B. Antony, H. Blau, E. Casiraghi, J. Loomba, T. Callahan, B. Laraway, K. Wilkins, C. Antonescu, G. Valentini, A. Williams, P. Robinson, J. Reese, T. Murali
Predictive models of long COVID,
eBioMedicine - The Lancet Discovery Science, vol. 96, 104777, 2023
-
L. Cappelletti, T. Fontana, E. Casiraghi, V. Ravanmehr, T. J.Callahan, C. Cano, M. P. Joachimiak, C. J. Mungall, P. N. Robinson, J. Reese, G. Valentini
GRAPE for Fast and Scalable Graph Processing and Random Walk-based Embedding,
Nature Computational Science 3, 552–568, 2023 arXiv version
-
E. Casiraghi and G. Valentini
A software resource for large graph processing and analysis,
Research briefing - Nature Computational Science 3, 2023
-
G. Karlebach, L. Carmody, J. C. Sundaramurthi, E. Casiraghi, P. Hansen, J. Reese, C. J. Mungall, G. Valentini, P. N. Robinson
An expectation-maximization framework for comprehensive prediction of isoform-specific functions,
Bioinformatics, Oxford University Press, 39(4), btad1322023, April 2023
-
E. Casiraghi, R. Wong, M. Hall, B. Coleman, M. Notaro, M. D. Evans, J. S. Tronieri, H. Blau, B. Laraway, T. J. Callahan, L. E. Chan, C. T. Bramante, J. B. Buse, R. A. Moffitt, T. Stürmer, S. G. Johnson, Y. R. Shao, J. Reese, P. N. Robinson, A. Paccanaro, G. Valentini, J. D. Huling, K. J. Wilkins
A method for comparing multiple imputation techniques: a case study on the U.S. National COVID Cohort Collaborative,
Journal of Biomedical Informatics, 139:104295, 2023
-
L. Ferrè, F. Clarelli, B. Pignolet, E. Mascia, M. Frasca, S. Santoro, M. Sorosina, F. Bucciarelli, L. Moiola, V. Martinelli, G. Comi, R. Liblau, M. Filippi, G. Valentini, F. Esposito.
Combining Clinical and Genetic Data to Predict Response to Fingolimod Treatment in Relapsing Remitting Multiple Sclerosis Patients: A Precision Medicine Approach,
Journal of Personalized Medicine, 13(1):122, 2023
-
J. T. Reese, H. Blau, T, Bergquist, J. J. Loomba, T. Callahan, B. Laraway, C. Antonescu, E. Casiraghi, B, Coleman, M. Gargano, K. J. Wilkins, L. Cappelletti, T. Fontana, N. Ammar, B. Antony, T. M. Murali, G. Karlebach, J. A McMurry, A. Williams, R. Moffitt, J, Banerjee, A. E. Solomonides, H. Davis, K. Kostka, G. Valentini, D, Sahner, C, G. Chute, C, Madlock-Brown, M. A Haendel, P. N. Robinson on behalf of the N3C Consortium
Generalizable Long COVID Subtypes: Findings from the NIH N3C and RECOVER Programs,
eBioMedicine - The Lancet Discovery Science, Vol. 87, 2023
-
L. Cappelletti, A. Petrini, J. Gliozzo, E. Casiraghi, M. Schubach, M. Kircher and G. Valentini
Boosting tissue-specific prediction of active cis-regulatory regions through deep learning and Bayesian optimization techniques,
BMC Bioinformatics, 23:154, 2022
-
L.E. Chan, E. Casiraghi, B. Laraway, B. Coleman, H. Blau, A. Zaman, N. L. Harris, K. Wilkins, B. Antony, M. Gargano, G. Valentini, D. Sahner, M. Haendel, P. N. Robinson, C. Bramante, J. Reese
Metformin is Associated with Reduced COVID-19 Severity in Patients with Prediabetes,
Diabetes Research and Clinical Practice, Volume 194, 1101572022, 2022
-
J. Gliozzo, M. Mesiti, M. Notaro, A. Petrini, A. Patak, A. Puertas-Gallardo, A. Paccanaro, G. Valentini and E. Casiraghi
Heterogeneous data integration methods for patient similarity networks,
Briefings in Bioinformatics, Oxford University Press, Jul 18;23(4):bbac207, 2022
-
J.T. Reese, B. Coleman, L. Chan, H. Blau, T.J. Callahan, L. Cappelletti, T. Fontana, K.R. Bradwell, N.L. Harris, E. Casiraghi,
G. Valentini, G. Karlebach, R. Deer, J.A. McMurry, M.A. Haendel, C.G. Chute, E. Pfaff, R. Moffitt, H. Spratt, J.A. Singh, C.J. Mungall, A.E. Williams, P.N. Robinson
NSAID use and clinical outcomes in COVID-19 patients: a 38-center retrospective cohort study,
Virology Journal, 19:1, 2022
-
G. Paolillo, A. Petrini, E. Casiraghi, M. De Iorio, S. Biffani, G. Pagnacco, G. Minozzi and G. Valentini
Automated image analysis to assess hygienic behaviour of honeybees,
PLOS ONE, 17(1): e0263183, 2022
-
V. Ravanmehr, H. Blau, L. Cappelletti, T. Fontana, L. Carmody, B.
Coleman, J. George, J. Reese, M. Joachimiak, G. Bocci, P. Hansen,
C. Bult, J. Rueter, E. Casiraghi, G. Valentini, C. Mungall, T, Oprea and P. Robinson
Supervised learning with word embeddings derived from PubMed captures latent knowledge about protein kinases and cancer,
NAR Genomics and Bioinformatics, Oxford Academic, 3(4), 2021
-
M. Notaro, M. Frasca, A. Petrini, J. Gliozzo, E. Casiraghi, P.N. Robinson and G. Valentini
HEMDAG: a family of modular and scalable hierarchical ensemble methods to improve Gene Ontology term prediction,
Bioinformatics, Oxford Academic, 37(23), 2021
-
D. Danis, J.O.B. Jacobsen, L. Carmody, M.A. Gargano, J.A. McMurry, A. Hegde, M.A. Haendel, G. Valentini, D. Smedley, P.N. Robinson
Interpretable prioritization of splice variants in diagnostic next-generation sequencing,
The American Journal of Human Genetics, Cell Press, 108(9), pages 1564-1577, 2021
-
A Scarabelli, M Zilocchi, E Casiraghi, P Fasani, G Plensich , A Esposito, E Stellato, A Petrini, J Reese, P Robinson, G Valentini, G Carrafiello
Abdominal Computed Tomography Imaging Findings in Hospitalized COVID-19 Patients: A Year-Long Experience and Associations Revealed by Explainable Artificial Intelligence,
Journal of Imaging 7(12):258, 2021
-
A Esposito, E Casiraghi, F Chiaraviglio, A Scarabelli, E Stellato, G Plensich, G Lastella, L Di Meglio, S Fusco, E Avola, A Jachetti, C Giannitto, D Malchiodi, M Frasca, A Beheshti, PN Robinson, G Valentini, L Forzenigo, G Carrafiello
Artificial Intelligence in Predicting Clinical Outcome in COVID-19 Patients from Clinical, Biochemical and a Qualitative Chest X-Ray Scoring System,
Reports in Medical Imaging 14:27-39, 2021
-
A. Cassaro, G. Grillo, M. Notaro, J. Gliozzo, I. Esposito, G. Reda, A. Trojani, G. Valentini, B. Di Camillo, R. Cairoli, A. Beghini
FZD6 triggers Wnt-signalling driven by WNT10BIVS1 expression and highlights new targets in T cell acute lymphoblastic leukemia,
Hematol Oncol. Jan 26, 2021
-
P. Perlasca, M. Frasca, C.T. Ba, J. Gliozzo, M. Notaro, M. Pennacchioni, G. Valentini, M. Mesiti
Multi-resolution visualization and analysis of biomolecular networks through hierarchical community detection and web-based graphical tools,
PLoS ONE 15(12): e0244241. 2020
-
E. Casiraghi, D. Malchiodi, G. Trucco, M. Frasca, L. Cappelletti, T. Fontana, A. Esposito, E. Avola, A. Jachetti, J. Reese, A. Rizzi, P. Robinson, G.Valentini
Explainable Machine Learning for Early Assessment of COVID-19 Risk Prediction in Emergency Departments,
IEEE Access vol. 8, pp. 196299-196325, 2020
-
A. Petrini, M, Mesiti, M. Schubach, M. Frasca, D. Danis, M. Re, G. Grossi, L. Cappelletti, T. Castrignano', P. Robinson, G. Valentini
parSMURF, a High Performance Computing tool for the genome-wide detection of pathogenic variants,
GigaScience, Oxford Academic 9(5), 2020
-
L. Cappelletti, T. Fontana, G. Di Donato, L Di Tucci, E. Casiraghi and G. Valentini
Complex Data Imputation by Auto-Encoders and Convolutional Neural Networks: A Case Study on Genome Gap-Filling,
Computers 9(2):37, 2020
-
S. Vascon, M. Frasca, R. Tripodi, G. Valentini, M. Pelillo
Protein Function Prediction as a Graph-Transduction Game,
Pattern Recognition Letters vo. 134 pp. 96-105, 2020
doi.org/10.1016/j.patrec.2018.04.002
-
J. Gliozzo, P. Perlasca, M. Mesiti, E. Casiraghi, V. Vallacchi,
E. Vergani, M. Frasca, G. Grossi, A. Petrini, M. Re, A. Paccanaro and G. Valentini
Network modeling of patients' biomolecular profiles
for clinical phenotype/outcome prediction,
Scientific Reports, Nature Publishing 10:3612, 2020
-
N. Zhou, Y. Jiang, T. Bergquist, ..., G. Valentini, ... P. Radivojac, I. Friedberg
The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens,
Genome Biology 20, article number: 244, 2019
-
P. Perlasca, M. Frasca, Cheick Tidiane Ba, M. Notaro, A. Petrini, E. Casiraghi, G. Grossi, J. Gliozzo, G. Valentini and M. Mesiti
UNIPred-Web: a Web Tool for the Integration and Visualization of Biomolecular Networks for Protein Function Prediction,
BMC Bioinformatics 20:422, 2019
-
L.Cappelletti, J. Gliozzo, A. Petrini, and G. Valentini
Training Neural Networks with Balanced Mini-batch to Improve the Prediction of Pathogenic Genomic Variants in Mendelian Diseases,
Special issue "Artificial Intelligence & Neural Networks", Sensors & Transducers 234:6, pp. 16-21, 2019
-
M. Frasca, G. Grossi, J. Gliozzo, M. Mesiti, M. Notaro, P. Perlasca, A. Petrini and G. Valentini
A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks,
BMC Bioinformatics 19:Suppl 10 Oct. 15, 2018
-
M. Notaro, M. Schubach, P.N. Robinson, G. Valentini
Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods,
BMC Bioinformatics, vol. 18 (1), 2017
doi.org/10.1186/s12859-017-1854-y
-
M. Schubach, M. Re, P.N.
Robinson and G. Valentini
Imbalance-Aware Machine Learning for Predicting Rare and
Common Disease-Associated Non-Coding Variants,
Scientific Reports, Nature
Publishing, 7:2959, 2017.
-
D. Smedley, M, Schubach, J.
Jacobsen, S. Kohler, T. Zemojtel, M. Spielmann, M. Jager,
H. Hochheiser, N. Washington, J. McMurry, M. Haendel, C.
Mungall, S. Lewis, T. Groza, G. Valentini and P.N.
Robinson
A Whole-Genome Analysis Framework for Effective
Identification of Pathogenic Regulatory Variants in
Mendelian Disease,
The American Journal of Human
Genetics, 99:3, pp.595--606, September 2016.
doi.org/10.1016/j.ajhg.2016.07.005
-
Y. Jiang, P. Oron, ... G.
Valentini, ... I. Friedberg and P. Radivojac An
expanded evaluation of protein function prediction
methods shows an improvement in accuracy,
Genome Biology, 17:184
September 2016.
doi.org/10.1186/s13059-016-1037-6
Supplementary Information
-
G. Valentini, G. Armano, M.
Frasca, J. Lin, M. Mesiti and M. Re
RANKS: a flexible tool for node label ranking and
classification in biological networks,
Bioinformatics, 32(18),
September 2016.
doi:10.1093/bioinformatics/btw235
Pre-print version Supplementary Information
-
M. Frasca, S.Bassis, G.
Valentini
Learning node labels with multi-category Hopfield
networks,
Neural Computing and Applications,
27(6), pp 1677-1692, 2016
doi:10.1007/s00521-015-1965-1
-
M. Frasca, G. Valentini COSNet: an R
package for label prediction in unbalanced biological
networks,
Neurocompting, 2016.
doi:10.1016/j.neucom.2015.11.096
Bioconductor COSNet web site
-
M. Frasca, A. Bertoni, G.
Valentini
UNIPred: Unbalance-aware Network Integration and
Prediction of protein functions,
Journal of Computational Biology,
22(12): 1057-1074, 2015.
doi:10.1089/cmb.2014.0110 Supplementary
Information
-
M. Mesiti, M. Re, G. Valentini
Think globally and solve locally: secondary memory-based
network learning for automated multi-species function
prediction,
GigaScience, 3:5, 2014
-
G. Valentini, A. Paccanaro, H.
Caniza, A. Romero, M. Re,
An extensive analysis of disease-gene associations using
network integration and fast kernel-based gene
prioritization methods,
Artificial Intelligence in
Medicine, Volume 61, Issue 2, pages 63-78, June 2014
-
H. Caniza, A. Romero, S.
Heron, H. Yang, A. Devoto, M. Frasca, M. Mesiti, G.
Valentini, A. Paccanaro,
GOssTo: a user-friendly stand-alone and web tool for
calculating semantic similarities on the Gene Ontology,
Bioinformatics, Vol. 30 no.
15, pages 2235-2236, 2014
-
G. Valentini,
Hierarchical Ensemble Methods for Protein Function
Prediction,
ISRN Bioinformatics, vol.
2014, Article ID 901419, 34 pages, 2014
-
M. Re, and G. Valentini, Network-based
Drug Ranking and Repositioning with respect to DrugBank
Therapeutic Categories,
IEEE ACM Transactions on
Computational Biology and Bioinformatics 10(6),
pp. 1359-1371, Nov-Dec 2013 IEEE
link Supplemental
Material
-
I. Cattinelli, G. Valentini,
E. Paulesu, A. Borghese
A Novel Approach to the Problem of Non-uniqueness of the
Solution in Hierarchical Clustering ,
IEEE Transactions on Neural
Networks and Learning Systems 24(7) pp.1166-1173,
July 2013
-
M. Frasca, A. Bertoni, M. Re,
and G. Valentini, A
neural network algorithm for semi-supervised node label
learning from unbalanced data,
Neural Networks 43, pp.84-98,
July 2013
Science Direct link
-
M. Re, M. Mesiti and G.
Valentini, A
Fast Ranking Algorithm for Predicting Gene Functions in
Biomolecular Networks,
IEEE ACM Transactions on
Computational Biology and Bioinformatics 9(6) pp.
1812-1818, 2012.
IEEE link
-
A. Beghini, F. Corlazzoli, L.
Del Giacco, M. Re, F. Lazzaroni, M. Brioschi, G.
Valentini, F. Ferrazzi, A. Ghilardi, M. Righi, M. Turrini,
M. Mignardi, C. Cesana, V. Bronte, M. Nilsson, E. Morra
and R. Cairoli,
Regeneration-associated Wnt signaling is activated in
long-term reconstituting AC133bright acute myeloid
leukemia cells,
Neoplasia 14:12, pp.
1236-1248, 2012
-
M. Re and G. Valentini Cancer
module genes ranking using kernelized score functions
BMC Bioinformatics 13 (Suppl
14): S3, 2012.
-
N. Cesa-Bianchi, M. Re, G.
Valentini, Synergy
of multi-label hierarchical ensembles, data fusion, and
cost-sensitive methods for gene functional inference,
Machine Learning, vol.88(1),
pp. 209-241, 2012. Springer
link
-
M. Re, M. Mesiti, G.
Valentini,
Drug repositioning through pharmacological spaces
integration based on networks projection,
EMBnet.journal,
vol 18, Supplement A, pp.30-31, BITS
2012, Bioinformatics Italian Society Meeting, Catania, Italy, 2012.
-
M. Frasca, A. Bertoni, G.
Valentini, Regularized
Network-Based
Algorithm for Predicting Gene Functions with
High-Imbalanced Data,
EMBnet.journal,
vol 18, Supplement A, pp.41,42, BITS
2012, Bioinformatics Italian Society Meeting, Catania, Italy, 2012.
-
G. Valentini, True
Path Rule hierarchical ensembles for genome-wide gene
function prediction,
IEEE ACM Transactions on
Computational Biology and Bioinformatics, vol.8 n.3 pp. 832-847, 2011. IEEE
CS Digital library
-
M. Muselli, A. Bertoni,
M. Frasca, A. Beghini, F. Ruffino, and G. Valentini,
A
mathematical model for the validation of gene selection
methods,
IEEE ACM Transactions on
Computational Biology and Bioinformatics, vol.8 n.5 pp. 1385-1392, 2011. IEEE
CS Digital library
-
M. Re, G. Valentini, Noise
tolerance of Multiple Classifier Systems in data
integration-based gene function prediction,
Supplementary
Information
Journal of Integrative
Bioinformatics, 7(3):139, 2010
-
M. Re, G. Valentini, Simple
ensemble
methods are competitive with state-of-the-art data
integration methods for gene function prediction
Journal of Machine Learning
Research, W&C
Proceedings, vol.8: Machine Learning in Systems
Biology, pp. 98-111, 2010.
-
N. Cesa-Bianchi, G. Valentini,
Hierarchical
cost-sensitive
algorithms for genome-wide gene function prediction,
Journal of Machine Learning
Research, W&C Proceedings,
vol.8: Machine Learning in Systems Biology, pp.14-29,
2010.
-
M. Re, G. Valentini, Integration
of heterogeneous data sources for gene function
prediction using Decision Templates and ensembles of
learning machines,
Neurocomputing,
73:7-9 pp. 1533-37, 2010 doi:10.1016/j.neucom.2009.12.012
-
M. Mesiti, E. Jimenez-Ruiz, I.
Sanz, R. Berlanga-Llavori, P. Perlasca, G. Valentini and
D. Manset, XML-Based
Approaches
for the Integration of Heterogeneous Bio-Molecular Data
BMC Bioinformatics 10:(S12)S7, 2009
-
R. Avogadri, M. Brioschi, F.
Ferrazzi, M. Re, A. Beghini, and G. Valentini, A
stability-based algorithm to validate hierarchical
clusters of genes,
International Journal of Knowledge
Engineering and Soft Data Paradigms,
1(4), pp. 318-330, 2009
-
G.Valentini, R.Tagliaferri,
F.Masulli, Computational
Intelligence and Machine Learning in Bioinformatics
Artificial Intelligence in Medicine 45(2), pp. 91-96, 2009
-
R. Avogadri, G.Valentini, Fuzzy
ensemble clustering based on random projections for DNA
microarray data analysis
Artificial Intelligence in Medicine
45(2), pp. 173-183, 2009
-
G.Pavesi, G.Valentini, Classification
of co-expressed genes from DNA regulatory regions,
Information Fusion
10(3), pp. 233-241, 2009
-
A. Bertoni, G.Valentini, Discovering
multi-level
structures in bio-molecular data through the Bernstein
inequality
BMC Bioinformatics 9(Suppl 2):S4, 2008
-
G.Valentini, N. Cesa-Bianchi,
HCGene:
a
software tool to support the hierarchical classification
of genes,
Bioinformatics, 24(5),
pp. 729-731, 2008. HCGene
web-site
-
F. Ruffino, M. Muselli,
G.Valentini, Gene
expression modelling through positive Boolean functions,
International Journal of Approximate Reasoning, 47(1), pp. 97-108, 2008.
-
A.Bertoni, G.Valentini, Model
order selection for biomolecular data clustering,
BMC Bioinformatics, vol.8,
Suppl.3, 2007. Mosclust
web-site
-
G.Valentini, Mosclust:
a
software library for discovering significant structures
in bio-molecular data.
Bioinformatics 23(3):387-389,
2007.
-
G. Valentini, F.Ruffino, Characterization
of Lung tumor subtypes through gene expression cluster
validity assessment,
RAIRO - Theoretical Informatics and Applications, 40:163-176, 2006.
-
A.Bertoni, G. Valentini, Randomized
maps for assessing the reliability of patients clusters
in DNA microarray data analyses,
Artificial Intelligence in Medicine
37(2):85-109 2006, Science
Direct
access
-
G.Valentini, Clusterv:
a
tool for assessing the reliability of clusters
discovered in DNA microarray data,
Bioinformatics 22(3):369-370,
2006. Clusterv
web-site
-
G.Valentini, An
experimental
bias-variance analysis of SVM ensembles based on
resampling techniques,
IEEE Transactions on Systems, Man and Cybernetics, Part B vol.35(6) pp. 1252-1271, 2005 IEEE
Explore
access
-
P. Campadelli, E. Casiraghi,
G.Valentini, Support
Vector
Machines for candidate nodules classification,
Neurocomputing vol.68
pp. 281-289, 2005 Science
Direct
access
-
A. Bertoni, R. Folgieri, G.
Valentini, Bio-molecular
cancer
prediction with random subspace ensembles of Support
Vector Machines,
Neurocomputing vol. 63C
pp. 535-539, 2005 Science
Direct
access
-
G. Valentini, T. G.
Dietterich, Bias-variance
analysis
of Support Vector Machines for the development of
SVM-based ensemble methods,
Journal of Machine Learning Research,
5(Jul) pp. 725--775, 2004, MIT Press, JMLR
link
-
F. Masulli, G. Valentini, An
experimental
analysis of the dependence among codeword bit errors in
ECOC learning machines.
Neurocomputing 57
pp. 189-214, 2004, science
direct
link
-
G. Valentini, M. Muselli and
F. Ruffino, Cancer
recognition
with bagged ensembles of Support Vector Machines,
Neurocomputing 56 pp. 461-466, 2004, science
direct
link
-
F. Masulli, G. Valentini, Effectiveness
of
output coding decomposition schemes in ensemble and
monolithic learning machines.
Pattern Analysis and Applications
6 pp. 285-300, 2003.
-
G. Valentini,
Gene expression data analysis of human lymphoma using
Support Vector Machines and Output Coding ensembles.
Artificial Intelligence in
Medicine 26(3) pp
283-306, 2002
-
G. Valentini, F. Masulli, NEURObjects:
an
object-oriented library for neural network development,
Neurocomputing 48(1-4) pp.
623-646 , 2002, science
direct
link
-
M. Pardo, G. Sberveglieri, A.Taroni, F. Masulli,
G. Valentini Decompositive
classification
models for electronic noses.
Anal. Chim. Acta (446) pp.
223-232, 2001.
National Journals
-
F.Ruffino, G.Valentini, M.
Muselli, Valutazione
di metodi di gene selection per l'analisi di dati con
DNA microarray,
Automazione e Strumentazione,
LIII (10) pp. 106-119, 2005
-
G. Valentini, Gene
expression-based prediction of malignancies,
AIIA Notizie XV(4)
pp. 34-38, 2002
Edited Books
-
O. Okun, G. Valentini, M. Re
(eds.), Ensembles
in Machine Learning Applications,
Studies in Computational Intelligence, vol. 373 Springer,
ISBN: 978-3-642-22909-1, 2011.
-
O. Okun, M. Re, G. Valentini
(eds.), Proceedings
of the the Third Workshop on Supervised and Unsupervised
Ensemble Methods and Their Applications (SUEMA),
European Conference on Machine Learning, Barcelona, Spain,
2010.
-
O. Okun, G. Valentini (eds.),
Applications
of Supervised and Unsupervised Ensemble Methods,
Studies in Computational Intelligence, vol. 245 Springer,
ISBN: 978-3-642-03998-0, 2010.
-
O. Okun, G. Valentini (eds.),
Proceedings of the
the Second Workshop on Supervised and Unsupervised
Ensemble Methods and Their Applications (SUEMA),
European Conference on Artificial Intelligence, University
of Patras, Greece, ISBN: 978-960-89282-2-0, 2008.
-
O. Okun, G. Valentini (eds.),
Supervised and Unsupervised Ensemble Methods and their
Applications,
Studies in ComputationalIntelligence, vol. 126 Springer, ISBN: 978-3-540-78980-2,
2008.
Proceedings of International Conferences and book chapters
-
E Cavalleri, M Soto-Gomez A Pashaeibarough, D Malchiodi, H Caufield, J. Reese, CJ Mungall, PN Robinson, E Casiraghi, G. Valentini, M. Mesiti
SPIREX: Improving LLM-based relation extraction from
RNA-focused scientific literature using graph machine learning ,
In:
International Workshop on LLM+KG: Data Management Opportunities
in Unifying Large Language Models+Knowledge Graphs, in conjunction with
50th International Conference on Very Large Databases Guangzhou, China - August 2024
-
M. Nicolini, D. Malchiodi, A. Cabri, E. Cavalleri, M. Mesiti, A. Paccanaro, PN, Robinson, J. Reese, E. Casiraghi and G. Valentini
Fine-Tuning of Conditional Transformers Improves the Generation of Functionally Characterized Proteins ,
In:
Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOSTEC 2024, Roma, BIOINFORMATICS vol 1, pp.561-568, 2024
-
J. Gliozzo, A. Patak, A. Puertas-Gallardo, E. Casiraghi and G. Valentini
Patient Similarity Networks Integration for Partial Multimodal Datasets ,
In:
Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOSTEC 2023, Lisboa (Portugal), BIOINFORMATICS vol 3, pp.228-234, 2023
-
V. Guarino, J. Gliozzo, F. Clarelli, B. Pignolet, K. Misra, E. Mascia, G, Antonino, S. Santoro, L. Ferré, M. Cannizzaro, M. Sorosina, R. Liblau, M. Filippi, E. Mosca, F. Esposito, G. Valentini and E. Casiraghi
Intrinsic-Dimension Analysis for Guiding Dimensionality Reduction in Multi-Omics Data ,
In:
Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOSTEC 2023, Lisboa (Portugal), BIOINFORMATICS vol 3, pp.243-251, 2023
-
P. Perlasca, M. Frasca, CT Ba, J. Gliozzo, M. Notaro, M. Pennacchioni, G. Valentini, M. Mesiti
Integration and Visual Analysis of Biomolecular Networks Through UNIPred-Web,
In:
Current Trends in Web Engineering, Communications in Computer and Information Science vol 1668, pp.192-197, 2023
-
L. Cappelletti, A. Petrini, J. Gliozzo, E. Casiraghi, M. Schubach, M. Kircher, G. Valentini
Bayesian Optimization Improves Tissue-Specific Prediction of Active Regulatory Regions with Deep Neural Networks ,
In: Rojas I., Valenzuela O., Rojas F., Herrera L., Ortuno F. (eds)
Bioinformatics and Biomedical Engineering. IWBBIO 2020, , Granada (Spain), Lecture Notes in Computer Science vol 12108, pp.600-612, 2020
doi: 10.1007/978-3-030-45385-5_54
-
M. Frasca, M. Sepehri, A. Petrini, G. Grossi, G. Valentini
Committee-Based Active Learning to Select Negative Examples for Predicting Protein Functions ,
15th Int. Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, , Lisboa, Lecture Notes in Artificial Intelligence pp.80-87, 2020
doi:10.1007/978-3-030-34585-3_7
-
C.T. Ba, E. Casiraghi, M. Frasca, J. Gliozzo, G. Grossi, M. Mesiti, M. Notaro, P. Perlasca, A. Petrini, M. Re, G. Valentini
A Graphical Tool for the Exploration and Visual Analysis of Biomolecular Networks ,
15th Int. Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, , Lisboa, Lecture Notes in Artificial Intelligence pp.88-98, 2020
doi:10.1007/978-3-030-34585-3_8
-
M. Frasca, G. Grossi, G. Valentini
Multitask Hopfield Networks ,
In: Brefeld U., Fromont E., Hotho A., Knobbe A., Maathuis M., Robardet C. (eds)
Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019, , Wurzburg (Germany), Lecture Notes in Computer Science vol 11907, pp.349-365, 2020
doi: 10.1007/978-3-030-46147-8_21
-
A. Cuzzocrea, L. Cappelletti, G. Valentini
A neural model for the prediction of pathogenic genomic variants in Mendelian diseases ,
1st International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI) , Barcelona, 2019
-
M. Notaro, M. Schubach, M.Frasca, M. Mesiti, P.N.
Robinson, G. Valentini
Ensembling Descendant Term Classifiers to Improve Gene -
Abnormal Phenotype Predictions,
Lecture Notes in Bioinformatics, vol. 10834, pp. 60-69, 2019
-
M. Frasca, J.F. Fontaine, G.
Valentini, M. Mesiti, M. Notaro, D. Malchiodi and M.A.
Andrade-Navarro
Disease Genes must Guide Data Source Integration in the
Gene Prioritization Process ,
Lecture Notes in Bioinformatics, vol. 10834, pp. 70-80, 2019
-
A. Petrini, M. Schubach, M.
Re, M. Frasca, M. Mesiti, G. Grossi, T. Castrignano', P.N.
Robinson, G. Valentini
Parameters tuning boosts hyperSMURF predictions of rare
deleterious non-coding genetic variants,
PeerJ Preprints 5:e3185v1, 2017
presented at Methods, tools & platforms for
Personalized Medicine in the Big Data Era - NETTAB 2017,
Palermo, Italy
-
M. Schubach, M. Re, P.N.
Robinson, G. Valentini
Variant relevance prediction in extremely imbalanced
training sets,
F1000Research 2017, 6(ISCB Comm
J):1392 (poster) (doi: 10.7490/f1000research.1114637.1),
presented at the 25th International Conference on
Intelligent Systems for Molecular Biology (ISMB), Prague
2017
-
J. Lin, M. Mesiti, M. Re and
G. Valentini
Within network learning on big graphs using secondary
memory-based random walk kernels,
Complex Networks & Their
Applications V: Proceedings of the 5th International
Workshop on Complex Networks and their Applications
(COMPLEX NETWORKS 2016), Studies in Computational
Intelligence, Springer, pp. 235-245, 2017,
doi.org/10.1007/978-3-319-50901-3_19
-
P. Perlasca, G. Valentini, M.
Frasca, M. Mesiti
Multi-species Protein Function Prediction: Towards
Web-based Visual Analytics,
Proceedings of the 18th
International Conference on Information Integration and
Web-based Applications & Services, Singapore,
ACM, New York, USA pp. 1-5, 2016.
doi.org/10.1145/3011141.3011222
-
H. Su, G. Valentini, S.
Szedmak and J. Rousu
Transport Protein Classification through Structured
Prediction and Multiple Kernel Learning ,
NIPS Workshop on Machine Learning in
Computational Biology (MLCB) & Machine Learning in
Systems Biology (MLSB) 2015
- Montreal, Canada, December 2015
-
P.N. Robinson, M.Frasca, S.
Kohler, M. Notaro, M. Re, G. Valentini, A
hierarchical ensemble method for DAG-structured
taxonomies ,
Multiple Classifier Systems - MCS 2015
- Gunzburg, Germany Lecture
Notes in Computer Science,
vol. 9132, pp. 15-36, Springer, 2015
-
G. Valentini, S. Kohler, M.
Re, M. Notaro, P.N. Robinson,
Prediction of human gene - phenotype associations by
exploiting the hierarchical structure of the Human
Phenotype Ontology,
3rd International Work-Conference on
Bioinformatics and Biomedical Engineering - IWBBIO 2015, Granada, Spain Lecture
Notes in Bioinformatics,
vol. 9043, pp. 66-77, Springer, 2015
-
M. Re, M.Mesiti, G. Valentini,
An automated pipeline for multi-species protein function
prediction from the UniProt Knowledgebase,
Automated Function Prediction SIG 2014
- ISMB 2014, Boston, USA
-
M. Re, M.Mesiti, G. Valentini,
On the Automated Function Prediction of Big
Multi-Species Networks,
Network Biology SIG 2014 - ISMB 2014, Boston, USA
-
M.Frasca, A. Bertoni, G.
Valentini
An unbalance-aware network integration method for gene
function prediction,
MLSB 2013 - Machine Learning for Systems
Biology, Berlin, 2013
-
G. Valentini, A. Paccanaro, H.
C. Vierci, A. E. Romero, M. Re,
Network integration boosts disease gene prioritization,
Network Biology SIG 2013 - ISMB 2013, Berlin
-
M.Mesiti, M. Re, G. Valentini
Scalable Network-based Learning Methods for Automated
Function Prediction based on the Neo4j Graph-database,
Automated Function Prediction SIG 2013
- ISMB 2013, Berlin
-
H. C. Vierci, A. E. Romero, S.
Heron, H. Yang, M. Frasca, M. Mesiti, G. Valentini and A.
Paccanaro
GOssTo & GOssToWeb: user-friendly tools for
calculating semantic similarities on the Gene Ontology,
Bio-Ontologies SIG 2013 - ISMB 2013, Berlin
-
M. Re, M.Mesiti, G. Valentini
Comparison
of early and late omics data integration for cancer
modules gene ranking ,
NETTAB 2012 Workshop
on Integrated Bio-Search, Como 14-16 November, 2012.
-
M. Re and G. Valentini Random
walking on functional interaction networks to rank genes
involved in cancer
2nd Artificial Intelligence
Applications in Biomedicine Workshop,
in: AIAI 2012 - Artificial Intelligence Applications and
Innovations, pp.
66-75, IFIP AICT Series,
Springer, 2012
-
M. Re, G. Valentini Large
Scale Ranking and Repositioning of Drugs with Respect to
DrugBank Therapeutic Categories, slides
In: L. Bleris et al. (Eds.): International
Symposium on Bioinformatics Research and Applications
(ISBRA 2012), Dallas, USA, Lecture Notes in Bioinformatics vol.7292, pp. 225-236, Springer, 2012.
-
M. Re, G. Valentini, Ensemble
methods: a review,
In: Advances in Machine
Learning and Data Mining for Astronomy,
Chapman & Hall Data Mining and Knowledge Discovery
Series, Chap. 26, pp. 563-594, 2012.
-
M. Re, G. Valentini Genes
prioritization with respect to Cancer Gene Modules using
functional interaction network data , NETTAB 2011 Workshop
on Clinical Bioinformatics, Pavia 12-14 October, 2011.
-
A. Bertoni, M. Frasca, G.
Valentini COSNet: a Cost
Sensitive Neural Network for Semi-supervised Learning in
Graphs.,
In: "Machine Learning and Knowledge Discovery in
Databases". European Conference, ECML PKDD 2011, Athens,
Greece, Proceedings, Part I, Lecture
Notes in Artificial Intelligence, vol.
6911, pp.219-234, Springer, 2011.
-
A. Rozza, G. Lombardi, M. Re,
E. Casiraghi, G. Valentini and P. Campadelli A
Novel Ensemble Technique for Protein Subcellular
Location Prediction ,
In: "Ensembles in Machine Learning Applications", Studies in Computational Intelligence vol. 373, pp. 151-167, Springer, 2011
-
M. Frasca, A. Bertoni, G.
Valentini A
cost-sensitive neural algorithm to predict gene
functions using large biological networks.,
Network Biology SIG: On the
Analysis and Visualization of Networks in Biology, ISMB
2011, Wien
-
A. Bertoni, M. Re, F. Sacca,
G. Valentini Identification
of promoter regions in genomic sequences by
1-dimensional constraint clustering,
Frontiers in Artificial
Intelligence and Applications, vol. 234, Neural Nets
WIRN11 - Proceedings, pp.
162-169, 2011.
-
A. Rozza, G. Lombardi, M. Re,
E. Casiraghi, and G. Valentini, DDAG
K-TIPCAC:
an ensemble method for protein subcellular localization,
Proc. of the Third Edition of
SUEMA, pp. 75-84 , ECML,
Barcelona, Spain, 2010.
-
N. Cesa-Bianchi, M. Re, G.
Valentini, Functional
Inference in FunCat through the Combination of
Hierarchical Ensembles with Data Fusion Methods,
ICML Workshop on learning from
Multi-Label Data MLD'10 ,
Haifa, Israel, pp.13-20, 2010
-
A. Bertoni, M. Frasca, G.
Grossi, G. Valentini, Learning
functional
linkage networks with a cost-sensitive approach ,
Neural Networks - WIRN 2010, IOS Press, pp. 52-61, 2010
-
M. Re, G. Valentini, An experimental
comparison of Hierarchical Bayes and True Path Rule
ensembles for protein function prediction,
In: (N. El Gayar, J. Kittler and F. Roli, Eds)
Nineth International Workshop on Multiple
Classifier Systems MCS 2010, Lecture
Notes in Computer Science,
vol. 5997, pp. 294-303, Springer, 2010.
-
N. Cesa-Bianchi, G. Valentini,
Hierarchical
cost-sensitive algorithms for genome-wide gene function
prediction,
Machine Learning in Systems
Biology, Proceedings of the Third international workshop, Ljubljana, Slovenia, pp. 25-34, 2009.
-
M. Re, G. Valentini, Simple
ensemble methods are competitive with state-of-the-art
data integration methods for gene function prediction,
Machine Learning in Systems
Biology, Proceedings of the Third international workshop, Ljubljana, Slovenia, pp. 95-104, 2009.
-
G. Valentini, M. Re, Weighted
True Path Rule: a multilabel hierarchical
algorithm for gene function prediction,
MLD-ECML 2009, 1st International
Workshop on learning from Multi-Label Data, Bled, Slovenia, pp. 133-146, 2009.
-
M. Re, G. Valentini, Predicting
gene expression from heterogeneous data,
CIBB 2009, The Sixth International
Conference on Bioinformatics and Biostatistics, Genova, Italy, 2009.
-
M. Re, G. Valentini, Comparing
early and late data fusion methods for gene function
prediction,
Neural Nets WIRN09 - Proceedings
of the 19th Italian Workshop on Neural Nets, Vietri sul
Mare, Salerno, Italy, 2009, Frontiers
in Artificial Intelligence and Applications vol. 204, pp. 197-207, IOS Press, 2009.
-
M. Re, G. Valentini, Ensemble
based Data Fusion for Gene Function Prediction,
In: (J. Kittler, J. Benediktsson, F. Roli, Eds.)
Eighth
International Workshop on Multiple Classifier Systems MCS
2009, Lecture Notes in Computer
Science, vol.5519 pp.448-457,
Springer 2009.
-
G. Valentini, True
Path Rule Hierarchical Ensembles,
In: (J. Kittler, J. Benediktsson, F. Roli, Eds.)
Eighth
International Workshop on Multiple Classifier Systems MCS
2009, Lecture Notes in Computer
Science, vol.5519 pp.232-241,
Springer 2009.
-
O. Okun, G. Valentini, H.
Priisalu, Exploring
the link between bolstered classification error and
dataset complexity for gene expression based cancer
classification,
In T. Maeda, ed., New Signal
Processing Research, Nova
Publishers, pp. 249-278, 2009.
-
A. Bertoni, G. Valentini, Unsupervised
stability-based ensembles to discover reliable
structures in complex bio-molecular data,
in: Proc. CIBB 2008, The Fifth International Conference on
Bioinformatics and Biostatistics, Lecture
Notes
in Computer Science, vol. 5488
pp. 25-43, Springer, 2009.
-
M. Re, G. Valentini, Prediction
of gene function using ensembles of SVMs and
heterogeneous data sources,
in: Applications of supervised and
unsupervised ensemble methods, Computational
Intelligence
Series, vol.245, pp. 79-91,
Springer, 2010.
-
M. Mesiti, E. J. Ruiz, I.
Sanz, R. Berlanga, G. Valentini, P Perlasca, D. Manset,
Data Integration and Opportunities in Biological XML Data
Management,
in: E. Pardede (editor): Open and Novel Issues in XML
Database Applications: Future Directions and Advanced
Technologies, Information Science, pp. 263-286, 2009.
-
R. Avogadri, M. Brioschi, F.
Ruffino, F. Ferrazzi, A. Beghini and G. Valentini
An
algorithm to assess the reliability of hierarchical
clusters in gene expression data,
in: I. Lovrek, R. J. Howlett, L. C. Jain (Eds.):
Knowledge-Based Intelligent Information and Engineering
Systems, 12th International Conference, KES 2008, Zagreb,
Croatia, September 3-5, 2008, Proceedings, Part III. Lecture Notes in Computer Science, vol.5179 pp. 764-770, Springer 2008.
-
M. Mesiti, E. J. Ruiz, I.
Sanz, R. Berlanga, G. Valentini, P Perlasca, D. Manset
XML-based approaches for
the integration of heterogeneous bio-molecular data,
NETTAB 2008 workshop
on: "Bioinformatics Methods for Biomedical Complex System
Applications", 2008.
-
O. Okun, G.Valentini, Dataset
Complexity Can Help to Generate Accurate Ensembles of
K-Nearest Neighbors,
IEEE
International Joint Conference on Neural Networks -
IJCNN 2008 (IEEE World Congress on
Computational Intelligence), pp. 450-457, 2008.
-
R. Avogadri, G.Valentini, Ensemble
Clustering with a Fuzzy Approach,
in: "Supervised and
Unsupervised Ensemble Methods and their Applications", Studies in Computational Intelligence, vol. 126, Springer, 2008.
-
R. Tagliaferri, A. Bertoni, F.
Iorio, G. Miele, F. Napolitano, G. Raiconi and G.
Valentini A Review
on clustering and visualization methodologies for
Genomic data analysis (extended
abstract)
Workshop on Computational Intelligence approaches for the
analysis of Bioinformatics data, IJCNN 2007, Orlando, USA,
2007.
-
A. Bertoni, G.Valentini, Discovering
Significant
Structures in Clustered Bio-molecular Data Through the
Bernstein Inequality
Knowledge-Based Intelligent
Information and Engineering Systems, 11th International
Conference, KES 2007, Lecture
Notes in Computer Science,
vol. 4694 pp. 886-891, 2007.
-
R. Avogadri, G.Valentini, Fuzzy ensemble
clustering for DNA microarray data analysis,
CIBB 2007, The Fourth International Conference on
Bioinformatics and Biostatistics, Lecture
Notes in Computer Science,
vol. 4578, pp.537-543, 2007
-
R. Avogadri, G.Valentini, An
unsupervised fuzzy ensemble algorithmic scheme for gene
expression data analysis
NETTAB 2007 workshop on a Semantic Web for
Bioinformatics, Pisa, Italy,
2007.
-
A.Bertoni, G.Valentini, Randomized
Embedding Cluster Ensembles for gene expression data
analysis, SETIT 2007
- IEEE International Conf. on Sciences of
Electronic, Technologies of Information and
Telecommunications, Hammamet, Tunisia, 2007.
-
F.
Ruffino, M. Muselli, G. Valentini, Modeling gene
expression data via positive Boolean functions,
NETTAB 2006 workshop on
Distributed Applications, Web Services, Tools and GRID
Infrastructures for Bioinformatics, S.Margherita di Pula
10-13 July, Italy, 2006.
-
A.Bertoni, G. Valentini, Model
order selection for clustered bio-molecular data,
In: Probabilistic Modeling
and Machine Learning in Structural and Systems Biology, J. Rousu, S. Kaski and E. Ukkonen (Eds.),
Tuusula, Finland, 17-18 June, pp. 85-90, Helsinki
University Printing House, 2006, slides
-
A.Bertoni, G. Valentini, Ensembles
Based on Random Projections to Improve the Accuracy of
Clustering Algorithms,
Neural Nets, WIRN 2005, Lecture
Notes in Computer Science,
vol. 3931, pp. 31-37, 2006.
-
B. Apolloni, G. Valentini,
A.Brega, BICA
and Random Subspace ensembles for DNA microarray-based
diagnosis,
CIBB 2006 - International Meeting on Computational
Intelligence Methods for Bioinformatics and
Biostatistics In Proc. of 7th
International FLINS Conference on Applied Artificial
Intelligence pp. 623-631, World Scientific, 2006.
-
F.Ruffino, M. Muselli,
G.Valentini Biological
specifications for a synthetic gene expression data
generation model,
In: I.Bloch, A. Petrosino, A.Tettamanzi (Eds.) WILF 2005,
Lecture Notes in Artificial
Intelligence vol. 3849, pp.
277-283, 2006.
-
P. Campadelli, E. Casiraghi,
G.Valentini, Lung
nodules
detection and classification,
ICIP 05, The IEEE International
Conference on Image Processing, Genova,
Italy,
2005.
-
A. Bertoni, G. Valentini, Random
projections
for assessing gene expression cluster stability,
IJCNN '05. Proceedings IEEE
International Joint Conference on Neural Networks, vol. 1 pp. 149-154, 2005.
-
A.
Bertoni, R. Folgieri, G. Valentini, Feature
selection
combined with random subspace ensemble for gene
expression based diagnosis of malignancies,
In: (B.Apolloni, M.Marinaro and R. Tagliaferri, eds) Biological and Artificial Intelligence
Environments, pp. 29-36,
Springer, 2005.
-
A. Bertoni, R. Folgieri, G.
Valentini, Random
subspace
ensembles for the bio-molecular diagnosis of tumors,
Models and Metaphors from Biology to
Bioinformatics Tools, NETTAB
2004.
-
G. Valentini, Random
aggregated
and bagged ensembles of SVMs: an empirical bias-variance
analysis,
In: (F. Roli, J. Kittler , T. Windeatt Eds.) Fifth
International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 3077, pp. 263-272, 2004, Powerpoint
slides
-
G. Valentini, T.G. Dietterich,
Low
Bias
Bagged Support Vector Machines,
The Twentieth International Conference on Machine
Learning, ICML 2003,
Washington D.C. USA, pp. 752-759, AAAI Press, 2003.
-
G. Valentini, An
application
of Low Bias Bagged SVMs to the classification of
heterogeneous malignant tissues,
Pre-WIRN workshop on Bioinformatics and Biostatistic, Lecture Notes in Computer Science, vol. 2859, pp.316-321, 2003.
-
G. Valentini, M. Muselli and
F. Ruffino, Bagged
Ensembles
of SVMs for Gene Expression Data Analysis,
IJCNN2003, Proc. of the
IEEE-INNS-ENNS International Joint Conference on Neural
Networks, Portland, USA, pp. 1844-1849, IEEE, 2003.
-
G. Valentini, F. Masulli, Ensembles
of
learning machines.
In R. Tagliaferri and M. Marinaro, editors, Neural Nets
WIRN Vietri-2002, Lecture
Notes in Computer Sciences,
vol. 2486, pp. 3-19, 2002.
-
G. Valentini, T.G.
Dietterich, Bias-Variance
Analysis
and Ensembles of SVM.
In J. Kittler and F. Roli (Eds) Third International
Workshop on Multiple Classifier Systems, Lecture
Notes in Computer Science vol.
2364, pp. 222-231, 2002.
-
F. Masulli, M. Pardo, G.
Sberveglieri, G. Valentini, Boosting
and
Classification of Electronic Nose Data,
Third International Workshop on Multiple Classifier
Systems, Lecture Notes in
Computer Science vol.
2364, pp. 262-271, 2002.
-
G. Valentini, Supervised
gene expression data analysis using Support Vector
Machines and Multi-Layer Perceptrons,
In: Knowledge-Based Intelligent Information Engineering
Systems and Allied technologies - Sixth International
Conference on Knowledge-Based Intelligent
Information & Engineering Systems KES'2002 , special
session Machine Learning in Bioinformatics, pp. 482-487,
2002.
-
F. Ruffino , M. Muselli and G.
Valentini, Feature Selection and Bagging Improve
Malignancy Prediction based on Gene Expression Data.
Understanding the Genome: Scientific Progress and
Microarray Technology, Genova, Italy, 2002.
-
G. Valentini, Identifying
different types of human lymphomas by SVM and ensembles of
learning machines using DNA microarray data,
ISMB 2001 HTML
extended
abstract] [HTML
slides] 9th International Conference on Intelligent
Systems and Molecular Biology (Poster section),
Copenaghen, Denmark, 2001.
-
G. Valentini, Classification
of human malignancies by machine learning methods using
DNA microarray gene expression data,
Proceedings of the Fourth International Conference "Neural Networks and Expert Systems in Medicine
and HealthCare", Milos island,
Greece, pp. 399-408, 2001.
-
M. Pardo, G. Sberveglieri, G.
Valentini, D. Della Casa, F.Masulli, Boosting applied to
electronic nose data,
LFTNC-SC 2001 - 2001 NATO ARW on
Limits and Future Trends of Neural Computing, 2001.
-
F. Masulli, G. Valentini, M.
Pardo, G. Sberveglieri Classification of sensor array data
by Output Coding decomposition methods.
Proc of the International Workshop MATCHEMS
2001, pp. 169-172, Brescia,
Italy, 2001
-
F. Masulli, G. Valentini, Quantitative evaluation
of dependence among outputs in ECOC classifiers using
mutual information based measures,
Proceedings of the International Joint Conference on
Neural Networks IJCNN'01, K. Marko and P. Webos (eds.), vol.2, IEEE,
Piscataway, NJ, USA, pp. 784-789, 2001.
-
F. Masulli and G. Valentini, Dependence among Codeword Bit
Errors in ECOC Learning Machines: an Experimental
Analysis,
In: J.Kittler and F.Roli (eds.) Proceedings of the Second
International Workshop Multiple Classifier Systems MCS
2001, Cambridge, UK, Lecture
Notes in Computer Science vol.
2096, pp. 158-167, 2001
-
M. Pardo, G. Sberveglieri, D.
Della Casa, F.Masulli, G. Valentini, Multiple classifiers
for electronic nose data,
8th International Symposium on
Olfaction and Electronic Noses,
Washington, 2001
-
F. Masulli, G. Valentini, Comparing Decomposition
Methods for Classification,
KES'2000, Fourth International
Conference on Knowledge-Based Intelligent Engineering
Systems & Allied Technologies, Brighton, UK, IEEE,
Piscataway, NJ, USA, pp. 788-791, 2000.
-
F. Masulli, G. Valentini, Parallel Non Linear
Dichotomizers,
IJCNN2000, The IEEE-INNS-ENNS
International Joint Conference on Neural Networks, Como,
Italy, vol.2, pp. 29-33, 2000.
-
M. Pardo, G. Sberveglieri, G.
Valentini, F. Masulli, Decompositive classification models
for electronic noses.
7th International Symposium on
Chemometrics in Analytical Chemistry (CAC),
Antwerp, 2000.
-
F. Masulli, G. Valentini, Effectiveness of error
correcting output codes in multiclass learning problems,
In: J.Kittler and F.Roli (eds.) Proceedings
of the First International Workshop Multiple Classifier
Systems MCS 2000, Cagliari, Italy, Lecture
Notes in Computer Science vol.1857,
pp.107-116, 2000.
-
G. Valentini, F. Masulli, NEURObjects, a set of
library classes for neural networks development,
Proceedings of the third International ICSC
Symposia on Intelligent Industrial Automation (IIA'99) and
Soft Computing (SOCO'99), ICSC Academic Press, Millet, Canada, 1999, pp.
184-190.
Proceedings
of National Conferences
-
J. Gliozzo, M. Notaro, A.
Petrini, P. Perlasca, M. Mesiti, E. Casiraghi, M.Frasca,
G. Grossi, M. Re, A. Paccanaro, G. Valentini
Modeling biomolecular profiles in a graph-structured
sample space for clinical outcome prediction with
melanoma and ovarian cancer patients ,
BITS 2017, Bioinformatics Italian
Society Meeting, Cagliari,
Italy, 2017.
-
A. Petrini, M. Notaro, J.
Gliozzo, G. Valentini, G. Grossi, M. Frasca
Speeding up node label learning in unbalanced
biomolecular networks through a parallel and sparse
GPU�based Hopfield model ,
BITS 2017, Bioinformatics Italian
Society Meeting, Cagliari,
Italy, 2017.
-
P. Perlasca, M. Mesiti,
M. Notaro, A. Petrini, J. Gliozzo, G. Valentini, M.
Frasca A
Web Graphical Tool for the Integration of Unbalanced
Biomolecular Networks ,
BITS 2017, Bioinformatics Italian
Society Meeting,
Cagliari, Italy, 2017.
-
M. Re, M. Mesiti, M.
Frasca, J. Lin, G. Valentini
Analysis of bio-molecular networks through
semi-supervised graph-based learning methods ,
Third Italian Workshop on Machine Learning and
Data Mining - XIII AI*IA Symposium on Artificial
Intelligence (invited
talk), Pisa December 2014.
-
M. Dugo, M. Callari, P.
Miodini, V. Cappelletti, M.L. Carcangiu, R. Orlandi,
G. Valentini, MG Daidone, Performance of single
sample predictors in defining breast cancer
molecular subtypes ,
53rd Annual Meeting of the Italian
Cancer Society ,
Torino, October 2011.
-
A. Bertoni, M. Frasca,
G.Valentini, An
efficient supervised method to integrate multiple
biological networks ,
BITS 2011, Bioinformatics Italian
Society Meeting, Pisa,
Italy, 2011.
-
A. Rozza , G. Lombardi,
M. Re, E. Casiraghi, G. Valentini, P. Campadelli, A Novel
Ensemble Approach for the Subcellular Localization
of Proteins ,
BITS 2011, Bioinformatics Italian
Society Meeting, Pisa,
Italy, 2011.
-
D. Malchiodi, M. Re and
G. Valentini, Uso
di Mathematica per la classificazione di dati di
qualità variabile ,
Mathematica Italia User Group
Meeting - Atti del Convegno 2010,
Adalta (ISBN 978-88-96810-00-2), 2010.
-
M. Re, G.Valentini, Data fusion based gene function prediction using ensemble methods,
BITS 2009, Bioinformatics Italian
Society Meeting, Genova,
Italy, 2009.
-
N. Cesa-Bianchi, G.
Valentini, Genome-Âwide hierarchical classification of gene function,
BITS 2009, Bioinformatics Italian
Society Meeting, Genova,
Italy, 2009.
-
R. Avogadri, A. Bertoni,
G. Valentini, An
integrated algorithmic procedure for the
assessment and discovery of clusters in DNA
microarray data,
BITS 2009, Bioinformatics
Italian Society Meeting,
Genova, Italy, 2009.
-
G.Valentini, Statistical
methods for the assessment of clusters discovered
in bio-molecular data,
Proc. of the 6th SIB
National Congress, Statistics in Life and
Environment Sciences,
Pisa, Italy, 2007.
-
A.Bertoni,
G.Valentini, A
statistical test based on the Bernstein inequality
to discover multi-level structures in
bio-molecular data
BITS 2007, Bioinformatics Italian
Society Meeting, Napoli,
Italy, 2007.
-
G.Pavesi, G.Valentini, Classification of
co-expressed genes from DNA regulatory regions
BITS 2007, Bioinformatics
Italian Society Meeting,
Napoli, Italy, 2007.
-
G. Pavesi , G.
Valentini, G. Mauri, G. Pesole, Motif Based
Classification of Coregulated Genes,
BITS 2006, Bioinformatics Italian Society Meeting, Bologna Italy, 2006.
-
A. Bertoni, R. Folgieri,
F. Ruffino, G. Valentini, Assessment
of
clusters reliability for high dimensional genomic
data
BITS 2005, Bioinformatics Italian Society Meeting, Milano Italy, 2005
-
F. Ruffino, G.
Valentini, M.Muselli, Evaluation
of
gene selection methods through artificial and
real-world data concerning DNA microarray
experiments,
BITS 2005, Bioinformatics Italian Society Meeting, Milano Italy, 2005
-
M. Muselli, F. Ruffino,
and G. Valentini, An
Artificial
Model for Validating Gene Selection Methods,
BITS 2004, Bioinformatics Italian Society Meeeting, Padova, Italy, 2004
-
F. Ruffino, G.
Valentini, and M. Muselli, Metodi di Bagging e
di selezione delle variabili per l' analisi dei dati
di DNA microarray, SIS 2003.
-
G. Valentini, Metodi di
apprendimento automatico supervisionato per il
riconoscimento di linfomi tramite DNA microarray,
Atti III Convegno Federazione Italiana Scienze della
Vita - FISV 2001", Riva del Garda (TN), 2001.
-
M. Pardo, G. Benussi, G. Sberveglieri, G.
Valentini, F. Masulli and M. Riani, Application
of parallel non-linear dichotomizers to electronic
noses, INFMeeting 2000, Genova, 2000.
Technical
reports
-
G. Valentini, Ensemble
methods based on bias-variance analysis, Ph.D. thesis,
DISI - Dipartimento di Informatica e Scienze dell'
Informazione - Universita` di Genova - Tech. Rep.
TR-03-04, 2003. [pdf]
-
G. Valentini,
Classification of human lymphoma using gene expression
data, DISI - Dipartimento di Informatica e Scienze
dell' Informazione - Universita` di Genova - Tech.
Rep. TR-01-07, 2001. [gzipped
postscript]
-
F. Masulli, G. Valentini,
Evaluating dependence among output errors in ECOC
learning machines , DISI - Dipartimento di Informatica
e Scienze dell' Informazione - Universita` di Genova -
Tech. Rep. TR-01-05, 2001. [gzipped
postscript]
-
F. Masulli, G. Valentini,
Mutual information methods for evaluating dependence
among outputs in learning machines, DISI -
Dipartimento di Informatica e Scienze dell'
Informazione - Universita` di Genova - Tech. Rep.
TR-01-02, 2001. [gzipped
postscript]
-
G. Valentini, Upper bounds on the training
error of ECOC SVM ensembles, DISI - Dipartimento di
Informatica e Scienze dell' Informazione - Universita`
di Genova - Tech. Rep. TR-00-17, 2000. [gzipped
postscript]
|